Data at Scale

Remote Storage

- High Availability Measures
 - Replication
 - Erasure Correcting Coding

• Data broken into pages

$$P_1 = P_2 = P_3 = P_3 = P_3$$

 $\{ p_{1,0}, p_{1,1}, p_{1,2}, \ldots \}$ $\{ p_{2,0}, p_{2,1}, p_{2,2}, \ldots \}$ $\{ p_{3,0}, p_{3,1}, p_{3,2}, \ldots \}$

• Create parity pages $C_1 =$ $C_2 =$ $C_3 =$

$$\{c_{1,0}, c_{1,1}, c_{1,2}, \ldots\}$$

$$\{c_{2,0}, c_{2,1}, c_{2,2}, \ldots\}$$

$$\{c_{3,0}, c_{3,1}, c_{3,2}, \ldots\}$$

 "Check" pages calculated using an erasure correcting code

$$(c_{1,i}, c_{2,i}, \dots, c_{m,i}) = \Phi(p_{1,i}, p_{2,i}, \dots, p_{n,i})$$

- *m/n-*code:
 - *m* data pages
 - *n* check pages
 - Any *m* of the *n+m* pages are sufficient to reconstruct all *m* data pages

- Related to error-correcting codes in telecommunications / networking
- Simplest code: Parity code
 - One check symbol
 - Is parity of the data symbols

$$c_{1,i} = p_{1,i} \oplus p_{2,i} \oplus \ldots \oplus p_{n,i}$$

• Can calculate single lost data symbol as the parity of the survivors and the check symbol

- Group Activity:
 - Reconstruct the missing text

G	47	В	42	I	42
0	6f	u	75	L	6f
0	6f	е	65	\cap	7e
d	64	n	6e	U	6f
	20	a	61	S	61
е	65	S	73	0	58
V	76		20	Т	37
е	65	n	6e	•	68
n	6e	0	6f		69
i	69	С	63		7e
n	6e	h	68		
g	67	е	65		
		S	73		

- Many codes are known
- Some involve algebraic objects such as finite fields
 - Example GF(2⁸)
 - Elements are bytes (string of 8 bits)
 - Addition is exclusive-or
 - 0010 0011 + 1011 1110 = 1001 1101
 - Multiplication can be defined as polynomial multiplication $00100011 \approx t^5 + t + 1$

- Multiplication in GF(2^8) $00100011 \approx t^5 + t + 1$ $10111110 \approx t^7 + t^5 + t^4 + t^3 + t^2 + t$
 - Multiply polynomials with coefficients in {0,1}
 - Caution: 1+1 = 0

 $\begin{aligned} t^{12} + t^{10} + t^9 + t^8 + t^7 + t^6 \\ + t^8 + t^6 + t^5 + t^4 + t^3 + t^2 \\ + t^7 + t^5 + t^4 + t^3 + t^2 + t \\ &= t^{12} + t^{10} + t^9 + t \end{aligned}$

• Now divide this polynomial by a *generator* polynomial

$$t^8 + t^4 + t^3 + t + 1$$

- The remainder is the product
 - Group exercise: Calculate the remainder

- However, we do not have to do this multiplication every time
 - Can use tables and algebraic properties
 - Plank, Greenan, Miller: Can multiply 16 GF elements by a constant GF element with 6 assembly instructions
 - Using PSHUFB instruction

- Simple method to create erasure correcting codes
 - Start with Vandermonde matrix of size *n* by *n+m*
 - Defined by n+m different Galois field elements

$$\mathbf{V} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & \dots & 1 \\ \alpha_0 & \alpha_2 & \alpha_3 & \alpha_4 & \dots & \alpha_{n+m-1} \\ \alpha_0^2 & \alpha_2^2 & \alpha_3^2 & \alpha_4^2 & \dots & \alpha_{n+m-1}^2 \\ \alpha_0^3 & \alpha_2^3 & \alpha_3^3 & \alpha_4^3 & \dots & \alpha_{n+m-1}^3 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_0^{n-1} & \alpha_2^{n-1} & \alpha_3^{n-1} & \alpha_4^{n-1} & \dots & \alpha_{n+m-1}^{n-1} \end{pmatrix}$$

• Use elementary row transformations to obtain

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & r_{0,0} & r_{0,1} & \dots & r_{0,m} \\ 0 & 1 & 0 & \dots & 0 & r_{1,0} & r_{1,1} & \dots & r_{1,m} \\ 0 & 0 & 1 & \dots & 0 & r_{2,0} & r_{2,1} & \dots & r_{2,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 & r_{n,0} & r_{n,1} & \dots & r_{n,m} \end{pmatrix}$$

• Always possible

- This matrix has the remarkable property that any n by n sub-matrix is invertible
- Follows that multiplication with G defines an erasure correcting code
 - d n data symbols written as a row vector
 - c the same n symbols followed by m check symbols

$$\mathbf{c} = \mathbf{d} \cdot \mathbf{G}$$

- These "linear" codes have remarkable properties
 - Can change a single page
 - Can calculate the new check pages from the old and the new values of the page

- Are used in RAID Level 6 storage systems
- Can / could be used across system boundaries