Indices

Thomas Schwarz, SJ

Indices

e For a DBMS administrator:

e Important to make common queries fast

e E.g.: Lookup by name can be a frequent occurrence
e Jo speed up these queries, we use indices
e "Indexes" in SQL, which treats it as an English word

 |ndex Is a data structure that implements a generalized
dictionary or key-value store

e Given a key, find all records with that value

e Unlike a dictionary / key-value store: keys can have multiple
values

Indices

e |ndices come at a cost

* Need to be maintained at all updates, insertions,
deletes

Indices

* Why can indices make a difference?

e Usually, tables are stored in pages of SSD or blocks of
HDD

 Fetching a page to look up it costs time

e SSD response time: ~10 usec

e HDD response time: ~ 5 msec

e An index can minimize the amount of data that needs to
be fetched

MySQL Example

To see how indices work, we can use the EXPLAIN
statement in MySQL

We use the employees database
We look at a simple SELECT WHERE query
We create an index

We look at the same simple SELECT WHERE query

MySQL Example

EXPLAIN SELECT =
FROM employees
WHERE last name = 'Rosis';

Result Grid | Filter Rows: Q Export:

id select_type table partitio... type possible_keys key key_len ref rows filtered Extra
1 SIMPLE employees [ALL (HULL (HULL S HULL | ™ 299462 10.00 Using where

MySQL Example

e Create an Index on last name

CREATE INDEX 1LastName ON employees (last name);

xample MySQL

EXPLAIN SELECT *
FROM employees
WHERE last name = 'Rosis';

Befqre

Result Grid + 4 Filter Rows: Q Export: EfE]
id select_type table partitio... type possible_keys key key_len re rows filtepd Extra
1 SIMPLE employees [I"Y ALL [HULL (HULL I HULL | 299462 10.0 Using where

After

100%lilt:a88

ResultGrid | FilterRows: Q Export: Ef N | .
id select_type table partitio... type possible_keys key key_len rg rows filteRed Extra
1 SIMPLE employees LY ref iLastName iLastName 66 cpnst 193 [HULL

Editor

Example MySQL

 Without the index, the query looked at all the rows

 With the index, the query located just a few hundred rows

e We can use the SHOW INDICES FROM tablename to
display all indices

Example MySQL

* There are three indices in my version

100% £ | 29:189

Result Grid | Filter Rows: Q Export: |:| l
Table Non_unigue Key _name Seq_in_index Column_name Collation Cardinality Sub_part Packed Null Index_type Comment [... Visible Exp
employees 0 PRIMARY 1 emp_no A 299462 [HULL (HULL | BTREE YES
employees 1 iName 1 first_name A 1265 (HULL | (HULL BTREE YES
employees 1 iName 2 last_name A 274666 [HULL | [HULL BTREE YES
employees 1 iLastName 1 last_name A 1635 (HULL | (HULL | BTREE YES

One created because emp_no is a primary key

One called iIName, and the one we just created:
ILastName

Indices

e Some indices are created automatically
e DBMS needs them to enforce constraints
* Primary key
* Foreign key

MySQL Example

e Example: dept_emp in employees has a primary key and
a foreign key restraint.

 Both result in an index
* Primary key is two attributes

 Foreign key is one attribute

Result Grid | Filter Rows: Q Export: |:I

Table Non_unique Key name Seq_in_index Column_name Collation Cardinality Sub_part Packed Null Index_type Comment I... Visible Expr
dept_emp 0 PRIMARY 1 emp_no A 299636 [HULL | (HULL | BTREE YES (HULL |
dept_emp O PRIMARY 2 dept_no A 331143 [HULL | (HULL | BTREE YES (HULL |

dept_emp 1 dept_no 1 dept_no A 8 (HULL | (HULL BTREE YES (HULL |

Indices

* |Indices where standardized in SQL-99

 Even though most commercial database products had them

e Typical syntax
¢ CREATE INDEX indexname ON tablename(listofcolumns)

e |f you specify more than one column:

e Only speeds up searches that specify values for all of
these columns

e E.g.: Inthe MySQL example, the index on first and
last name did not speed up a query for last name only

