
High Level Database
Models

Thomas Schwarz, SJ

Contents

•

• Design Language:

• Entity Relationship Model (ERM)

• Unified Modeling Language (UML)

• (Object Description Language ODL)

Ideas
High
Level
Design

Relational
Database
Scheme

Relational
Database
Scheme

Design Phase Implementation

E/R Model
• Entities: Abstract object

• Have Attributes

• Types can be primitive or structures

• Relationships

• Connections between two or more entity sets

E/R Model
• Graphics

• Entities are represented by rectangles

• Attributes are represented by ovals

• Relationships are represented by diamonds

• Edges connect attributes and relations

E/R Model

Stars-
in

Stars

Studios

Movies

title year

length genre
Owns

name address

address

name

E/R Model
• Type of binary E/R relationships between entities:

• Many-to-one

• One-to-one

• Many-to-many

E/R Model
• Example:

• One president can “run” one studio

• One studio can only be ‘run” by one president

• The arrow does not guarantee existence, only
uniqueness

runsStudio President

E/R Model
• Ternary relationships

• Occasionally, relationships involve more than two entities

• Contracts involve a studio, a star, and a (set of) movies

• Each relationship is a triple (star, movie,
studio)

ContractsStars Movies

Studio

E/R Model

• The many-to-one relationship means that for a star and
for a movie, there can only be one studio

• However, a star can have a contract over many movies

• The studio can contract with several stars for a given
movie

ContractsStars Movies

Studio

E/R Model

• The arrow notation is limited

• Studio is only a function of the movie

• Diagram cannot distinguish between

• Studio is a function of movie

• Studio is a function of movie and star

ContractsStars Movies

Studio

E/R Model
• Roles

• Entities can appear several times in a relationship

• Question: Explain the arrow heads or their absence

Sequel of Movies

original

sequel

E/R Model
• Example for a multi-way relationship and an entity set

with multiple roles

• Hollywood stars would “belong” to a studio that could
lent them out to another studio

Contracts

Stars Movies

Studio

Studio of
Star

Producing
Studio

E/R Model
• Relationships can also have attributes

• The attribute is functionally dependent on all parties to
the relationship

Contracts

Stars Movies

Studio

name address

addressname

title year

length genre

salary

E/R Model
• Some models (UML, ODL) limit relationships to binary

• Move attributes to an entity set

Contracts

Stars Movies

Studio

name address

addressname

title year

length genre

salary

Salary

E/R Model
• Multi-way relationships

can be modeled
through an entity as
well Star-of Movie-of

Stars Movies

Contract

Studios

Studio-of-
star

Producing
Studio

E/R Model
• Subclasses

• Some entities are special

• Use an is-a relationship (a triangle)

isa

Cartoons

Movies

Murder
Mystery

isa

Voices

Stars

name address

title length year genre

weapon

Design Principles
• Faithfulness

• Can be difficult: Is “teaches” between instructors and
courses many to many or one to many?

• Avoid Redundancy

• Example: Add relationship ‘owns’ between movies and
studios and add an attribute “studio” to movies.

• This results in an update anomaly

Design Principles
• Simplicity

• Avoid introducing more elements than is necessary

• A studio can own movies, so each studio has a holding

• Could be represented by this diagram, but entity
holdings can also be done away with

• Keeping it just means more storage space and
longer computations

Repre‐
sentsMovies Holdings StudiosOwns

Design Principles
• Smart Selection

• Not every relationship in the real world is worth-while
using

• Information can be redundant

• Assume relationships contracts, stars-in, and owns

• Since a movie has an owning studio, and the
owning studio has contracts for each star, we do
not need the stars-in relationship

Design Principles
• Picking the right kind of element

• Should studio be an entity set or can we add its
attributes to a movie

• Depends on the number of attributes for studio

• If there is only studio name, we can incorporate it in
movies

• If there are more attributes, we probably run into an
update anomaly

Constraints in the E/R
Model

• Keys

• Every entity set must have a key

• There can be more than one key

• For is-a relationships:

• Root entity set needs to have all the attributes for a
key

Constraints in the E/R
Model

• Representing keys: Underline attributes that make up the
primary key

Stars-
in

Stars

Studios

Movies

title year

length genre
Owns

name address

address

name

Constraints in the E/R
Model

• Referential Integrity Constraint

• E.g. Foreign key constraint

• Example:

• Every movie has at most one studio owning it

• Every movie is owned by a studio

• Every studio has at most one president

• Every president has a studio to run

Runs PresidentStudiosMovies

title year

length genre

Owns

name address

address

name

Constraints in the E/R
Model

• Use rounded arrows to indicate existence of the foreign
entity:

• Every movie is owned by a studio (existence)

• But not owned by more than one studio (uniqueness)

Runs PresidentStudiosMovies

title year

length genre

Owns

name address

address

name

Constraints in the E/R
Model

• Use rounded arrows to indicate existence of the foreign
entity:

• Every president needs to run a studio

• Cannot run more than one studio

• If (s)he stops running a studio, they get deleted from
the president table

Runs PresidentStudiosMovies

title year

length genre

Owns

name address

address

name

Constraints in the E/R
Model

• Use rounded arrows to indicate existence of the foreign
entity:

• A studio cannot have more than one president

• But if the president has been fired, the studio still
persists

Runs PresidentStudiosMovies

title year

length genre

Owns

name address

address

name

Constraints in the E/R
Model

• Use rounded arrows to indicate existence of the foreign
entity:

• A studio does not need to own a movie

• But it can own more than a single movie

Runs PresidentStudiosMovies

title year

length genre

Owns

name address

address

name

Constraints in the E/R
Model

• Degree constraints

• Limit the number of entities that can be connected to
an entity set

• The same star can only appear in 10 movies

Stars-
inStars Movies

title year

length genre

name address

<=10

Constraints in the E/R
Model

• Degree constraints

• <=1 means pointed arrow

• ==1 means curved arrow

Weak Entity Sets

• An entity’s key can be composed of attributes belonging
(all or some) to another entity

• Called weak entity sets

Weak Entity Sets

• Example:

• Movie studio has several film crews, given by a number

• (First unit, second unit, ...)

• The numbering can be used also by other studios

Weak Entity Sets

• Double stroke indicates a weak entity set

• Crews has key (number, studios.name)

• Mediated through the “unit-of” relationship

StudiosCrews

number chief

Unit of

addressname

Weak Entity Sets

• Biological species are given by genus and species

• Homo neanderthalensis

• First is genus, then species

• The species has a key (species.name, genus.name)

GenusSpecies

name

belongs
to

name

Weak Entity Sets

• Connecting entity sets used to replace ternary
relationships

• Often have no attributes of their own

• Keys are attributes of other entities

Weak Entity Sets

• Contracts have a key made up of stars.name,
studio.name, movies.title, movies.year

• Own attribute salary is not a key

Stars MoviesStudio

name address addressname title year length

genre

salary

Contracts

Star of Studio
of

Movie
of

Weak Entity Sets

• Key attributes for weak entity sets:

• Made up of zero or more of its own attributes

• Key attributes from entity sets that are reached by
certain many-to relationships

• These are called supporting relationships and
supporting entity sets, resp.

Weak Entity Sets

• R is a supporting relationship for E to F if the following
conditions are true

• R binary, many to one or one to one

• R must have referential integrity:

• For every E, there must be exactly one F entity in R

• The attributes in F that supply (parts of the) key for E
are also keys for F

E FR

Weak Entity Sets

• However, if F itself is weak, then the key attributes for F
might be supplied by an entity G, etc.

E FR GS

Weak Entity Sets

• If there are several different supporting relationships:

• Each relationship is used to supply a copy of the key
attributes of F to help form the key of E

• The relationships can associated an entity with
different entities and so the parts of the key
of can come from different entities

e ∈ E
f1, f2 ∈ F

E

E F

R

S

Weak Entity Sets

• Example

• Each crew is unique

• But to identify a crew, we need data from the
supporting relationship

• There needs to be a deterministic process to obtain
this data.

