
MongoDB
Thomas Schwarz, SJ

MongoDB History
• 2007 Developed by 10gen as a Platform as a Service

(PaaS)

• 2009 Open Source model is adopted

• 2013 10gen becomes MongoDB

• 2019 MongoDB as a service on Alibaba cloud

• MongoDB comes from humongous

Design
• Document based database

• Records are stored as documents

• JSON format

• Javascript Object format

• Stored internally in a BSON (binary) format

Design
• JSON: series of structured key-value pairs

• {
 "name": "Emile",
 "age": 64,
 "address":
 {"street": "Rue de Grenelles 42",
 "City": "Paris VI"
 "Country": "France"
 }
 "hobbies": [
 {"name": "cooking"},
 {"name": "reading"},
 {"name": "chess"}
]
}

Design
• Documents are rich data structures

• Fields can be

• Typed

• Arrays

• Arrays of sub-documents

Design
• MongoDB

• Each installation has one or several databases

• Each database has one or more collections

• Each collection has one or more (usually many) JSON
document

Design
• Collections have no schema as JSON documents have no

schema

• If you come from a relational database world, you need to
"denormalize" relations

Example
• Information in the employees database

• We want to join a lot of tables to have data on
employees

{ "emp_no" : 10000,
 "first_name" : "Luigi",
 "last_name" : "Nguyen",
 "birth_date" : "1971-04-12",
 "gender" : "M",
 "hire_date : "1993-01-01",
 "contracts : [{from_date : "1993-01-01",
 to_date : "1993-12-31" ,
 department: "Research",
 salary : 38095,
 title : Engineer 1} },
 {from_date : "1994-01-01",
 to_date : "1994-12-31" ,
 department: "Research",
 salary : 38125,
 title : Engineer 1} }
]
}

Design
• Advantages of Non-SQL

• Large Scale: Easier parallelism

• Often by lowering guarantees: non-transactional

• Handling of semi-structured data

• Integration of different databases

• Either distribution

• Disadvantages

• Not as universal a tool

Design
• JSON was developed for platform independent data exchange

• JSON <— JavaScript Object Notation

• Networks have enough capacity to handle bigger data objects

• MongoDB uses BSON

• Binary jSON

• Binary data

• Extends JSON datatypes

• e.g. ObjectID('hello world')

• More efficient storage than just strings

MongoDB Ecosystem
• MongoDB comes in:

• Self-managed or Enterprise edition

• Free community version

• Atlas cloud solution

• Mobile for simple devices

MongoDB

Self-managed /
Enterprise Atlas (Cloud) Mobile

Stitch

Cloud Manager

Compass

BI Connectors

MongoDB Charts

Serverless Query API

Serverless Functions

Database Triggers

Real Time Support

MongoDB Ecosystem
• Compass: Graphical user interface

• BI connectors and MongoDB charts for data science

MongoDB

Self-managed /
Enterprise Atlas (Cloud) Mobile

Stitch

Cloud Manager

Compass

BI Connectors

MongoDB Charts

Serverless Query API

Serverless Functions

Database Triggers

Real Time Support

MongoDB Ecosystem
• Stitch: Server-less back-end solution

• Includes a serverless query API

• Serverless functions corresponds to AWS Lambda

• Database triggers

• Real time synchronization between database in a cloud and mobile
offline databases

MongoDB

Self-managed /
Enterprise Atlas (Cloud) Mobile

Stitch

Cloud Manager

Compass

BI Connectors

MongoDB Charts

Serverless Query API

Serverless Functions

Database Triggers

Real Time Support

MongoDB Compass
• Download MongoDB compass

• Run a MongoDB instance

• Connect MongoDB compass to the local MongoDB
server

• Easier interface than the shell

MongoDB Internals
• Horizontally scalable

• Sharding based on:

• Hashing

• Range-based

• Location-aware

• Capacity can be adjusted automatically

• Automatic balancing

Shard1 Shard2 Shard3 Shard4

MongoDB Internals
• Replication: 2 — 50 copies

• Primary and secondary copy strategy

• Updates to primary copy, then broadcast to
secondary copies

• Self-healing shards

• Location aware (which data center you are in)

