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Contents

e There are many ways a database scheme can be
constructed

e A poorly designed scheme:
e Has problems with checking constraints
e Has problems with data coherence

e E.g.two different spellings of the same person's
first name

e Has problems with performance



Contents

e Design theory helps to design efficient schemes
 Functional dependencies
e Used in the definition of a key
e Used for flagging potentially bad records
e Normal forms
e Get rid of anomalies
e Get rid of redundant storage of data

e Expand to multivalued dependencies



Functional Dependencies

e A form of constraint for a relation
* Functional Dependency (FD) for table R(X)
« FDA,A,,.. A, — B,B,,...,B,,
e withA,...,A,B,....,B, € X

e |f atuple's values agree for attributes Al, ...,An

e Then they agree for attributes B, B,, ..., B

m



Functional Dependencies

e Only consider FD with one attribute on the right

e Because FD A, A,,...A, — B,B,,...,B, is
equivalent to all of:

¢ Al,Az, An — Bl
¢ Al’A2’ An —> B2

e A,A,,..A, — B



Functional Dependencies

e Example:

e Moviesl( title, vyear, length, genre,
studioName, starName)

e Find all FDs



Functional Dependencies

e title, year —> length
e title, year —> genre
e title, year —> studio
e However:
e title, year -» starName

e |[snotanFD



Keys

A superkey is a set of attributes in a table that
determines all attributes

e AA. . A
1 2

Um

IS a superkey If

o V] . Ail,Aiz, ...Al’m — > A]



Keys

e A key is a minimal superkey with respect to set inclusion

e |.e. A superkey so that no attribute in it can be reomved

e |f a key consists of a single attribute, then we call the
attribute the key instead of the set with only element this

attribute



Functional Dependencies

e Quiz: Given R(A,B,C)and FDs A —» Band B — C,

e Doesthismean A — (C?



Functional Dependencies

e Answer: Yes.

e Show that all tuples that agree on attribute A also agree
on attribute C



Functional Dependencies

e Aset$ of FDs follows from a set T of FDs if every relation
instance satisfying all FDs in T also satisfies all FDs in S

e Sets of FDs are equivalent if the set of relation instances
satisfying one is equal to the set of relation instances

satisfying the other one.



Functional Dependencies

e The splitting rule:
¢ AA,,...A, — B{,B,,...,B, isequivalent to
e ALA,, ...A, — B,
e A,Ay,...A, — B,

® Al’AZ’ A — B



Functional Dependencies

e The combining rule:

e The set of FDs
¢ Al,Az, An —> Bl
¢ Al,Az, An — Bz
¢ Al’AZ’ An —> Bm

e isequivalenttoA,A,,...A, — B{,B,,...,B,,



Functional Dependencies

e Trivial FDs
¢ A, = A,
e AB—o> A
e Trivial Dependency Rule:
¢ AJA,...A, — BB,...B, is equivalent to
e AJA,... A, = C,C,...C,

« where the C; are those of the B; that are not among
the A;



Functional Dependencies

e Closure:
e Let S be a set of functional dependencies
e Let A =1{A,A,,...,A, } be aset of attributes

e The closure of A is the set AT of attributes B such

that every relation that satisfies all the FDs in S also
satisfies A, A,, ..., A, = B.




Functional Dependencies

e Closure calculation algorithm

e Input: a set of attributes A and a set of functional dependencies S.

e Output: A™

1. Split all FDs in S so that there is only a single attribute on the right

2.Set X to be A.

3.Repeatedly search for some FD B, B,, ..., B, = C € S such that
B,B,,....,B, € Aand C & A. Then add C to X

4.Stop when the search fails and output X = A™.



