Data Model Challenge

Artist ID	Artist Name	Painting ID	Painting title	Purchase date	Purchase prize	Purchaser name	Purchaser Address	Purchaser City
3	Frederick Simons	1	Still life	01/03/2019	500.00	Steve Owens	1345 W Wells Street	Milwaukee
5	Adalbert Durer	2	Hare	01/03/2019	1200.00	Jarislav Richter	1832 17th Street	Milwaukee
7	Winnie Gough	3	Sunflowers	01/04/2019	150.00	Steve Owens	1345 W Wells Street	Milwaukee
3	Frederick Simons	4	Carp in pond	01/05/2019	545.00	Franz List	1732 W Wisconsin Avenue	Milwaukee

- 1. Create the scheme for this database table. Determine the most natural key. Be mindful that a painting might be resold.
- 2. Explain why this scheme suffers from the redundancy, the update, and the deletion anomaly.
- Identify some functional dependencies.
 Break the table up into BCNF form, trying to enable columnar storage.
- 5. Express the first record as a Jason record.
- 6. Can you express the table in the property graph model by Neon?