MongoDB Internals
• Storage layer

• Different workloads require different storage strategies

• Latency

• Throughput

• Concurrency

• Costs

• Storage Engine API

• allows to mix storage engines

MongoDB Internals
• Storage Layer:

• WT — WiredTiger

• Up to 80% compression

• MMAP

• for read-heavy applications

• Data is paged into RAM

• Encrypted Storage Engine

• End-to-end encryption for sensitive data

• In memory storage

MongoDB Internals
• MMAP: collections organized into extents

• Extent grows up to 2 GB

length

xNext

xPrev

firstRecord

lastRecord

length

xNext

xPrev

firstRecord

lastRecord

length

xNext

xPrev

firstRecord

lastRecord

Extent 1 Extent 2 Extent 3

MongoDB Internals
• Indices are B-Tree structures

• Stored in the same files as data but use own extents

• Look at them using db.stats()

MongoDB Internals
• All data files are memory mapped to Virtual Memory by

the OS

• MongoDB just reads and writes to RAM in the file system
cache

• OS takes care of the rest

• Size issue for 32b architectures

• Corruption solved by journaling (write ahead log)

• Hard crash can loose a journal flush (100ms)

MongoDB Internals
• Fragmentation

• If records are deleted holes develop that cannot always
be filled

MongoDB Internals
• Query engine Query Engine

Command Parser / Validator

Writes Reads Query
PlannerDML Lo

gg
in

g

Au
th

or
iza

tio
n

Installing MongoDB
• MongoDB installer at Mongodb.com

• Windows: download installer and install mongodb as a
service

• MacOS: search from macos mongodb brew installation

• Need to get homebrew first

Getting started
• Start mongodb:

• Look at databases

thomasschwarz@Peter-Canisius ~ % mongo

> show dbs
admin 0.000GB
config 0.000GB
local 0.000GB

Getting Started
• Create a database / switch to it

• Create a document

• Look at it

> use shop

> db.products.insertOne({"name": "widget", price: 5.32})

> db.products.find()

Getting Started
• Can use interfaces with many languages

• Python: Use pip to install pymongo

Getting Started
• Let's work with the shell first:

• Here were our commands to start out

• If we insert something more, we get

• there is an automatic object id that is created

> use shop

> db.products.insertOne({"name": "widget", price: 5.32}

> db.products.find()

db.products.insertOne({name: "A book", price: 9.98})
{
 "acknowledged" : true,
 "insertedId" : ObjectId("5e8fe8a45b3c2a47a070a1e7")
}

Getting Started
• db.products.find() finds all entries in db.products

• Using db.products.find().pretty() gives all the objects in
a slightly more readable format

> db.products.find().pretty()
{
 "_id" : ObjectId("5e6484e6575cfc1a39adfc22"),
 "name" : "widget",
 "price" : 5.32
}
{
 "_id" : ObjectId("5e8fe8a45b3c2a47a070a1e7"),
 "name" : "A book",
 "price" : 9.98
}

Getting Started
• The _id field is automatically generated

• But we could define it ourselves

toinsert = { _id: ObjectID("adfwrqeeeqwwewe"),
 name: "James Bond",
 designation: "007",
 licence: "to kill")

CRUD Operations
• Create

• insertOne(data, options)

• insertMany(data, options)

• Update

• updateOne(filter, data, options)

• updateMany(filter, data, options)

• Read

• find(filter, options)

• findOne(filter, options)

• Delete

• deleteOne(filter, options)

• deleteMany(filter, options)

CRUD Operations
• For these exercises:

• Create a clean slate by dropping any database that you
are working with:

• > show dbs
admin 0.000GB
config 0.000GB
local 0.000GB
shop 0.000GB
> use shop
switched to db shop
> db.dropDatabase()
{ "dropped" : "shop", "ok" : 1 }

CRUD Operations
• We now create a shop document

• We verify the current database

• We create a new collection articles by inserting

> use shop
switched to db shop

> db.getName()
shop

> db.inventory.insertOne({name: "Graham Smith Apple",
type: "Apple", category: "Fruit", price: 0.85, measure:
"each"})
{
 "acknowledged" : true,
 "insertedId" : ObjectId("5ea20a0b91a8c104f51d62dd")
}