Functional Dependencies

e Consider the relation scheme R={E, F G, H, |, J, K, L, M,
M} and the set of functional dependencies {{E, F} -> {G},
{F} ->{l, J}, {E, H} -> {K, L}, K-> {M}, L -> {N} on R. What
is the key for R?:

* {EF}

* {E,FH}

o {E,FH,K,L}
* {E}

e Hint: calculate the closure of all possible answers



Functional Dependencies

e First, normalize {{E, F} -> {G}, {F} -> {l, J}, {E, H} -> {K, L},
K-> {M}, L->{N}

e E,F} > G {F})->L{F}->J{EH} - K, {ELH} - L K—> M,L—> N}
e Start with {E'}.
* Thereis no FD that has only E on the left side



Functional Dependencies

e ({E,F} - G,{F} > I,{F) - J{E,H} - K,{E,H} - L,LK - M,L — N)
e Nowtry {E,F} =X
e We can add G to X.
e We can add | to X.
e We can add J to X.
e Then we are stuck: {E,F}" ={E,F,G,1I,J}



Functional Dependencies

{E,F} - G {F}) > L{F} > J,{ELH} - K, {E,H} - L, K > M,L - N}
e Nowtry {E,F,H} =X
e We can add G to X because of (1).
e We can add | to X because of 2): X ={E,F,G,H, I}
e We can add J to X because of 3): X = {E,F,G,H,1,J}
e 4)gives X ={E,F,G,H,I1,J,K}
e 5)gives X ={E,F,G,H,I,J,K, L}
o (6)gives X ={E,F,G,H,I,J,K,L,M}
e (7)gives X =\{E,F,G,H,I,J,K,L,M,N}
o Therefore {E, F, H}" contains all the attributes.

e Since {F,H}" ={F, H,IJ}, {E,F,H)} is a minimal candidate key and therefore a key.



Functional Dependencies

e Why does closure work

e Need to show equivalency of :
e Be {A,A,,...,A }T withregardsto S

e Every relation fulfilling S fulfils A;A,...A, — B



Functional Dependencies

e Why does
e Be {A,A,,...,A }" withregardsto S

* imply
o Every relation fulfilling S fulfils AA,...A, = B

 Look at the first time adding an attribute to X leads to an FD A|A,...A, — B that
IS not true.

e But BwasaddedusingaFD X, X,,...X, > B

e Because this is the first time and X, X,, ...X follow from the A|A,...A, in all
relations, A|A,...A, = X, ...X,

e Thus, a tuple equal in A{A,...A, is also equal in all X, ...X,, and hence equal
in B.

e Therefore A|A,...A, — B has to be true and we have a contradiction



Functional Dependencies

e Why does
e Every relation fulfilling S fulfills A{A,...A, = B
* imply
e BE{A,A,,...,A }T withregardsto S

e Assume B & {A,,A,,...,A }T with regards to S, but
AA,...A, — B holds in all relations that also fulfill S.

* Create a simple table:

{Al A2 ... An}+ every thing else
0 O 0 0 0 ... O
0 O 0 1 1 A



Functional Dependencies

e Does this instance satisfy S?
e AssumeanFD C,C,...C. = D in S is violated

 For a violation to occur, the C; need to be on the left
side, i.e. in {A{,A,, ...,A, }" and the D on the right
side of the table.

{Al A2 ... An}t+ every thing else
0 O 0 0 O ... O
0 O 0 1 1 ... 1

 But then we did not calculate the closure correctly and
D should have beenin {A,A,, ..., A }T



Functional Dependencies

e Does this instance not satisfy A|A,...A, = B

{Al A2 ... An}+ every thing else
0 O 0 0 O ... O
0 O 0 1 1 ... 1

e Yes!



Functional Dependencies

e Therefore the assumption is violated and this finishes the
proof



Functional Dependencies

e With the closure calculation, we can prove

e IfinarelationR A, A,,...,A, — B,B,,...,B, and
Bl,Bz, ,Bn —> Cl’ Cz, Cl‘ then
AL A, ... A, — C,0,,...C,

* Transitivity



Functional Dependencies

e \We sometimes have a choice in the minimal set of FDs
that describe a relation

e Asetof FD is called a basis if all FDs holding in the
relation can be derived from the basis

e A minimal basis B:

e All FDs in B have singleton right sides
e Removing any FD from B is no longer a basis

e Ifin any FD from B we drop an attribute from the
right side, then the result is no longer a basis



Functional Dependencies

e Example:

e A relation with three attributes such that each attribute
determines the other attributes

e \What are the FDs?

