Pig

Data at Scale

e Control Language for Map Reduce on top of Hadoop

e (Consists of:

e |anguage to express data flows: Pig Latin
e Execution program to run Pig Latin programs
e |ocal execution in a single JVM

e Distributed execution on a Hadoop cluster

Pig
e Map-reduce has long development cycles:
e Writing mappers and reducers
e Compiling and packaging code
e Submitting the jobs

e Retrieving the results

e Pig can process terabytes of data with half a dozen lines
of Pig Latin from the console

e Developed at Yahoo to allow employees and researchers
to mine large Yahoo datasets

e Allows to introspect data structures

e Can perform sample runs on representative sample of
data

e Written to be extensible

e Loading, storing, filtering, grouping, joining can be
altered by User-Defined Functions (UDF)

e Pig is often not as fast as pure map-reduce

e But the distance is shrinking with each release

Pig
e | ocal mode:

 Pig runs a single JVM and accesses the local file
system

e |s set by running pig with the -x or -exectype option
e pig -X local (local mode)

e pig -x mapreduce (map-reduce mode)

Pig
e Map-reduce mode

e Pig translates queries into MapReduce jobs

e Pig then runs them on a Hadoop cluster

e Uses HADOOP-HOME environment variable for finding
Hadoop client

Running Pig

e Three ways to execute pig programs
e Script
® P1g script.pig
e Grunt
e |nteractive shell
® P1g —-xX mapreduce
* Embedded

e Use PigServer class with Pigrunner

Running Pig

e Grunt

e Has line editing commands

e CTRL-P — previous command, CTRL-N — next
command, CTRL-E — end of line

e Has command completion for pig keywords invoked by
TAB

e PigPen:

e Eclipse plug-in development environment for
developing pig programs

Running Pig

* Pig Latin and SQL
* Pig Latin is a data-flow language
* Specify the way to the output
* SQL is a descriptive programming language
e Specify the output

* Pig Latin works on any source of tuples (Pig eat
everything)

* but can specify schemas

e SQL needs to adhere to tables with schemas

Running Pig

e Pig Latin and SQL

Pig supports complex, nested data structures
e and functional operators to change them
SQL has only simple data structures

Pig Latin has no indices and similar performance
enhancing auxiliary data structures

SQL allows to define indices, etc to speed up queries

Pig Latin

* Pig Latin program is a collection of statements

e Each statement is an operation of command

® grouped records = GROUP records BY year;
e Statements are usually terminated by a semicolon

e EXxception: statements for interactive use such as 1s /

e Statements with semicolon can be split over several lines
 Pig Latin uses

e SQL-style comments - -

e C-stylecomments /* 7/

Pig Latin

e LOAD — loads data from the file system

records = LOAD ‘file’ AS
(year: 1nt, temperature: int, quality: int);

e STORE — saves data to the file system

STORE A INTO ‘output/b’ USING PigStorage (‘;’);

e DUMP — print relation to console

Pig Latin

o Filter: Use a Boolean condition

divs = LOAD (‘NYSE dividends’) AS

(exchange: chararray, symbol: chararray, data: chararray,
dividends: float);

startswithcm = FILTER divs BY symbol MATCHES ‘CM.*';

positive = FILTER divs BY NOT dividend == 0.0;

Pig Latin

e GROUP — collect records with the same key

divs = LOAD('NYSE dividends’) AS
(exchange: chararray, symbol: chararray, date: chararray,
dividends: float);

grpd = GROUP daily BY symbol, date;

grpdZ GROUP daily BY (exchange, symbol) ;

grpd3 GROUP daily BY ALL;

cnt = FOREACH grpd GENERATE GROUP, COUNT (daily);

Pig Latin

e Group:
e Group creates relations
e First field is the grouping field (called group)

e Second field is a bag of grouped fields with the same
schema as the original relation

Pig Latin

e FOREACH ... GENERATE — removes rows from a relation

A = LOAD 'input/pig/foreach/A'

AS (fO:chararray, fl:chararray, f2:int);
DUMP A;
B = FOREACH A GENERATE $0, $2+1, 'Constant';
DUMP B;
DESCRIBE B;

C = FOREACH A GENERATE $0, (int) $2 AS f1, 'Constant' AS f2;

DUMP C;
DESCRIBE C;

e Example:
e A: (Joe, cherry, 2)
e B: (Joe, 3, Constant)

e (C: fields are renamed

Pig Latin

e JOIN: Inner join by common attribute

C = JOIN A BY S0, B BY $1;

e using ‘replicated’ for replicated join

e First relation is the large one, the other ones are smaller

C = JOIN A BY $0, B BY $1 USING ‘replicated’;
e specifying outer joins

C = JOIN A BY $O LEFT OUTER, B BY $1;

Pig Latin

e Allows nested set of output tuples

e CROSS

e Creates cross-product

I = CROSS A,B;

Pig Latin

e Sorting data with ORDER

¢ B = ORDER A BY $0, $1 DESC;

Pig Latin

e Combining data with UNION

C = UNION A, B;

Pig Latin

e SPLIT

SPLIT records INTO good records 1f temperature 1s not null,
bad records 1f temperature 1s null

Pig Latin

e Diagnostics:
e DESCRIBE — print schema
e EXPLAIN — print logical and physical plan

e I[LLUSTRATE — show sample execution of the logical
pan

Pig Latin

e Using UDF
e REGISTER — register a JAR file with the Pig runtime
e DEFINE — creates alias for macro, UDF, ...

e IMPORT — import macros defined in a separate file

Pig Latin

e Commands:
e cat — print contents of a file
e cd — change current directory
e copyFromLocal — copy local file to Hadoop
e copyTolLocal — copy from Hadoop fs to local
* cp — copy files
e fs — access Hadoop file system
e |s — list files
e mkdir — create new directory
e mv — move files
e pwd — print current working directory path

e rm — remove file

Pig Latin

e EXpressions:
e ¢.$1 c.name projection
e item# Coat’ — value associated with key in a map
e (int) f — casting
e arithmetic: $2+%$3, 5*$1+%2
e conditional: x?vy:z
e comparisons: $1<$2
e Booleans: or, and, matches, is null, is not null

* Flatten: removes a level of nesting from bags and tuples

Pig Latin

e Jypes:
e int, long
o float, double
e chararray
e bytearray
e tuple: (1, ‘apple’)
* bag {(1, ‘apple’), (2)}

e map

Pig Latin

e \alidation
 Pig enforces constraints in a table at load time

e Failure results in an offending value being made into a
null

Pig Latin

e User - Defined Functions (UDF)

filtered records = FILTER records BY temperature != 9999 AND
1sGood (quality)

e UDFs are subclasses of FilterFunc which is derived
from EvalFunc

e UDFs are compiled and packaged in a JAR file
e Use Register to tell Pig about the JAR file

Pig Latin

e UDF

e (Can also use scripting languages

reglister ‘production.py’ using jython as bbccdd;
player = load ‘baseball’” as (name:chararray, team:
chararray, pos: bag{t: (p:charrarray)}, bat:mapl])

nonnull = filter player by bat#’slugging percentage’
1s not null and bat#’on base percentage’ 1s not null;

calcprod = foreach nonull genererate name,
bbccdd.production (
(float)bat#’slugging percentage’,
(float)bat#’on base percentage’);

