
SQL Database
Manipulations:

SELECT statements
Thomas Schwarz, SJ

SELECT
• SELECT is the most frequent command

• Basic use:

• SELECT attribute1, attribute2, … FROM
databasetable

• SELECT * FROM databasetable

SELECT

• SELECT — WHERE clause:

• Imposes a condition on the results

SELECT

• = equals (comparison operator)

• AND, OR

• IN, NOT IN

• LIKE, NOT LIKE

• BETWEEN … AND

• EXISTS, NOT EXISTS

• IS NULL, IS NOT NULL

• comparison operators

SELECT

• AND operator

• Combines two statements (concerning one or more
tables)

SELECT
 *
FROM
 employees
WHERE
 first_name = 'Denis' and gender = 'M;

SELECT

• OR is the Boolean or

• Trick Question: How many records will this query return?

SELECT
 *
FROM
 employees
WHERE
 last_name = 'Denis' AND gender = 'M' OR gender = 'F'

SELECT

• Operator precedence:

• AND < OR

SELECT
 *
FROM
 employees
WHERE
 last_name = 'Denis' AND (gender = 'M' OR gender = 'F')

SELECT

• Quiz:

• Retrieve all female employees with first name 'Aruna' or
'Kelly'

SELECT

• IN, NOT IN

• Checks for membership in lists

• MySQL: faster than equivalent OR formulation

SELECT
 *
FROM
 employees
WHERE
 first_name NOT IN ('Elvis','Kevin','Thomas');

SELECT

• LIKE

• Pattern matching

• Wild cards

• % means zero or more characters

• _ means a single letter

• [] means any single character within the bracket

• ^ means any character not in the bracket

• - means a range of characters

Like Examples
• WHERE name LIKE 't%'

• any values that start with 't'

• WHERE name LIKE '%t'

• any values that end with 't'

• WHERE name LIKE '%t%'

• any value with a 't' in it

• WHERE name LIKE '_t%'

• any value with a 't' in second position

Like Examples
• WHERE name LIKE '[ts]%'

• any values that start with 't' or 's'

• WHERE name LIKE '[t-z]'

• any values that start with 't', 'u', 'v', 'w', 'x', 'y', 'z'

• WHERE name LIKE '[!ts]%'

• any value that does not start with a 't' or a 's'

• WHERE name LIKE '_t%'

• any value with a 't' in second position

SELECT

• BETWEEN … AND …

• Selects records with a value in the range

• endpoints included

SELECT
 *
FROM
 employees
WHERE
 hire_data between 1990-01-01 and 1999-12-31;

SELECT

• SELECT DISTINCT

SELECT DISTINCT
 gender
FROM
 employees

SELECT

• Aggregate Functions

• Applied to a row of a result table

• COUNT

• SUM

• MIN

• MAX

• AVG

SELECT

• SELECT COUNT

• SELECT
 COUNT(emp_no)
FROM
 employees

SELECT

• SELECT COUNT

SELECT COUNT(employees.emp_no)
FROM employees
WHERE
 first_name LIKE ('Tom%') or first_name
LIKE('Tho%');

SELECT

• Combine COUNT with DISTINCT

SELECT
 COUNT(DISTINCT first_name, last_name)
FROM
 employees

SELECT

• Combine COUNT with DISTINCT

SELECT
 COUNT(DISTINCT emp_no)
FROM
 salaries
WHERE
 salary >=100000;

SELECT

• ORDER BY

• Orders result by default in ascending order

• ASC ascending

• DSC descending

SELECT
 *
FROM
 employees
WHERE
 hire_date > '2000-01-01'
ORDER BY first_name;

SELECT

• GROUP BY

• Just before ORDER BY in a query

• Needed with aggregate functions

• Example: Getting all first names in order
SELECT
 first_name
FROM
 employees
GROUP BY first_name;

SELECT

• GROUP BY

• Example: Counting first names in the employee data
base

• Hint: you want to include the attribute on which you
group

SELECT
 first_name, COUNT(first_name)
FROM
 employees
GROUP BY first_name
ORDER BY first_name;

SELECT

• GROUP BY

• Example: Counting first names in the employee data
base

• To make it look better, add an AS clause

SELECT
 first_name, COUNT(first_name)
FROM
 employees
GROUP BY first_name
ORDER BY first_name;

In Class Exercises
• Using MySQL Workbench

• Create a new database called TEST

• Create a table R with attributes A and B of
type INT

• Insert these values into R using insert
statements such as INSERT INTO R(A,B)
VALUES(3,9);

• Use a SELECT statement to insure that
the table is correct (including the double
values)