e Find a minimal basis



Functional Dependencies

e Answer: FDs are

e A > B,A - (C andall augmentationsA — B, C
including the trivialonesA - A,B,A — A, C and
A—->A,B,C

e B—> A, B — C plusall augmentation

e C > A, C — B plus all augmentations



Functional Dependencies

e Answer: To obtain a bases, we can look at all subsets of
right side singleton

e {A>BA—->-C,B->AB—->C,C—->A,C—- B}
* For example:

* We try to remove from left

e A > B follows fromA > C & C—>B

e |eft with
{A->C,B—>AB—->C,C—->A,C—- B}



Functional Dependencies

e Leftwith{A >C,B—>A,B—->C,C—>A,C— B}
e Nowcangetridof B > A
e Leftwith{A >C,B—>C,C > A,C— B}



Functional Dependencies

e Another possibility:
e {A>B,B—->C,C—> A}



Functional Dependencies

e Projecting Functional Dependencies

e Given arelation R with a set of FDs S and a subset L
of attributes of R:

e What are the FDs induced in 7; (R)?

e FDs can only involve attributes from L

e But restricting S to those is not enough



Functional Dependencies

* Algorithm:
e Start out with an empty set 1 of FDs
e For each set M of attributes C L calculate the closure M* in R

e If M — X is a FD calculated this way and X € L, add the FD
to [

e Modify 1 to become a minimal basis
e Remove all FDs that follow from others in T

e Test whether an attribute on the left of a FD in T can be
removed



Functional Dependencies

e Example: R(A, B, C, D) with
S={A—-> B,B— C,C — D} projected on
L=1{A,C,D}

e Calculate first closures
« {A}T=1{A,B,C,D}
» {B}" ={B,C,D}
» {C}7={C,D}
» {D}" = {D}



Functional Dependencies

e We really do not need any more because those with two
attributes on the left would follow trivially

e Now we add the FDs derived from the closure, if all
attributes are in L

o T:{A—)C,A%D,C—)D}

e This is not a base, because A — D follows from the
other ones.

e The induced FDs havebase 1 = {A - C,C — D}



Anomalies

e Take

movies = (title, vyear, length, genre, studioName, starName)

e Redundancy : The studioName for Star Wars is repeated
for every star

 This implies:

e Update anomaly . If we update the length of the movie,
we need to repeat this update operation for every star or
we get incoherent information

e Delete anomaly : |If we delete all stars from an animation
cartoon, we have no information left on the moviel



Decomposition

e Divide the information over two tables

movies = (title, vyear, length, genre, studioName, starName)

e becomes

moviesl=(title, year, length, genre, studioName)
moviesz2=(title, vyear, studioName)




Boyce Codd Normal Form

e Relation in BCNF if and only if:

e Whenever there is a non-trivial FD A,...A, — B then
A,...A, is a superkey



Boyce Codd Normal Form

e Example
® moviesl (title, vyear, length, genre, studio, star)

e HasFD title, year —--> studio

e but because of the star attribute, IS not a key.
title, vyear
* We can decompose:
e Take the left side of the FD
e (Calculate its closure
e {title, year}+ = {title, year, length, genre, studio}

* Decompose into closure and right side

e movies(title, year, length, genre, studio)

starsIn(title, year, star)




Boyce Codd Normal Form

e \What is good about BCNF?
e Update anomaly

e Decomposition prevents having to enter the same
iInformation multiple times

e Delete anomaly
e Can now have movies without stars
e Can we do better?

e Yes, sometimes. starsin has still a two-attribute key



Boyce Codd Normal Form

e Any two attribute table R(A, B) is in BCNF

* Proof by case distinction:
e Case1: A » B, B~ A
e No nontrivial FDs exists, R is in BCNF
e Case2:A > B,B» A

e A is the only key and it is on the right of the only non-trivial FD. So
BNCF.

e Case3: A» B, B— B
* Same as before
e Case4: A—- B, B—-A
e Both A, B are keys. So, BCNF



Boyce Codd Normal Form

e Decomposition:

e Does decomposition loose information or add spurious
information?

e Does decomposition preserve dependencies

e How do we do decomposition



Boyce Codd Normal Form

e Finding decompositions
e Look for a non-trivial FD.
e |f the right side is not a superkey:
e Expand the right side as much as possible
e AJA,...A, = B,...B,

e Right side are all attributes that are dependent on
A A



Boyce Codd Normal Form

e Example:

e prod(title, year, studio, president, presAddr)

e with FD title year —-->studio
studio --> president

president --> presAddr

e Question: What are possible keys?



