Map Reduce

Data at Scale

History

A simple paradigm that popped up several times as paradigm

e Observed by google as a software pattern:

e Data gets filtered locally and filtered data is then
reassembled elsewhere

e Software pattern: Many engineers are re-engineering the
same steps

e Map-reduce:
 Engineer the common steps efficiently

* |ndividual problems only need to be engineered for what
makes them different

History

e Open source project (in part sponsored by Yahoo!)
e Java-based Hadoop

e Eventually a first tier Apache Foundation project

e QOther projects at higher level: Pig, Hive, HBase, Mahout,
Zookeeper

e Use Hadoop as foundation

e Hadoop is becoming a distributed OS

Map Reduce Paradigm

e |Input: Large amount of data spread over many different
nodes

e Qutput: A single file of results

e [wo Important phases:

* Mapper. Records are processed into key-value pairs.
Mapper sends key-value pairs to reducers

* Reducer: Create final answer from mapper

Simple Example

e Hadoop Word Count
e Given different documents on many different sites
* Mapper:
e Extract words from record

e Combines words and generates key-value pairs of type word:
key

* Sends to the reducers based on hash of key
e Reducer:

* Receives key-value pairs

* Adds values for each key

e Sends accumulated results to aggregator - client

—

I
— |
| | docul
document f................ ant: 2
| E ________ - Mapper —> Reducer
document
| | ant: 3
ant: 4
docy ani: 1
E - ant: 10
| | | | ass: 5

' / auk: 2
docu ‘
docu
document ...l L
document | [| [T e > Mapper 'A,l
/)4
v" M
- 2\

HFS ¢

l v ray: 5
document {------f--oooo I -- > Mapper ’ \ oe: 2
rat: 3
docul , X \
document “
Reducer

| """""""""" N

[Mapper —> Reducer
|

docy '.

docy document

document

Map-reduce paradigm in
detall

e The simple mapper -reducer paradigm can be expanded
into several, typical components

Map Reduce in Detall

e Mapper:
e Record Reader
e Parses the data into records

e Example: Stackoverflow comments.

® <row Id="5" PostId="5" Score="2" Text="Programming in
Portland, cooking in Chippewa ; it makes sense that these
would be unlocalized. But does bicycling.se need to follow
only that path? I agree that route a to b in city x is not
a good use of this site; but general resources would be."
CreationDate="2010-08-25T21:21:03.233" UserId="21" />

* Record reader extract the “Text=" string

* Passes record into a key-value format to rest of mapper

Map Reduce in Detall

* Mapper

* map

* Produces “intermediate” key-value pairs from the record

e Example:
® "Programming in Portland, cooking in Chippewa ; it
makes sense that these would be unlocalized. But does

bicycling.se need to follow only that path? I agree

that route a to b in city x is not a good use of this
site; but general resources would be.”

e Map produces: <programming: 1> <in: 1>
<Portland: 1> <cooking: 1> <in: 1> ...

Map Reduce in Detall

e Mapper
e Combiner — alocal reducer
e Jakes key-value pairs and processes them
e Example:

e Map produces: <programming: 1> <in: 1>
<Portland: 1> <cooking: 1> <in: 1> ...

e (Combiner combines words: <programming: 1>
<in: 4> <Portland: 3> ...

Map Reduce in Detall

e Combiners allow us to reduce network traffic

e By compacting the same infomrmation

Map Reduce in Detall

e Mapper
o Partitioner

e Partitioner creates shards of the key-value pairs
produced

e One for each reducer
e (Often uses a hash function or a range
e Example:

e mdS(key) mod (#reducers)

Map Reduce in Detall

* Reducer
e Shuffle and Sort
e Part of the map-reduce framework

e |ncoming key-value pairs are sorted by key into one
large data list

e Groups keys together for easy agglomeration

e Programmer can specify the comparator, but nothing
else

Map Reduce in Detall

* Reducer
* reduce
e Written by programmer
e Works on each key group
e Data can be combined, filtered, aggregated

e Qutput is prepared

Map Reduce in Detall

e Reducer

e Qutput format

e Formats final key-value pair

Map Reduce Patterns

e Summarizations

e |nput: A large data set that can be grouped according
to various criteria

e Qutput: A numerical summary

e Example:

e (Calculate minimum, maximum, total of certain fields
in documents in xml format ordered by user-id

Summarization

e Example:

e (Given a database in xml-document format

<row Id="193" PostTypeld="1" AcceptedAnswerId="194"
CreationDate="2010-10-23T20:08:39.740" Score="3" ViewCount="30"
Body="&1t; p>Do you lose one point of reputation when you
down vote community wiki? Meta? </p>