StudiosCrews

number chief

Unit of

addressname

Weak Entity Sets

• Example

• Values for a crew are obtained from their attributes and
by following the relationship “Unit of”

• Thus, the supporting relationship needs to be many-to-
one

StudiosCrews

number chief

Unit of

addressname

Weak Entity Sets

• In class exercise:

• Develop a university grading roster DB as an E/R
diagram

• You have courses and students as entities and
enrollment as a connecting entity

• Enrollment can have grade as an attribute

Weak Entity Sets

Students

addressnameid
number

course

course
number

Depart
ment Term

Timeslot

Instructor

Enrollment

grade

enrolled
in

enrolled
in

Weak Entity Sets

• Every enrollment record needs to have exactly a student
and exactly a course

Students

addressnameid
number

course

course
number

Depart
ment Term

Timeslot

Instructor

Enrollment

grade

enrolled
in

enrolled
in

Weak Entity Sets

• In class exercise

• Draw E/R diagrams involving weak entity sets

• Courses and Departments

• A course is given by a unique department, but its
only attribute is its number

• Different departments can offer courses with the
same number

Weak Entity Sets

Department

addressname

course

course
number

teaches

From E/R Diagrams to
Relational Design

• Each entity set becomes a relation with the same set of
attributes

• Each relationship becomes a relation with attributes being
the keys for the connected entity set

From E/R Diagrams to
Relational Design

• Problems:

• Weak entity sets cannot be translated straightforwardly

• Isa relationships are difficult

• Sometimes, makes sense to combine relations when
connected by a many-to-one relationship

From E/R Diagrams to
Relational Design

• In class test:

Stars-
in

Stars

Studios

Movies

title year

length genre
Owns

name address

address

name

From E/R Diagrams to
Relational Design

stars(name, address) movies(title, year, length, genre)

Stars-
in

Stars

Studios

Movies

title year

length genre
Owns

name address

address

name

studios(name, address) starsIn(name, title, year)

owns(name, title, year)

From E/R Diagrams to
Relational Design

• In class exercise

Contracts

Stars Movies

Studio

Studio of
Star

Producing
Studio

From E/R Diagrams to
Relational Design

Contracts

Stars Movies

Studio

Studio of
Star

Producing
Studio

stars(name, address) movies(title, year, length, genre)

studios(name, address)

contracts(name, title, year, studioOfStar, producingStudio)

From E/R Diagrams to
Relational Design

• Handling weak entity sets

• Relation for a weak entity set needs to include key
attributes of supporting entity sets

• Relation for any relationship that includes a weak entity
set must use as a key all of its key attributes, including
those in supporting entities

• A supporting relationship does not need to be
represented in an entity itself

• This is because the rule for the weak entity already
force it to have these relationships

From E/R Diagrams to
Relational Design

• Example

Studios

addressname

Crews

number chief

Unit of

From E/R Diagrams to
Relational Design

• Example

• First pick:

• studios(name, address)

• crews(number, chief, studioName)

• unitOf(number, studioName, name)

Studios

addressname

Crews

number chief

Unit of

From E/R Diagrams to
Relational Design

• Example

• Second pick: studioName and name are the same

• studios(name, address)

• crews(number, chief, studioName)

• unitOf(number, studioName)

Studios

addressname

Crews

number chief

Unit of

From E/R Diagrams to
Relational Design

• Example

• Final pick: can dispense with unitOf

• studios(name, address)

• crews(number, chief, studioName)

Studios

addressname

Crews

number chief

Unit of

From E/R Diagrams to
Relational Design

• Converting subclass structures to relations

• is-a relationship:

• There is a root entity

• Root entity has a key that identifies all entities in the
hierarchy

• A given entity may have components that belong to
the entity sets of any subtree of the hierarchy that
includes root

From E/R Diagrams to
Relational Design

• Converting subclass structures to relations

• Three strategies

• Follow the E/R viewpoint

• Treat entities as objects belonging to the same class

• Use null values

From E/R Diagrams to
Relational Design

• Follow the E/R view

• Make a relation for each entity

isa

Cartoons

Movies

Murder
Mystery

isa

Voices

Stars

name address

title length year genre

weapon

From E/R Diagrams to
Relational Design

• movies(title, length, year, genre)

• murderMysteries(title, length, weapon)