Boyce Codd Normal Form

e Onlykeyis title, year

e Just look at the closures of all subsets of attributes

e \Which FDs violate BCNF?



Boyce Codd Normal Form

e Two FDs:
o studio —--> president
o president --> presAddr

e What happens with studio --> president



Boyce Codd Normal Form

e \We calculate the closure of the right side

studio —--> president

e {studio}+ = {president, presAddr}
 This gives a decomposition

e (L1tle, vyear, studio) (studio, president, presAddr)
e Using projection of FDs, we get

e title, year —-->studio

e studio —--> president, president --> presAddr

e s0 second relation is not in BCNF (studio is the only key)



Boyce Codd Normal Form

e Now we decompose the second relation again:

¢ (studio, president)

(president, presAddr)




Boyce Codd Normal Form

e Decomposition algorithm

e Ifthereisan FD X — Y that violates BCNF
e Calculate X™*

e Choose X as one relation and X U C(X™) as the
other

e All attributes in X and all attributes not in X™
e Calculate the projected FDs

e Continue



Boyce Codd Normal Form

e |n class exercise.

e Find all BNCF violations (including those following from
the FDs given)

e Decompose the relation, if possible

e RA,B,C,D); AB—-C; C—>D; D—> A



Boyce Codd Normal Form

e |n class exercise.

e Find all BNCF violations (including those following from
the FDs given)

e Decompose the relation, if possible

RA,B,C,D); AB—> C; BC—->D; CD—->A; AD - B



Decomposition

e Recovering data from decomposition

e Assume a relation R(A, B, C) with FD B — C, where B is not a key
e Decomposition is then R;(A, B) and R,(B, C)

e Assumet = (a, b, c) is a tuple. It is projected as ¢, = (a, b) and t, = (b, ¢)
e Thus,7 € R{ X R,.

e Assumet; = (a,b) €ER,andt, = (b,c) ERy,ie.t €ER X R,
e Thereis a tuple (a, b, x) € R because R, is a projection.
e (Similarly, there is a tuple (a, y,c) € R.)
e Because of the FD B — C there is only one value for x

e Hence, the tuple must have been (a, b, x = ¢)



Decomposition

e This argument generalizes to sets A, B

* This means: Boyce Codd decomposition is recoverable

e Since natural joins are associative and commutative,

the BCNF decomposition algorithm cannot loose
information



Decomposition

e Dependency preservation

e Assume a table

bookings (title, theater, city)

e FDs theater --> city

title, city —--> theater

e Keysare: title, city and title, theater



Decomposition

e The existence of the FDs is important

e Assume a similar decomposition of R(A, B, C) but
withoutthe FDs B - A, B — C

e Example instance:

12 3
4 2 5

e Splitinto R;(A, B) and R,(B, C)



Decomposition

e Result of projection

m
12 3 * 12 2 3
425 4 2 2 5

e What is the join of the two tables on the right?



Decomposition

e Result

12 123
4 2 2 5 4 2 3
125
4 25

 which introduces spurious records.

e Of course, attribute B was not a key for the second relation!



Dependency Preservation

e Decompose into BCNF
° (theater, city) (theater, title)

e Must be BCNF, because it only has two attributes

e However, FD title, city --> theater cannot be
derived



Decomposition

e Example:

Theater City

AMC Wauwatosa Marcus 2 Doolittle
Marcus 1 Milwaukee AMC Doolittle
Marcus 2 Wauwatosa

Theater Title

e Violates the FD

e LCl1tle, city —--> theater



Chase Test

e We just saw: R(A, B, C) with FD B — C has a lossless
join into R(A, B) and R(B, C)

e Without FD B — C or B — A, the join is not loss-less

e Question: Given a set of FDs in R and a set of sets of
attributes Sl’ Sz, .o Sn

e Is decomposition by projection onto the §; lossless?

o ielis g (R) M g (R) X ... M g (R) = R ?