CRUD Operations
• We can also use InsertMany

>>> db.shop.inventory.insertMany([
{name: "Red Delicious", type: "Apple", category: "Fruit", price:
0.65, measure: "each"},
{name: "Fuji", type: "Apple", category: "Fruit", price: 0.99,
measure: "each"},
{name: "California Strawberries", type: "Strawberries",
category: "Fruit", price: 1.59, measure: "bowl"}])
{
 "acknowledged" : true,
 "insertedIds" : [
 ObjectId("5ea20ea491a8c104f51d62df"),
 ObjectId("5ea20ea491a8c104f51d62e0"),
 ObjectId("5ea20ea491a8c104f51d62e1")
]
}

CRUD Operations
• We can verify the state of the database:

> db.shop.inventory.find()
{ "_id" : ObjectId("5ea20caf91a8c104f51d62de"), "name" :
"Graham Smith Apple", "type" : "Apple", "category" :
"Fruit", "price" : 0.85, "measure" : "each" }
{ "_id" : ObjectId("5ea20ea491a8c104f51d62df"), "name" :
"Red Delicious", "type" : "Apple", "category" : "Fruit",
"price" : 0.65, "measure" : "each" }
{ "_id" : ObjectId("5ea20ea491a8c104f51d62e0"), "name" :
"Fuji", "type" : "Apple", "category" : "Fruit", "price" :
0.99, "measure" : "each" }
{ "_id" : ObjectId("5ea20ea491a8c104f51d62e1"), "name" :
"California Strawberries", "type" : "Strawberries",
"category" : "Fruit", "price" : 1.59, "measure" : "bowl" }
>

CRUD Operations
> db.shop.inventory.find().pretty()
{
 "_id" : ObjectId("5ea20caf91a8c104f51d62de"),
 "name" : "Graham Smith Apple",
 "type" : "Apple",
 "category" : "Fruit",
 "price" : 0.85,
 "measure" : "each"
}
{
 "_id" : ObjectId("5ea20ea491a8c104f51d62df"),
 "name" : "Red Delicious",
 "type" : "Apple",
 "category" : "Fruit",
 "price" : 0.65,
 "measure" : "each"
}
{
 "_id" : ObjectId("5ea20ea491a8c104f51d62e0"),
 "name" : "Fuji",
 "type" : "Apple",
 "category" : "Fruit",
 "price" : 0.99,
 "measure" : "each"
}
{
 "_id" : ObjectId("5ea20ea491a8c104f51d62e1"),
 "name" : "California Strawberries",
 "type" : "Strawberries",
 "category" : "Fruit",
 "price" : 1.59,
 "measure" : "bowl"
}

CRUD Operations
• Inserts:

• insertOne() inserts a single document

• db.persons.insertOne({name: "Emil", age: 64})

• insertMany with an array of documents

• db.persons.insertMany([{name: "Mary",

age:50}, {name: "Fred", age: 58, hobbies:
["hiking", "drinking"]}])

• insert() does the same as insert or insertMany, but
does not return a result in the shell

• mongoimport imports a json array from the file system

CRUD Operations
• Insert operations either generate their own IDs or you

provide them

• db.persons.insertOne({_id: 12345, name: "Emil",

age: 64})

• Notice the underscore before id

• Checks whether the user-provided ID is unique

CRUD Operations
• Ordered Inserts

• If there is an error on multiple inserts

• Stop the current insert opertion

• Does not roll-back previous inserts

• To override the behavior, set options for insert

• db.person.insertMany([{_id: 12345, name:
"bubu", age: 5}, {_id: 12346, name: "Yogi",
age: 6}, {ordered: false}])

CRUD Operations
• Find

• db.collection.find({key: value})

