
Pig
Data at Scale

Pig
• Control Language for Map Reduce on top of Hadoop

• Consists of:

• Language to express data flows: Pig Latin

• Execution program to run Pig Latin programs

• Local execution in a single JVM

• Distributed execution on a Hadoop cluster

Pig
• Map-reduce has long development cycles:

• Writing mappers and reducers

• Compiling and packaging code

• Submitting the jobs

• Retrieving the results

• Pig can process terabytes of data with half a dozen lines
of Pig Latin from the console

Pig
• Developed at Yahoo to allow employees and researchers

to mine large Yahoo datasets

• Allows to introspect data structures

• Can perform sample runs on representative sample of
data

Pig
• Written to be extensible

• Loading, storing, filtering, grouping, joining can be
altered by User-Defined Functions (UDF)

• Pig is often not as fast as pure map-reduce

• But the distance is shrinking with each release

Pig
• Local mode:

• Pig runs a single JVM and accesses the local file
system

• Is set by running pig with the -x or -exectype option

• pig -x local (local mode)

• pig -x mapreduce (map-reduce mode)

Pig
• Map-reduce mode

• Pig translates queries into MapReduce jobs

• Pig then runs them on a Hadoop cluster

• Uses HADOOP-HOME environment variable for finding
Hadoop client

Running Pig
• Three ways to execute pig programs

• Script

• pig script.pig

• Grunt

• Interactive shell

• pig -x mapreduce

• Embedded

• Use PigServer class with Pigrunner

Running Pig
• Grunt

• Has line editing commands

• CTRL-P — previous command, CTRL-N — next
command, CTRL-E — end of line

• Has command completion for pig keywords invoked by
TAB

• PigPen:

• Eclipse plug-in development environment for
developing pig programs

Running Pig
• Pig Latin and SQL

• Pig Latin is a data-flow language

• Specify the way to the output

• SQL is a descriptive programming language

• Specify the output

• Pig Latin works on any source of tuples (Pig eat
everything)

• but can specify schemas

• SQL needs to adhere to tables with schemas

Running Pig
• Pig Latin and SQL

• Pig supports complex, nested data structures

• and functional operators to change them

• SQL has only simple data structures

• Pig Latin has no indices and similar performance
enhancing auxiliary data structures

• SQL allows to define indices, etc to speed up queries

Pig Latin
• Pig Latin program is a collection of statements

• Each statement is an operation of command

• grouped_records = GROUP records BY year;

• Statements are usually terminated by a semicolon

• Exception: statements for interactive use such as ls /

• Statements with semicolon can be split over several lines

• Pig Latin uses

• SQL-style comments - -

• C-style comments /* */

Pig Latin
• LOAD — loads data from the file system

• STORE — saves data to the file system

• DUMP — print relation to console

records = LOAD ‘file’ AS
 (year: int, temperature: int, quality: int);

STORE A INTO ‘output/b’ USING PigStorage(‘;’);

Pig Latin
• Filter: Use a Boolean condition

divs = LOAD(‘NYSE_dividends’) AS
(exchange: chararray, symbol: chararray, data: chararray,
 dividends: float);

startswithcm = FILTER divs BY symbol MATCHES ‘CM.*’;

positive = FILTER divs BY NOT dividend == 0.0;

Pig Latin
• GROUP — collect records with the same key

divs = LOAD(‘NYSE_dividends’) AS
(exchange: chararray, symbol: chararray, date: chararray,
 dividends: float);

grpd = GROUP daily BY symbol, date;

grpd2 = GROUP daily BY (exchange, symbol);

grpd3 = GROUP daily BY ALL;

cnt = FOREACH grpd GENERATE GROUP, COUNT(daily);

Pig Latin
• Group:

• Group creates relations

• First field is the grouping field (called group)

• Second field is a bag of grouped fields with the same
schema as the original relation

Pig Latin
• FOREACH … GENERATE — removes rows from a relation

• Example:

• A: (Joe, cherry, 2)

• B: (Joe, 3, Constant)

• C: fields are renamed

A = LOAD 'input/pig/foreach/A'
 AS (f0:chararray, f1:chararray, f2:int);
DUMP A;
B = FOREACH A GENERATE $0, $2+1, 'Constant';
DUMP B;
DESCRIBE B;
C = FOREACH A GENERATE $0, (int) $2 AS f1, 'Constant' AS f2;
DUMP C;
DESCRIBE C;

Pig Latin
• JOIN: Inner join by common attribute

• using ‘replicated’ for replicated join

• First relation is the large one, the other ones are smaller

• specifying outer joins

C = JOIN A BY $0, B BY $1;

C = JOIN A BY $0, B BY $1 USING ‘replicated’;

C = JOIN A BY $0 LEFT OUTER, B BY $1;

Pig Latin
• COGROUP

• Allows nested set of output tuples

• CROSS

• Creates cross-product

I = CROSS A,B;

Pig Latin
• Sorting data with ORDER

• B = ORDER A BY $0, $1 DESC;

Pig Latin
• Combining data with UNION

• C = UNION A, B;

Pig Latin
• SPLIT

SPLIT records INTO good_records if temperature is not null,
bad_records if temperature is null

Pig Latin
• Diagnostics:

• DESCRIBE — print schema

• EXPLAIN — print logical and physical plan

• ILLUSTRATE — show sample execution of the logical
pan

Pig Latin
• Using UDF

• REGISTER — register a JAR file with the Pig runtime

• DEFINE — creates alias for macro, UDF, …

• IMPORT — import macros defined in a separate file

Pig Latin
• Commands:

• cat — print contents of a file

• cd — change current directory

• copyFromLocal — copy local file to Hadoop

• copyToLocal — copy from Hadoop fs to local

• cp — copy files

• fs — access Hadoop file system

• ls — list files

• mkdir — create new directory

• mv — move files

• pwd — print current working directory path

• rm — remove file

Pig Latin
• Expressions:

• c.$1 c.name projection

• item#’Coat’ — value associated with key in a map

• (int) f — casting

• arithmetic: $2+$3, 5*$1+$2

• conditional: x ? y : z

• comparisons: $1<$2

• Booleans: or, and, matches, is null, is not null

• Flatten: removes a level of nesting from bags and tuples

Pig Latin
• Types:

• int, long

• float, double

• chararray

• bytearray

• tuple: (1, ‘apple’)

• bag { (1, ‘apple’), (2)}

• map

Pig Latin
• Validation

• Pig enforces constraints in a table at load time

• Failure results in an offending value being made into a
null

Pig Latin
• User - Defined Functions (UDF)

• UDFs are subclasses of FilterFunc which is derived
from EvalFunc

• UDFs are compiled and packaged in a JAR file

• Use Register to tell Pig about the JAR file

filtered_records = FILTER records BY temperature != 9999 AND
isGood(quality)

Pig Latin
• UDF

• Can also use scripting languages

register ‘production.py’ using jython as bbccdd;
player = load ‘baseball’ as (name:chararray, team:
 chararray, pos: bag{t:(p:charrarray)}, bat:map[]);

nonnull = filter player by bat#’slugging_percentage’
is not null and bat#’on_base_percentage’ is not null;

calcprod = foreach nonull genererate name,
bbccdd.production(
(float)bat#’slugging_percentage’,
(float)bat#’on_base_percentage’);