Chase Test

e [wo easy remarks:

e Natural join is associative and commutative. The order
IN which we project is not important.

o Certainly R C ﬂsl(R) X JZ'SZ(R) X ... X ﬂSn(R)



Chase Test

e Chase Test:

 Task: Show that given the FDs, we can prove that

o T (R) X g (R) M ... X 75 (R) C R

e Takeatuplet € R

e Use a tableau to determine the various versions this
tuple could appear in the projections




Chase Test

e Tableau has one row for each decomposition

e Put down unsubscripted letters for the attributes in the
decomposed relationship

e Put down subscripted letters for the attributes not in
the decomposed relationship

e Subscript is the number of the decomposed
relationship



Chase Test

e Example: R(A, B, C, D) with projections on
S, =1A,D}, 5, =1{A,C}and $5 = {B, C, D}

» A generic tuple in §; X S, X S5 is then represented in
the decomposition tableau

a b, cd,
a; b ¢ d



Chase Test

 The first row looks at the projection on A and
D
a 1 Cl (i
e From the projection, we know that a given a b, cd,
tuple has certain a and d values, but the az b ¢ d

join might give some values for the b and
c column



Chase Test

e Once given a tableau, we use the FDs in order to “chase
down” identities between the elements in the tableau.

e We represent them by making subscripts equal or
dropping them



Chase Test

e Example:
E BCD
* Assume the following FDs for the example: a byca
a by, cd,
e A B B—->C,CD—->A a; b c d

* Whenever we have tableau entries for
attributes on the right side, we can use it to
equalize the entries for attributes on the
right of an FD



Chase Test

e UseA — B:
* First two rows, we have unsubscripted a.

 Equalize the B column in these rows

ABCD ABCD
a b, c d, * a by cd,

a; b ¢ d a;b ¢ d




Chase Test

e UseFDB — C

,
ab1Cd2 abICdz
a;b ¢ d a;b ¢ d



Chase Test

e NowuseCD — A

ABCD
CllC
a b, c d, *

a by cd,
a; b ¢ d a bcd



Chase Test

e Now we have one row that is equal to ¢

* This means: any tuple of the join has to be equal to the
original tuple



Chase Test

e What happens if after applying all FDs, we still are left
with unsubscripted variables?

 Then this gives us a value in the join that is not in the
original relation



Chase Test

e Example:

e R(A,B,C,D) with FDs B - AD and decomposition
into {AaB}a {Ba C}a {CaD}



Chase Test

e Example:

e R(A,B,C,D) with FDs B - AD and decomposition
into {AaB}a {Ba C}a {CaD}

e |nitial tableau is A BCD
a b c d

a, b c d,
Cl3b3 cd



Chase Test

e Example:

e R(A,B,C,D) with FDs B - AD and decomposition
into {AaB}a {Ba C}a {CaD}

e |nitial tableau is ABCD
a b c d
a, b c d,
Cl3 b3 C d

o After applying the FD, we get tableau

A BCD
a b c d
a b cd
ayby ¢ d



Chase Test

e Take this tableau and use it to construct a counter
example

A BCD
* a b cd,
a b cd,
azby c d

e Create tupleS (a, b, C1s dl)’ (a, b, C, dl)’ (a3, b3, C, d) N
R.

e Fulfilsthe FDB — CD

A B

a b b ¢ ¢ d,

a; b, b ¢ ¢ d
b ¢ ¢ d

 Projections are



Chase Test

e Join these together: A B

a b b ¢
a; b, b c
by c

e Result has two additional rows

e The decomposition is not loss-less!



Example

e Let R(A,B, C,D, E) be decomposed into {A, B, C},
{B,C,D}, {A,C,E}. Assume FDs A - D, CD — E,
E — D. Is the decomposition lossless?



Example

e LetR(A,B, C,D, E) be decomposed into {A, B, C},
{B,C,D}, {A,C,E}. Assume FDs A — D, CD — E,
E — D. Is the decomposition lossless?