• > db.zip.find({"city": "MILWAUKEE"})
{ "_id" : "53202", "city" : "MILWAUKEE", "loc" : [-87.896792,
43.050601], "pop" : 20178, "state" : "WI" }
{ "_id" : "53203", "city" : "MILWAUKEE", "loc" : [-87.915375,
43.040299], "pop" : 456, "state" : "WI" }
{ "_id" : "53204", "city" : "MILWAUKEE", "loc" : [-87.931685,
43.015778], "pop" : 41978, "state" : "WI" }
{ "_id" : "53221", "city" : "MILWAUKEE", "loc" : [-87.944734,
42.954864], "pop" : 35767, "state" : "WI" }
{ "_id" : "53223", "city" : "MILWAUKEE", "loc" : [-87.989818,
43.162374], "pop" : 30272, "state" : "WI" }

CRUD Operations
• Can use comparison operators

• https://docs.mongodb.com/manual/reference/operator/
query-comparison/

• $eq, $gt, $gte, $in, $lt, $lte, $ne, $nin

db.zip.find({"pop": {$lt: 100}})

CRUD Operations
• Find can also be used to look for fields in embedded

documents

• E.g. if rating is the name of a subdocument with a key
average, you can use

• db.movies.find({ "rating.average":
{$lt: 5}})

CRUD Operations
• Other find features:

• Logical connectors

• Array querying

• Regular expression

• Evaluation of a boolean expression ($expr)

CRUD Operations
• Results of find are given by a "cursor"

• Cursor results can be counted, printed, …, or sorted

• Cursors are "manually" handled in a programming
environment (pymongo)

CRUD Operations
• Updates

• Use updateOne, updateMany

• First part is a filter

• Second part is an update operation

CRUD Operations
• Example (from manual)

db.inventory.insertMany([
 { item: "canvas", qty: 100, size: { h: 28, w: 35.5, uom: "cm" }, status: "A" },
 { item: "journal", qty: 25, size: { h: 14, w: 21, uom: "cm" }, status: "A" },
 { item: "mat", qty: 85, size: { h: 27.9, w: 35.5, uom: "cm" }, status: "A" },
 { item: "mousepad", qty: 25, size: { h: 19, w: 22.85, uom: "cm" }, status: "P" },
 { item: "notebook", qty: 50, size: { h: 8.5, w: 11, uom: "in" }, status: "P" },
 { item: "paper", qty: 100, size: { h: 8.5, w: 11, uom: "in" }, status: "D" },
 { item: "planner", qty: 75, size: { h: 22.85, w: 30, uom: "cm" }, status: "D" },
 { item: "postcard", qty: 45, size: { h: 10, w: 15.25, uom: "cm" }, status: "A" },
 { item: "sketchbook", qty: 80, size: { h: 14, w: 21, uom: "cm" }, status: "A" },
 { item: "sketch pad", qty: 95, size: { h: 22.85, w: 30.5, uom: "cm" }, status: "A" }
]);

CRUD Operations
• updateOne updates the first document that fits the filter

condition

• updateMany updates all documents that fit the filter
condition

• replaceOne replaces a document that fits the filter

•
db.inventory.updateMany (){ qty: 25 }

filter document

, { $set: }{size.uom: “cm”}

update operator value

CRUD Operations
• Other update operators:

• $inc increments a field

• $currentDate sets a field to the current time

• $min only updates if the specified value is less than the
existing value

• $max

• $mul multiplies the value of a field

• $unset: removes a specified field

• …

CRUD Operations
• Delete

• deleteOne, deleteMany

• Filter document determines the selection

Schemas and Relations
• MongoDB allows us to :

• Structure all our documents in the same manner

• Almost like a RDBMS table

• Structure all our documents in completely different
manners

Schemas and Relations
• Schemas

• MongoDB allows the use of validators

• E.g. javascripts that check the structure of a
document to be inserted

• Administrator can enable validation

• With different extent (updates / inserts) and
actions (default is error, warning)

• Documents that violate the validator are not inserted/
updated

https://docs.mongodb.com/manual/core/schema-validation/

Schemas and Relations
• Data Modelling:

• Organize data for operations

• data fetch

• data writes

• Organize data for size

Schemas and Relations
• Embedding documents

• MongoDB allows embedding of documents

• E.g.: Order can include the product description

• Up to generous limits on document size and
embedding levels

• MongoDB allows references to documents

• E.g.: Order can include the reference to the product
description

Schemas and Relations
• Organize data for operations:

• Fetches dominate

• Try to keep all data together

• Duplicate

• Embed documents

• Even though this leads to update anomalies

• Writes dominate

• Avoid duplication

• Do not embed documents

• Especially if they might change

Aggregation
• Aggregation Framework

• Various stages applied on a
collection

• Stages can be repeated

• db.collection.aggregate(
[{stage1}, {stage2}, …])

Collection

Output Document

{$match}

{$sort}

{$group}

{$project}

Aggregation
• $lookup: Stage that allows combining two collections

• Slow, but powerful

Aggregation
• Example:

customers.aggregate([

 { $lookup: {

 from: "Address",

 localField: "address",

 foreignField: "_id"

 as: "addressData"

 }

 }

])

• Creates a list of clients with embedded
addresses

{
 userName: "Thomas",
 address: id1
}

Clients

{
 _id: "id1"
 city: "Milwaukee"
 street: "1345 W Wells St"
 zip: 54323
}

Address

Aggregation
• from : The collection that you are joining with

• localField: the name of the joining attribute in the local
collection

• foreignField: the name of the joining attribute in the other
(from) collection

• as: name of the key

Transactions
• Mongo 4.0 allows transactions

• Need to have sessions and replicas

• Can commit in a session

Geospatial Queries
• MongoDB can deal with geospatial data effectively

• Stores in GeoJSON format

• Example: Golden Gate Park

• type has to be "Point"

• coordinates are longitude, latitude (in this order)

{type: "Point", coordinates: [-122.445, 37.767]}

Geospatial Queries
For $near to work, we need an index

db.places.createIndex({location: "2dsphere"})

Now we can use it to find near places with 1000 meters

db.places.find({loc: {$near: {$geometry:

{type: "Point", coordinates: [-122,45, 37.77]}},

$maxDistance: 1000}})

Exercise
• Import the zipcodes database from

• http://media.mongodb.org/zips.json

• Store it in a known directory, e.g. Downloads

• You can check what it looks like:

{ "_id" : "53222", "city" : "MILWAUKEE", "loc" : [-88.02687, 43.08283],
"pop" : 25406, "state" : "WI" }
{ "_id" : "53223", "city" : "MILWAUKEE", "loc" : [-87.989818, 43.162374],
"pop" : 30272, "state" : "WI" }
{ "_id" : "53224", "city" : "MILWAUKEE", "loc" :
[-88.03274399999999, 43.159415], "pop" : 18182, "state" : "WI" }
{ "_id" : "53225", "city" : "MILWAUKEE", "loc" : [-88.03464, 43.115416],
"pop" : 25395, "state" : "WI" }

Exercise
• To make this into a MongoDB database, you need to use

a different terminal window

• Use mongoimport

• you generate a new database: zipcodes

• you generate a new collection in the database : zip

% mongoimport --db=zipcodes --collection=zip --file="zips.json"
2020-04-24T15:39:57.253-0500 connected to: mongodb://localhost/
2020-04-24T15:39:57.588-0500 29353 document(s) imported successfully.
0 document(s) failed to import.

Exercise
• Now check that the import worked

> show dbs
admin 0.000GB
config 0.000GB
local 0.000GB
shop 0.000GB
zipcodes 0.002GB
> use zipcodes
switched to db zipcodes
> show collections
zip

Exercise
• Find zip codes with a population of less than 500

Exercise
> db.zip.find({"pop": {$lt: 100}})
{ "_id" : "01338", "city" : "BUCKLAND", "loc" : [-72.764124, 42.615174],
"pop" : 16, "state" : "MA" }
{ "_id" : "01350", "city" : "MONROE", "loc" : [-72.960156, 42.723885],
"pop" : 97, "state" : "MA" }
{ "_id" : "02163", "city" : "CAMBRIDGE", "loc" : [-71.141879, 42.364005],
"pop" : 0, "state" : "MA" }
{ "_id" : "02713", "city" : "CUTTYHUNK", "loc" : [-70.87854, 41.443601],
"pop" : 98, "state" : "MA" }
{ "_id" : "02815", "city" : "CLAYVILLE", "loc" : [-71.670589, 41.777762],
"pop" : 45, "state" : "RI" }