Indices

* During the table creation, you can just specify the indices
you want

CREATE TABLE t (
cl INT PRIMARY KEY,
c2 INT NOT NULL,
c3 INT NOT NULL,
c4 VARCHAR(10),
INDEX (c2,c3)

) ;
* You can also drop an index

DROP INDEX 1Name;

Indices

e Effectiveness of indices
e Cost of indices: More work for updates, inserts, deletes
e Benefits of indices: Can reduce the number of pages fetched

 |Looking at one record in a page takes almost as long as
looking at all records in a page

e Effect depends on:
e What is your storage type

e Hint: You can spend money on Intel Optane storage
to speed it up

e How clustered the records are that are indexed

Indices

e Records with indexed value can be scattered
over storage

 Use of the index only reduces number of
pages by half

)

Lo 11T

I

)

Il

LI

Indices

e Relevant records are clustered

* Need only retrieve a few pages

)

J

JCLIEAECHE T

J

J

J

Indices

e Clustering depends on the intrinsic design of a database
management system

* However, if we only look for few records with a given
value, then indexing is bound to be effective

Indices

e Example:
¢ starsIn(movieTitle, movieYear, starName)

* Assume we have a frequent query

o SELECT movieTitle, movieYear
FROM starsln
WHERE starName = s;

e Should we build an index on starName?

Indices

e Example (cont):

 Each year, there are about 750 movies to put into a
database

e Assume we have a database starting at 1950
 That would give us about 50,000 movies
e But there were more movies earlier

e So let's say 100,000 movies in the database

Indices

e Example (cont):

 On average, we might have three or four stars per
movie in our starsin database

e Table should have 400,000 entries

e Each entry has about 50 B (big assumption)
e S0, total size of table is 2,000,000 B =2 MB
* Blocks have size 4KB, so about 500 blocks

Indices

Example (cont):
e John Wayne has about 150 movies with credits
e Carrie Fisher has about 30 movies with credits

* Average is probably closer to the lower range: 30 movies per
star on average

Without index: Need to fetch 500 pages

With index in the worst case:
e Need to fetch 30 pages

Index fetches ~20 times less pages, so let's go for it if the query
Is frequent

Indices

e Example:

 What about the opposite query

®* SELECT starName
FROM starsIN
WHERE movieTitle = 'Rio Hondo'
and movieYear = 1959;

e Even better, about four entries per title / year
* Fetch about four blocks out of 500
* |ndex speeds up fetching by a factor of 100

e Close to actual wall-clock timing update

Indices

e Example:

e However, if these queries are extremely rare, then the
gain is not realized

 Cost of maintaining indices depends on the number of
entries:

 |n our case, about 750 movies are entered into the
database

 About 3000 updates per year

e Thatis not a lot

Indices

e Example:
* Jransactions at an e-auction house
* Any bid, any offer entered into a database
e Updates almost as frequents as queries

* Need to be very careful about the costs of indexing

Materialized Views

* Views are virtual
* Created whenever they are accessed
* But views can be heavily used
* Views are used to:

* Easier query logic because the definition of the view
encompasses the difficulties

e E.g. aview that uses a join of many tables

e Security: Restrict access to tables, but give access to
Views

* Enforce business rules: What is "active"”, what is "popular”

Materialized Views

e Virtual views that are heavily used means
* running a query against a view
* running a query to recreate the view
 Materialized views store the view in a derived table
 Not all DBMS support materialized views
e Some give it a different name

e Typical command:

CREATE MATERIALIZED VIEW movieProd AS
SELECT title, year, name
FROM movies, movieExec
WHERE procuderC# = cert#

Materialized Views

e Materialized views need to be maintained

e Some updates / inserts / deletes to movieExec and
movies need to be intercepted

* The changes to the materialized view are incremental

Materialized Views In
MySQL

* They do not exists as materialized views
e But we can work around it:

 Materialized views are tables that are modified by
modifications to the base tables

e Can use triggers to intercept modifications of the base
tables in order to update the materialized view