A B CDE

a b c d e
a, b ¢ d e



Example

e Let R(A,B,C,D, E) be decomposed into {A, B, C},
{B,C,D}, {A,C,E}. Assume FDs A — D, CD — E,
E — D. Is the decomposition lossless?

e UseFDA — D




Example

e Let R(A,B,C,D, E) be decomposed into {A, B, C},
{B,C,D}, {A,C,E}. Assume FDs A — D, CD — E,
E — D. Is the decomposition lossless?

e UseFDCD — E




Example

e Let R(A,B,C,D, E) be decomposed into {A, B, C},
{B,C,D}, {A,C,E}. Assume FDs A — D, CD — E,
E — D. Is the decomposition lossless?

e CannotuseFD £FE—- D,A - D,CD — E




Example

e The tableau gives us tuples that satisfy the FDs
e Make the tableau into tuples

e ook at the projections

ABCDE
a b c dye a b ¢ b c 4, a c e
a b c de hbC b ¢ d “oc G
2 2 a by C by ¢ d, a c e



Example

e Join them

a c e
d ¢ &

A B CDE

SEENS
Rl
o QO
N Q
SERY

o o9 dF
< IIEEMNSRES



Third Normal Form

* Checking on FD is important
 Database coherence
* To detect faulty operation
* E.g. booking the same movie at two theaters in a town
 Therefore: Relax conditions on BCNF
 Third Normal Form
* Allows checking of FDs

| oss-less join property



Third Normal Form

e Arelation R is in third normal form
o IfA/A,...A, = BB,...B, is anon-trivial FD, then
o either {A[,A,,..., A, } is asuperkey

e orthoseof {B},B,,...,B,} notin {A,A,,...,A }
are each member of some key (not necessarily the
same)

* Attributes that are part of some key are called prime



Third Normal Form

e Example:

o bookings (title, theater, city)

theater —--> city

title, city —--> theater

e |s in third normal form

e city is part of a key



Third Normal Form

e Creation of SNF Schemas

e Want to decompose a relation R into a set of relations
such that

e All relations in the set are in SNF
* The decomposition has a lossless join

* The decomposition preserves dependencies



Third Normal Form

e Synthesis Algorithm
e Given arelation R and a set [F of FDs
e Find a minimal base G for [

e ForallFDX — A € (3: use XA as a schema

* |f none of the relation schemas from previous step

are a superkey for R, add another relation whose
schema is a key for R



Third Normal Form

e Example:

e R(A,B,C,D,E)withFDsAB — C,C — B,A — D



Third Normal Form

e Example:

e The FDs are their own base:

e Show: Noneof AB — C,C —- B,A — D follows
from the other two

e Show: Cannot drop an attribute from a right side



Third Normal Form

e Example:

e This gives relations
¢ SI(A’ B, C), Sz(B, C), S3(A, D)
e Keysof RareA,B,EandA,C,E

e Need to add one of them

® SI(A’ B, C), S2(B, C), S3(A, D), S4(A, C, E)



Third Normal Form

e Why does this work
e | ossless join:
e We use the “Chase”

e There is one subset of attributes in the
decomposition that is a superkey K.

e The closure of K is all the attributes.

e \We start with a tableau



Third Normal Form

e |Lossless join -- Chase

e Use the FDs used in calculating the closure of K.

e \We can assume that the FDs are in the base

e Letthe firstFDbe X D A — B.

e Tableau:
A X — A B rest of attributes
row K r,s,t, e, £, Dbl * ok
row FD r,s tl el £f1 D x

e The application of the FD sets bl to b



Third Normal Form

e |Lossless join -- Chase

e \We continue the process.

e Next FD might use column B or not, but because of
it, we loose the subscript in the column
corresponding to the right side

* Eventually, we have removed all subscripts in the first
row

 Therefore, the decomposition is loss-less



Third Normal Form

e Dependency Preservation
e Any FD is the consequence of the FDs in the base

e Any FD in the base is represented by a relation in the
decomposition

e Therefore, we can first check those and as a
conseqguence get all the FDs



Third Normal Form

e |sthe decomposition in third normal form

e |f we add a relation that corresponds to a key, then this
relation is by definition in third normal form

e |f we add a relation that corresponds to an FD in the
basis:

e Can show: If the relation is not in 3NF, then the basis
IS not minimal



Multivalued Dependencies

e First Normal Form: All values in a relation are atomic
e This is removed by object-relational databases

e |f the value of an attribute is a set, we represent it by
using many relations

1 2 {3,4}
4 5 {3,4}

N N i >~
g1 w N W
S w s w0



Multivalued Dependencies

e A more practical example

e Relation course (number, book, lecturer)

