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Physical Time
• System clock


• Precisely machined quartz crystal


• Counter and Holding register


• Each oscillation of quartz decrements counter


• When counter gets to zero, generate interrupt


• Counter is reloaded from holding register


• Time is incremented



Physical Time
• On a single system:


• Absolute time does not really matter


• Important are relative times


• Example:


• Make will recompile *.c files if their modified time is 
later than the corresponding *.o file



Physical Time
• Multiple CPU with their own clock


• Distributed systems


• Need to deal with clock skew


• Is there a single notion of time?


• Astronomical time


• Atom clock time TAI 


• Leap seconds, UTC



Physical Time

In a distributed system, applications often 

rely on a single notion of time



Physical Time



Physical Time



Physical Time



Physical Time
• Clock synchronization algorithms


• Cristian’s algorithm


• Ask time server for time


• Determine time



Physical Time
• To determine most likely time given a value send by a time 

server:


• Repeat several times


• Record request send and answer received times (in local time)


• Record answer received


• Eliminate outliers


• Calculate delta


• Average delta


• Adjust local time 



Physical Time
• Group quiz


• Calculate clock adjustment

sent received value
300 350 410
450 495 555
600 750 620

800 845 915

1000 1055 1135
1200 1400 1590



Physical Time
• Berkeley Algorithm


• Time daemon polls all machines asking for their time


• Calculates average time


• Tells all other machines how to adjust



Physical Time
• Reference Broadcast Synchronization (RBS)


• Assumes no routing, e.g. sensor network


• A node broadcasts a reference message m 


• Only receivers synchronize their clocks



Physical Time
• Reference Broadcast Synchronization (RBS)


• Two receivers then exchange their mutual, relative 
offsets several times


• Use linear regression to estimate relative difference



Physical Time
• Google’s TrueTime Server


• Uses a number of time machines per data center


• With different sources of time


• Given a time stamp:


• Service decides on:


• Now — a range of values ~ 6msec long


• After — definitely passed


• Before — definitely in the future



Physical Time
• Google’s TrueTime Server


• Transactions can be time-stamped


• Time service can determine whether and how two 
transactions are ordered



Logical Clocks
• Absolute time is rarely used


• Exceptions: time outs


• For distributed protocols:


• Need Logical Time



Logical Clocks
• Lamport time stamps 


• Happens before relationship between events:


• a <* b


• Axioms:


• a, b events in the same process, and a happens before b, then a<*b


• If


• a — message being sent


• b — message being received


• then


• a <* b 



Logical Clocks
• Each system maintains its own logical time


• Each local event advances the logical time by (at least 
one tick)


• Each message is time-stamped


• When a message is received, set local time to 


• MAX(local_time + 1, time_stamp + 1)


• Properties


• Local events have different times



Logical Clocks
• Consider three processes with event counters operating 

at different rates



Group Quiz Solution
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p2

p3
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Logical Clocks
• Adjustments implemented in middleware



Logical Clocks
• Replica management


• All replicas need to see the same sequence of updates



Logical Clocks
• Concurrent updates on a replicated database are seen in the 

same order everywhere


• P1 adds $100 to an account (initial value: $1000)


• P2 increments account by 1%


• There are two replicas


• In absence of proper synchronization: replica #1 ← $1111, 
while replica #2 ← $1110.



Logical Clocks
• Totally Ordered Multicast


• Multicast in which all messages are delivered in the same order to receivers


• Group of processes multicasting to each other


• Each message is time-stamped


• Messages are received in order sent 


• Messages are sent to everyone, including the sender


• Messages are put in local queues ordered by timestamp


• Receiver multicast acknowledgments to the other processes


• Lamport clock algorithm assures that all messages have different 
timestamps


• All processes eventually have the same messages in their queue







Vector Clocks
• Causal dependency


• We assume that all local events before sending a 
message might have caused events at the receiver 
after receiving the message



Vector Clocks
• Observation


• Lamport’s clocks do not guarantee that if C(a) < C(b) 
that a causally preceded b.

 is received at time 16 
 is received at time 24 

But: 
There is no causal connection  
between these events

m1
m2



Vector Clocks
• Lamport timestamps do not capture causality


• Vector timestamps better capture causality


• Label the th event at process  as 


• If two events happen at , then the causal history 
of  at  is 

k Pi pi,k

Pi
pi,2 Pi H(p2) = {pi,1, pi,2}



Vector Clocks
• Now assume  sends a message to .


• Sending the message is event 


• Assume the history at  is 


• Receiving the message by  is event .