A B
1 2
1 3
1 4
2 1
2 3
3 1
3 2
3 9
4 2
4 2

In Class Exercises
• Obtain a table that lists the average value of B (AVG) for

all values of A

A BAve
rage1 3.0

2 2.0
3 4.0
4 2.0

A B
1 2
1 3
1 4
2 1
2 3
3 1
3 2
3 9
4 2
4 2

In Class Exercises

SELECT
 A, AVG(B) as BAve
FROM
 R
GROUP BY A;

In Class Exercises
• Obtain the same table, but in descending order of A

SELECT
 A, AVG(B) AS bAve
FROM
 R
GROUP BY A
ORDER BY A DESC;

In Class Exercises
• Create a table that contains only the unique value pairs

for A and B

In Class Exercises

SELECT DISTINCT
 *
FROM
 R;

In Class Exercises
• How many entries does the table have with and without

uniqueness constraints?

In Class Exercises

SELECT
 COUNT(DISTINCT A,B) AS numberOfRecords
FROM
 R;

SELECT
 COUNT(A,B) AS numberOfRecords
FROM
 R;

In Class Exercises
• Find the average and the number of counts for all B-

values depending on the A-value

A countb aveB
1 3 3.0000
2 2 2.0000
3 3 4.0000
4 2 2.0000

In Class Exercises
SELECT
 A, COUNT(B) AS countb, AVG(B) AS aveB
FROM
 R

A countb aveB
1 3 3.0000
2 2 2.0000
3 3 4.0000
4 2 2.0000

In Class Exercises
• Do the same, but make sure that we do not count double

rows twice

In Class Exercises
SELECT
 A, COUNT(B) AS countb, AVG(B) AS aveB
FROM (
 SELECT DISTINCT
 A,B
 FROM
 R
) AS AUnique
GROUP BY A;

A countb aveB
1 3 3.0000
2 2 2.0000
3 3 4.0000
4 1 2.0000

In Class Exercises
• Select the count of B-values and average of B-values

where the A value is at least 3

• We modify this with a WHERE clause

• The WHERE is applied to all tuples first, then the
grouping and the calculation of the aggregate function
happens

In Class Exercises
SELECT
 A, COUNT(B) AS countb, AVG(B) AS aveB
FROM
 (SELECT DISTINCT
 A, B
 FROM
 R) AS AUnique
WHERE
 A > 2
GROUP BY A;

A countb aveB
3 3 4.0000
4 1 2.0000

Having
• A WHERE clause applies to all the rows, but it cannot

apply to the groups created by the GROUP BY

• For this, SQL introduces the HAVING clause

• Just like a WHERE clause, but refers to aggregated
data

Having
• Syntax of Having

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
HAVING condition
ORDER BY column_name(s);

Having
• Difference between WHERE and HAVING

• WHERE is only for selecting tuples

• HAVING can only refer to the group-by-ed attribute

In Class Exercises
• Insert another double tuple 1, 1

• Get count and average of the B-values in
dependence on A where the count is 2 or less

Table 1
A B
1 2
1 3
1 4
2 1
2 3
3 1
3 2
3 9
4 2
4 2
1 1
1 1

In Class Exercises
Table 1

A COUNT(B) AVG(B)
2 2 2.0000
4 2 2.0000

SELECT
 A, COUNT(B), AVG(B)
FROM
 R
GROUP BY A
HAVING COUNT(B) <= 2;

Table
A B
1 2
1 3
1 4
2 1
2 3
3 1
3 2
3 9
4 2
4 2
1 1
1 1

In Class Exercises
• Get count and average of the B-values in dependence on

A where A is less than or equal to 2

In Class Exercises
Table 1
A B
1 2
1 3
1 4
2 1
2 3
3 1
3 2
3 9
4 2
4 2
1 1
1 1

SELECT
 A, COUNT(B), AVG(B)
FROM
 R
WHERE
 A <= 2
GROUP BY A;

Table 1-1
A COUNT(B) AVG(B)
1 5 2.2000
2 2 2.0000

SELECT

• LIMIT gives the maximum number of rows returned

• Can be used for a sample

• Can be used with ORDER BY ASC

SELECT

• Use the employees database

• Find the five employees that have made the most
money

• Hint: The Salary table has the information but
employees have different salaries over time

SELECT

Table 1
first_name last_name MAX(salary)
Tokuyasu Pesch 158220
Xiahua Whitcomb 155709
Tsutomu Alameldin 155377
Willard Baca 154459
Ibibia Junet 150345

SELECT
 first_name, last_name, MAX(salary)
FROM
 salaries,
 employees
WHERE
 employees.emp_no = salaries.emp_no
GROUP BY salaries.emp_no
ORDER BY MAX(salary) DESC
LIMIT 5;