* |n this department, the books recommended and the
lecturers are independent.

calc 1 Ross Krenz

calc 1 Lang Krenz

calc 1 Ross sanders
calc 1 Lang sanders
calc 2 Ash Gillen
calc Z Ash Engbers
calc 1 RoOss Schwarz
calc 1 Lang Schwarz



Multivalued Dependencies

e The same list can be expressed using sets more simply

calc 1 Ross Krenz

calc 1 Lang Krenz

calc 1 Ross Sanders

calc 1 Lang Sanders

calc 2 Ash Gillen

calc Z Ash Engbers

calc 1 Ross Schwarz

calc 1 Lang Schwarz

calcl | {Ross, Lang} | {Krenz, Sanders, Schwarz}
calc2 | {Ash} | {Gillen, Engbers}



Multivalued Dependencies

e |t would be an error to add a single tuple
e calc 1 | Burlow | Krenz
* to the relation
* indicating that an additional book is now recommended

e |nstead, need to add:
e calc 1 | Burlow | Sanders

e calc 1 | Burlow | Schwarz

e as waell



Multivalued Dependencies

e This gives rise to the definition of a multivalued
dependency

e Unlike before, we now demand that additional tuples
exist in the relation.



Multivalued Dependencies

e Formally: A, A,, ..., A, » B,...B
e Whenever

e two tuples agree on its values in A, A,, ..., A,

o the tuples have values b;...b,,and b;...b, inB,B,, ..., B,,

o the tuples have values x;...x, and xj...x, in the other
attributes

o then the tuples q,...a,b;...b, x;...x, and
/ / / / .
a...a,by...b, xi...x/ also exist



Multivalued Dependencies

* For each pair of tuples t and u of a relation R that agree
on all attributes A, A,, ..., A :

.
* We can find another tuple v such that v agrees :
e« WithbothtanduonA,A,,...,A,
e WithtonB,B,,...,B,,

 With u on all attributes that are not among the As
and Bs



Multivalued Dependencies

e Example

e Relation courses

calc 1 Ross Krenz

calc 1 Lang Krenz

calc 1 Ross sanders
calc 1 Lang sanders
calc 2 Ash Gillen
calc 2 Ash Engbers
calc 1 Ross Schwarz
calc 1 Lang Schwarz

e has FD course - book and course = lecturer



Multivalued Dependencies

e Example stars (name, address, movie)

e A star can have several address and can be in several
movies



Multivalued Dependencies

e Trivial MVD
o If{By,...,B } C{A,...,A } then



Multivalued Dependencies

e Transitive MVDs

e A...A, » By...B_and B,...B, » C,...C, implies
AlAn_» Cl"'Ck

* Provided that we remove any C-attributes that are also
A-attributes



Multivalued Dependencies

e Splitting is NOT true
® stars (name, street, city, title, vyear)

e has MVD

® name -» street, city

e However, name —-» street is not true.
e Wells Street is in Milwaukee
e Glen Decker Ct. is in San José

* C Rossell y Rios is in Montevideo



Multivalued Dependencies

e Promotion

e Any FD is also an MVD



Multivalued Dependencies

e Complementation

o IfA{...A, » B,...B, and C,...C}, are the attributes
not in the As and Bs, then A,...A, » C,...C}



Fourth Normal Form

e A relation is in fourth normal form if whenever
A...A > B...B, is anon-trivial MVD

e ThenA,...A, is a super-key



Normal Forms

e We have 4NF = BCNF = 3NF

3NF BCNF 4NF

eliminate redundancies

no es es
due to FDs y y
eliminates redundancies
no no es
due to MVDs Y
preserves FDs yes no no
preserves MVDs no no no

lossless joins yes yes yes