• cartoons(title, year)

isa

Cartoons

Movies

Murder
Mystery

isa

Voices

Stars

name address

title length year genre

weapon

From E/R Diagrams to
Relational Design

• E/R view:

• movies(title, length, year, genre)

• murderMysteries(title, length, weapon)

• cartoons(title, year)

• A cartoon has a tuple in two tables

• “Who framed Roger Rabbit” has tuples in all three tables

• Add

• voices(starName, title, year)

•Would still have to retain cartoons relationship since we might
have silent cartoons

From E/R Diagrams to
Relational Design

• Object-Oriented Approach to subclasses

• Entities can only belong to one class

• Enumerate all possible subtrees of the hierarchy

• Create a relationship for all of them

From E/R Diagrams to
Relational Design

•movies(title, year, length, genre)

• moviesC(title, year, length, genre)

• moviesMM(title, year, length, genre, weapon)

• moviesCMM(title, year, length, genre, weapon)

• A movie is in only one relationship

isa

Cartoons

Movies

Murder
Mystery

isa

Voices

Stars

name address

title length year genre

weapon

From E/R Diagrams to
Relational Design

•movies(title, year, length, genre)

• moviesC(title, year, length, genre)

• moviesMM(title, year, length, genre, weapon)

• moviesCMM(title, year, length, genre, weapon)

• Add voices:

•voices(title, year, starName)

• Should we have two (depending on CMM or C)?

• Probably not, no good reason at this point

isa

Cartoons

Movies

Murder
Mystery

isa

Voices

Stars

name address

title length year genre

weapon

From E/R Diagrams to
Relational Design

• Using Null values

• Only have the root relation, but add to it all attributes in
the hierarchy

• movies(title, year, length, genre,
weapon)

• Use null value when movie not in MM

From E/R Diagrams to
Relational Design

• Comparison of approaches

• It can be expensive to answer queries involving several
relations

• “Null Value” approach wins

• Different queries favor different set ups

• What films of 2008 were longer than 150 minutes?

• E/R approach is easy

• OO approach needs to access four different
relations

From E/R Diagrams to
Relational Design

• Comparison of approaches

• Different queries favor different set ups

• “What weapons were used in cartoons over 120
minutes?”

• OO approach needs to access one relation,
moviesCMM

• E/R approach: Access movies to find movies
over 120 minutes, then access cartoons to see
whether the movie is a cartoon, then access
murderMysteries to find out the weapon

From E/R Diagrams to
Relational Design

• We want few relations

• “Null” approach works best

• OO approach is worst

From E/R Diagrams to
Relational Design

• We want to minimize space and avoid repetition

• Null approach avoids repetition but tuples can now be
very long

• E/R approach: repeats data

• OO approach: uses one tuple per entity

From E/R Diagrams to
Relational Design

• Use E/R, OO, and Null approach on

Person

name address

ChildOf

FatherOf

MotherOf

Married

isa

Child Father Mother

isa isa

Unified Modeling Language
• Developed as graphical notation for OO software design

Unified Modeling Language
UML E/R

class entity set

association binary relationship

association class attributes on a relationship

subclass Is-a hierarchy

aggregation many-one relationship

composition many-one relationship with
rreferential integrity

Unified Modeling Language
• UML classes

• Classes:

• 3 field box

• name

• instance variables (attributes)

• bottom: methods

• Used only in OO relational databases

<place for methods>

title PK
year PK
length
genre

Movies

Unified Modeling Language
• UML keys

• Add PK (primary key) after attribute
<place for methods>

title PK
year PK
length
genre

Movies

Unified Modeling Language
• Binary relationships are called associations

• No multiway relationships in UML
name PK
address

studios

title PK
year PK
length
genre

movies

name PK
address

stars

owns

stars-in

0..1

0..*

0..*

0..*

Unified Modeling Language
• Write down numerical restriction on

associations at the other end

• 0..1 at most one

• a movie has at most one studio

• 0..* any number

• A studio owns any number of
movies

• A movie has any number of stars

• A star has any number of movies

• No label means: 1..1 (exactly one)

