
Zookeeper
Data at Scale

Zookeeper
• Hadoop’s distributed coordination server

• Design Goals

• Simplicity

• Distributed processes coordinate through a shared
hierarchical namespace — znodes

• Reliability

• Uses replication

Zookeeper
• Clients communicate through a file like system

• Zookeeper implements:

• Wait-free

• FIFO execution of requests per client

• Linearizability for all requests that change ZooKeeper
state

Zookeeper
• Coordination between processes

• Agreement on configuration

• Leader election

• Group membership

• Locks

Zookeeper
• Other solutions:

• Amazon simple queue service

• Provides just queuing

• Protocols for leader election

• Protocols for common configurations

• Chubby for locking with strong synchronization
guarantees

Zookeeper
• Zookeeper:

• Generic

• Takes form of file server instead of e.g. locking

Zookeeper
• Zookeeper:

• Guarantees FIFO client ordering

• Global linearizability of writes

• Using replicated servers

Zookeeper Service
• znodes: in-memory data nodes with Zookeeper data

• Data is organized in a data tree

Zookeeper Service
• Zookeeper provides an abstraction to clients

• znodes are organized in a hierarchy

• znodes can be regular

• Created and deleted explicitly

• znodes can be ephemeral

• Clients create znodes, but system can remove them at
end of session

Zookeeper Service
• Znodes can be sequential

• When created, a counter is added to their name

Zookeeper Service
• Zookeeper has watches:

• When a client issues a read operation with watch flag
set

• Operation returns as normal

• But client is informed of any subsequent changes in
the value

Zookeeper Service
• Data Model

• znodes look like a file system

• only store meta-data used for coordination among
servers

• E.g. for leader selection:

• leader stores its name after election

• so newly joining nodes can find the name of the
leader

Zookeeper Service
• Sessions:

• Zookeeper client connects to Zookeeper and initiates a
session

• Sessions have a timeout and clients that do not interact
for a timeout are considered faulty

• Allows clients to receive service from more than a
single zookeeper server

Zookeeper Service
• Client API

• create(path, data, flags)

• delete(path, version)

• exists(path, watch)

• getData(path, watch)

• setData(path, data, version)

• getChildren(path, watch)

• sync(path)

• waits for all pending updates to propagate to servers

Zookeeper Service
• Client API

• Synchronous API for single ZooKeeper operations

• Asynchronous API if there are outstanding operations
and other tasks are executed in parallel

• Client then has to guarantee that callbacks are
invoked in order

Zookeeper Service
• Zookeeper guarantees:

• Linearizable writes:

• all requests that update the state of Zookeeper are
serializable and respect precedence

• clients can have more than one request outstanding

• FIFO client order:

• all requests from a given client are executed in the
order that they were sent by the client

Zookeeper Service
• Example

• A system elects a leader

• New leader changes a large number of configuration
parameters

• New leader notifies other processes when finished

• Two Requirements

• 1: While the leader makes changes, no other process
should use configurations undergoing changes

• 2: If the new leader dies, no process should use partial
configurations

Zookeeper Service
• Example:

• Locking can help with 1, but not with 2

• Zookeeper:

• Leader crates the ready znode

• Other processes will only use the configuration if that znode exists

• New leader

1.deletes current ready znode

2.writes configuration znodes

3.creates ready znode

• All changes are pipelined for fast parallel processing

• A client that sees ready is assured that all configuration znodes have been written
by current leader

• Watches will prevent clients to confuse an old ready with a new ready znode

Zookeeper Service
• Second example:

• Processes A and B have an outside communication channel

• Process A makes changes and informs B of these changes

• Process B now expect to see the changed znodes

• But B’s znode replica can be behind A-s

• Zookeeper solution:

• B can issue a write to the znode

• Guaranteed that any reads afterwards have new values

• This is the purpose of the sync command

Zookeeper Service
• Implementing simple locks

• Create a znode with a lock-file

• Clients create znode lock file with ‘ephemeral’

• If the creation succeeds, then client has the lock

• Otherwise, client reads the lock with “watch” set

• Which notifies it when current lockholder destroys
the file

• Client releases a lock if client dies are explicitly deletes
the lock

Zookeeper Service
• Implementing locks without herd effect

• Line up all clients requesting the lock and each client
obtains the lock in order of request arrival

• “Sequential” orders the clients’ attempts to obtain lock

Lock
1 n = create(l + “/lock-”, EPHEMERAL|SEQUENTIAL)
2 C = getChildren(l, false)  
3 if n is lowest znode in C, exit  
4 p = znode in C ordered just before n
5 if exists(p, true) wait for watch event 6 goto 2

Unlock
1 delete(n)

Zookeeper Implementation
• Reliability through replication

• Service components:

Zookeeper Implementation
• Server receives client request and prepares it for

execution (request processor)

Zookeeper Implementation
• If request is a write:

• Use agreement protocol

• Commit across all servers in the ensemble

Zookeeper Implementation
• If request is a read:

• Request processor just reads replicated database

Zookeeper Implementation
• Replicated database is in-memory

• Each znode stores 1MB maximum

• Updates are logged to disk for recoverability (replay
log)

• Log writes are forced

Zookeeper Implementation
• Clients connect to exactly one server

Zookeeper Implementation
• Agreement protocol:

• write requests are forwarded to a single server, the
leader

• other zookeeper servers are followers

Zookeeper Implementation
• Requests generated by request processor are idempotent

• Could be applied twice or more without changing effect

Zookeeper Implementation
• All requests are broadcast (via ZAB)

• ZAB uses a simple majority quorum to decide on a
proposal

Zookeeper Implementation
• Each replica of DB has a copy in memory of Zookeeper

state

• To recover state, use fuzzy snapshots (without locking)

• Possible because of idempotency

Zookeeper Implementation
• If a server processes a write request:

• Sends out notification to any watches

Zookeeper Implementation
• Fast reads:

• Reads are not coordinated

• No guarantee for precedence

Zookeeper Applications
• Fetching Service at Yahoo!

• crawls billions of web documents

• Has master processes that command page-fetching
processes

• Masters provide fetchers with configuration

• Main advantage of using ZooKeeper

• Recovery from failure of masters

Zookeeper Applications
• Yahoo! Message Broker

• Manages thousands of topics

• Clients can publish to topics and receive updates

• Each topic is replicated to two machines

• ZooKeeper

• manages distribution of topics

• deals with failure of machines

• operates system control

Zookeeper Applications