 &Lt ; p> I
know that you do for "regular questions". </

p>
" OwnerUserId="134"
LastActivityDate="2010-10-24T05:41:48.760" Title="Do you lose
one point of reputation when you down vote community wiki?
Meta?" Tags="<discussion>" AnswerCount="1"
CommentCount="0" />

e Determine the earliest, latest, and number of posts for
each user

Summarization

e Mapper:

e Step 1: Preprocess document by extracting the user ID
and the date of the post

e Step 2: map:
e User ID becomes the key.

e Value stores the date twice in Java-date format and
adds a long value of 1

“134": (2010-10-23T20:08:39.740, 2010-10-23T20:08:39.740, 1)

Summarization

e Mapper:
e Step 3: Combiner
 Jake intermediate User-ID — value pairs
e Combine the value pairs
e Combination of two values:
e first item is minimum of the dates
e second item is maximum of the dates

e third item Is sum of third items

Summarization

e The map reduce framework is given the number of
reducers

e Autonomously maps combiner results to reducers

e Each reducer gets key-value parts for a range of user-
IDs grouped by user-ID

Summarization

 Reducer:
e Passes through each group combining key-value pairs
e End-result:
e Key-value pair with key = user-id
e \alue is a triple with
e minimum posting date
e maximum posting date

e number of posts

Summarization

e Reducer:

e Each summary key— value pair is sent to client

Summarization

e Example (cont.)

Mapper 1

Mapper 2

Combiner

Combiner

—>

—>

UserlD 12345 01.02.2010 01.02.2010
UserlD 12345 02.02.2010 02.02.2010
UserlD 12345 04.02.2010 04.02.2010
UserID 98765 12.02.2010 12.02.2010
UserlD 98765 02.02.2010 02.02.2010
UserlD 98765 05.02.2010 05.02.2010
UserlD 56565 02.02.2010 02.02.2010
UserlD 56565 03.02.2010 03.02.2010
UserlD 12345 02.02.2010 02.02.2010
UserlD 12345 04.02.2010 04.02.2010
UserlD 77444 12.02.2010 12.02.2010
UserlD 77444 02.02.2010 02.02.2010
UserlD 98765 05.02.2010 05.02.2010

UserlD 12345 01.02.2010 04.02.2010
UserlD 98765 02.02.2010 12.02.2010
UserlD 56565 02.02.2010 03.02.2010
UserlD 12345 02.02.2010 04.02.2010
UserlD 77444 02.02.2010 12.02.2010
UserlD 98765 05.02.2010 05.02.2010

Summarization

e Example (cont.) Automatic Shuffle and Sort

e Records with the same key are sent to the same
reducer

Summarization

e Example (cont.)
 Reducer receives records already ordered by user-ID

e Combines records with same key

UserlD 12345 01.02.2010 04.02.2010 3

UserlD 12345 02.02.2010 04.02.2010 2

UserlD 12345 26.03.2010 30.04.2010 5 UserlD 12345 01.02.2010 30.02.2010 13
UserlD 12345 19.01.2010 01.04.2010 3 ———-

UserlD 16542 02.02.2010 04.02.2010 5 UserlD 16542 19.01.2010 29.05.2010 12
UserlD 16542 26.03.2010 29.05.2010 5

UserlD 16542 19.01.2010 19.01.2010 1

Summarization

e In (pseudo-)pig:
e | oad data

posts = LOAD ‘/stackexchange/posts.tsv.gz'
USING PigStorage('\t') AS (

post 1d : long,

user 1d : 1nt,

text : chararray,

post : date
)

Summarization

e In (pseudo-)pig:
e Group by user-id

post group = GROUP posts BY user 1d;

e Obtain min, max, count:

result = FOREACH post group GENERATE group,
MIN (posts.date), MAX (posts.date),
COUNT STAR (post group)

Summarization

e In (pseudo-)pig:
e | oad data

orders = LOAD ‘/stackexchange/posts.tsv.gz'
USING PigStorage('\t') AS (

post 1d : long,

user 1d : 1nt,

text : chararray,

post : date
)

Summarization

e Your turn:
e (Calculate the average score per user

e The score is kept in the “score”-field

Summarization

e Solution:

* Need to aggregate sum of score and number of posts

e Mapper: for each user-id, create a record with score
userid: score, 1

e Combiner adds scores and counts
userid: sum score, count

e Reducer combines as well

e (Generates output key-value pair and sends it to the user

® userid: sum score/count

Summarization

e Finding the median of a numerical variable
e Mapper aggregates all values in a list
e Reducer aggregates all values in a list
e Reducer then determines median of the list

e Can easily run into memory problems

Summarization

e Median calculation:

* Can compress lists by using counts
* 2,3, 3,3, 2, 4, 5, 2, 1, 2becomes

(1,1), (2,4), (3,3), (4,1) (5,1)

e Combiner creates compressed lists
 Reducer code directly calculates median

e An instance where combiner and reducer use
different code

Summarization

Summarization

Summarization

Summarization

Summarization

Summarization

Summarization

Summarization

Map Reduce Patterns

Map Reduce Patterns

Map Reduce Patterns