name PK
address

studios

title PK
year PK
length
genre

movies

name PK
address

stars

owns

stars-in

0..1

0..*

0..*

0..*

Unified Modeling Language

• Each studio has to have at least one movie it owns

• Each movie is owned by exactly one studio

• Each president runs exactly one studio

• Each studio has one or none president

name PK
address

studiostitle PK
year PK
length
genre

movies

owns cert# PK
name
address

President

runs1..* 1..1 1..1 0..1

Unified Modeling Language

• Each movie can have none, one, or more sequels

• Each movie can be the sequel of no movie (it’s not a
sequel) or one movie (it is a sequel

title PK
year PK
length
genre

movies 0..1 TheOriginal

TheSequel0..*

Unified Modeling Language
• Association classes

• There is no PK for compensation, the PK will be provided
by the objects that are associated

title PK
year PK
length
genre

movies

name PK
address

stars
stars-in0..* 0..*

salary
residuals

compensation

Unified Modeling Language
• Subclasses in UML

• UML allows four subclass relationships

• Complete versus partial

• Is every object a member of a subclass?

• Disjoint versus overlapping

• Can an object be in two sub-classes?

Unified Modeling Language
• Subclass objects inherit attributes from the superclass

• The relationship is disjoint, but only partial

title PK
year PK
length
genre

movies

weapon

MurderMysteries
Cartoons

weapon

Cartoon
MurderMysteries

Unified Modeling Language
• Aggregation (diamond) — many to one association

• Composition(filled diamond) — one-to-one
association

• Example:

• Every movie can be associated with at most
one studio

• Every president has to have a studio, but not
more than one

title PK
year PK
length
genre

movies

name PK
address

studios1..*

presidents

cert# PK
name
address
networth

MovieExecs

0..1

Unified Modeling Language
• Equivalent of weak entities:

• Not necessary: In UML objects have their own
attributes

• Can use label PK in a composition

number PK
crew Chief

crews
name PK
address

studios0..* 1..1
PK

Unified Modeling Language
• Translating into Relations

• Each class converts into a relation

• Each association converts into a relation with the key
attributes of the two connected classes

• Renaming might be necessary

• If there is an association class, relation also has
attributes of the association class

Unified Modeling Language
• studios(name, address)

• movies(title, year,
length, genre)

• stars(name, address)

• owns(studioName,
movieTitle, movieYear)

• stars-in(starName,
movieTitle, movieYear)

name PK
address

studios

title PK
year PK
length
genre

movies

name PK
address

stars

owns

stars-in

0..1

0..*

0..*

0..*

Unified Modeling Language
title PK
year PK
length
genre

movies

name PK
address

stars
stars-in0..* 0..*

salary
residuals

compensation

Unified Modeling Language
• Subclasses

• Same possibilities as before:

• Entity/Relationship approach

• OO approach

• Null values

Unified Modeling Language

title PK
year PK
length
genre

movies

name PK
address

studios1..*

presidents

cert# PK
name
address
networth

MovieExecs

0..1

Use E/R approach

Unified Modeling Language

title PK
year PK
length
genre

movies

name PK
address

studios1..*

presidents

cert# PK
name
address
networth

MovieExecs

0..1

movies(title, year, length, genre)
studios(name, address)
movieExecs(cert#, name, address networth)
presidents(cert#)
presides(cert#, studioName)
owns(studioName, movieTitle, movieYear)

Unified Modeling Language

• Obviously, the presidents relation is superfluous

• What about owns?

title PK
year PK
length
genre

movies

name PK
address

studios1..*

presidents

cert# PK
name
address
networth

MovieExecs

0..1

movies(title, year, length, genre)
studios(name, address)
movieExecs(cert#, name, address networth)
presidents(cert#)
presides(cert#, studioName)
owns(studioName, movieTitle, movieYear)

Unified Modeling Language
• Dealing with compositions and associations:

• They are many-to-one relationships

• Incorporate the target relation into the other

• If an aggregation, there might be no additional
attributes

Unified Modeling Language
• This leads to a simpler database scheme

title PK
year PK
length
genre

movies

name PK
address

studios1..*

presidents

cert# PK
name
address
networth

MovieExecs

0..1

movies(title, year, length, genre, studioName)
studios(name, address)
movieExecs(cert#, name, address, netWorth)
presides(cert#, studioName)