• Upon arrival,  updates its history to include the 
history at . This gives 


•

Pi Pj

pi,2

Pj {pj,1}

Pj pj,2

Pj
Pi

{pi,1, pi,2, pi,3, pj,1, pj,2}



Vector Clocks
• An event  causally precedes an event  if 


•
p q

H(p) ⊊ H(q)



Vector Clocks
• Capturing potential causality


• Each  maintains a vector 


•  is the local logical clock at process 


• If  then  knows that  events have 
occurred at 

Pi VCi

VCi[i] Pi

VCi[ j] = k Pi k
Pj



Vector Clocks
• Maintaining vector clocks


• Before executing an event,  executes 


• When process  sends a message m to , it sets the 
timestamp of   to  


• Upon receipt of a message , process  sets


• 


• then increments its clock 


• then delivers the message to the application

Pi VCi[i] + +

Pi Pj
m ts(m) VCi

m Pj

VCj[k] = max{VCj[k], ts(m)[k]}

VCj[ j] + +



Vector Clocks

P3

P2

P1

m1

(0,1,0)

(1,1,0)

m2

(2,1,0) (3,1,0)

(2,1,1)

m3

(4,1,0)

m4(4,2,0)

(4,3,0)

(4,3,2)

 ts(m2) = (2,1,0)
ts(m4) = (4,3,0)

 ts(m2) < ts(m4)
ts(m2) ≯ ts(m4)

 may causally precede m2 m4



Vector Clocks

 ts(m2) = (4,1,0)
ts(m4) = (2,3,0)

 ts(m2) ≮ ts(m4)
ts(m2) ≯ ts(m4)

 and  might conflictm2 m4



Vector Clocks
• Strictly ordered multicasting:


• All processes receive messages in exactly the same 
order


• Causally ordered multicasting:


• Message that are not related to each other can be 
delivered in any order



Vector Clocks
• Causally ordered multicasting


• Observation:


• We can now ensure that a message is delivered only 
if all causally preceding messages have already been 
delivered.


• Adjustment


•  increments  only when sending a message 


•  adjusts  only when delivering a message

Pi VCi[i]

Pj VCj



Vector Clocks
• Causally ordered multicasting


• Adjustment


•  increments  only when sending a message 


•  adjusts  only when delivering a message


•  postpones delivery until:


• 


•

Pi VCi[i]

Pj VCj

Pj

ts(m)[i] = VCj[i] + 1

ts(m)[k] ≤ VCj[k] for all k ≠ i



Vector Clocks

 multicasts m to the other processes at time  

 

 receives  with 

P1 (1,0,0)

ts(m) = (1,0,0)

P2 m VC2 = (1,1,0)



Vector Clocks

 multicasts  to the other processes at time  

 

 receives  

P2 m* (1,1,0)

ts(m*) = (1,1,0)

P1 m*



Vector Clocks

 arrives at  before  

 

 compares  with its clock  

This shows that  is missing a message from  and  is delayed

m* P3 m

ts(m*) = (1,1,0)

P3 ts(m*) = (1,1,0) VC3 = (0,0,0)

P3 P1 m



Vector Clocks

  arrives with  

 compares with  and delivers  

 now has  

Now  can be delivered and 

m ts(m) = (1,0,0)

P3 VC3 = (0,0,0) m

P3 VC3 = (1,0,0)

m* VC3 = (1,1,0)



Vector Clocks
• Some middleware (ISIS, Horus) support totally and 

causally ordered multicasting


• Controversy over which to choose


• Middleware can only capture potential causality


• Not all causality is captured because of out-of-band 
messaging



Mutual Exclusion



Mutual Exclusion
• Problem: Several processes want exclusive access to 

some resource


• Solutions:


• Permission-based: A process wanting to grab a 
resource needs permission from the other processes


• Token-based: A token is passed between processes. 
Only the one who has the token can grab the resource, 
but if it does not need the resource, pass it on to 
another process. 



Mutual Exclusion
• A centralized solution


• Have a single coordinator


• Processes request from 
the coordinator and wait 
for an OK



Mutual Exclusion
• If requests overlap:


• Coordinator queues request



Mutual Exclusion
• When the resource is 

released (by ), then the 
request is dequeued and 
process  obtains the 
resource

P1

P2



Mutual Exclusion
• Centralized solution without queue:


• If the resource is held by another process, then 
permission is denied


• Denied processes back-off and have to ask later



Mutual Exclusion
• Central Coordinator Protocol 


• guarantees mutual exclusions


• is fair: all processes have equal chance to obtain 
access to the resource



Mutual Exclusion
• Central Coordinator Protocol 


• has a single point of failure


• Processors cannot distinguish between a dead 
coordinator and a busy resource


• can become a bottleneck


• relies on reliable messaging



Mutual Exclusion
• Lamport clocks


• Use Lamport clocks for totally ordered multicasting


• If a process wants to get the resource:


• Sends a multicast REQUEST message to all other 
processes


• Waits for answers from all other processes



Mutual Exclusion
• Lamport clocks


• When a process receives a REQUEST:


• If the process is not interested in the resource:


• Send GO_AHEAD to the process with earliest REQUEST 
timestamp


• If the process is interested in the resources: Check


• whether it has already sent a GO_AHEAD to another 
process 


• whether it has made a REQUEST itself at an earlier time


• Then do not send a GO_AHEAD



Mutual Exclusion
• Lamport clocks


• After request, wait for a GO_AHEAD from all other 
processes


• Access the resource when this is true



Mutual Exclusion
• Lamport clocks


• If a process no longer needs the resource


• Send RELEASE to all other processes


• If a process receives a RELEASE


• Remove REQUEST from the message queue


• Remove GO_AHEADs for this request



Mutual Exclusion
• Servers with replicas but messages can be out of order


• Totally ordered multicast (almost correct)


• At a replica: On receiving an update from a client, broadcast to other 
servers


• On receiving an update from another replica:


• Add it to your local queue


• Broadcast an acknowledgement message to every replica


• On receiving an acknowledgment:


• Mark corresponding update acknowledged in your queue


• Remove and process updates everyone has acknowledged from the 
head of the queue



Mutual Exclusion 
• Totally ordered multicast (almost correct)


•  queues $,  queues %


•  queues % and acks %


•  marks % fully acked

P1 P2

P1

P2

P1

P2

$ %

% $
P1 

acks
% P2 processes %

and eventually P1 will process $ and then %



Mutual Exclusion
• So, this does not work. Correct version


• At a replica: On receiving an update from a client, broadcast to 
other servers


• On receiving an update from another replica:


• Add it to your local queue


• Broadcast an acknowledgement message to every replica for 
the head of the queue only


• On receiving an acknowledgment:


• Mark corresponding update acknowledged in your queue


• Remove and process updates everyone has acknowledged from 
the head of the queue



Mutual Exclusion

• Why is this correct?



Mutual Exclusion
• A simpler version by Ricart and Agrawala


• Assume a total ordering of events 


• If the receiver is not accessing the resource and does not want to 
access it, it sends back an OK message to the sender.


• If the receiver already has access to the resource, it simply does not 
reply. Instead, it queues the request.


• If the receiver wants to access the resource as well but has not yet 
done so: it compares the timestamp of the incoming message with 
the one contained in the message that it has sent everyone. The 
lowest one wins. If the incoming message has a lower timestamp, 
the receiver sends back an OK message. If its own message has a 
lower timestamp, the receiver queues the incoming request and 
sends nothing.



Mutual Exclusion
• Example:


a. Two processes want to access a shared resource at the same 
moment.


b.  has the lowest timestamp, so it wins.


c. When process  is done, it sends an OK also, so  can now go 
ahead.

P0

P0 P2



Mutual Exclusion
• Token Ring Algorithm


• Only the process with the token can gain access to the 
resource

An overlay network organized as a ring



Mutual Exclusion
• A voting algorithm


• Assume  replica with its own coordinator


• Access requires a majority vote from 
coordinators. A coordinator always responds 
immediately to a request.


• When a coordinator crashes, it will recover quickly, but 
will have forgotten about permissions it had granted.

N

m > N/2



Mutual Exclusion
• A voting algorithm


• How robust is this system? 


• Processor restarts and has forgotten that it already gave 
permission to someone else.


• Let  be the probability that a coordinator resets 
during a time interval  , while having a lifetime of .


• The probability that  coordinators out of  have reset is 




• Need a majority of functioning coordinators: 

p = Δt/T
ΔT T

k m

(m
k ) pk(1 − p)m−k

N − (m − f ) ≥ m ⟺ f ≥ 2m − N



Mutual Exclusion
• This gives the probabilities for a violation 

m

∑
k=2m−N

(m
k ) pk(1 − p)m−k



Mutual Exclusion
• Number of messages



Mutual Exclusion
• Delays:


• Measured in Message Transfer Time Units (MTTU)


• Centralized:  2 MTTU


• Distributed:  request messages and  
grant messages:  MTTU


• Token ring: 0 MTTU to  MTTU


• Decentralized: depends on the number of votes that 
have to be taken

N − 1 N − 1
2(N − 1)

N − 1



Mutual Exclusion
• Zookeeper


• Developed for various coordination tasks:


• locking


• leader election


• monitoring


• …



Mutual Exclusion
• Zookeeper basics


• No blocking:


• Client sends messages to ZooKeeper and immediately 
receives a response


• Zookeeper uses a namespace


• Organized as a tree 


• Creating and deleting nodes


• Reading and updating data in a node


• Partial updates are not possible


• Checking whether a node exists



Mutual Exclusion
• Zookeeper example:


• To acquire a lock:


• Create a node lock if the node does not already exist


• Release a lock by deleting the node


• Zookeeper nodes can be ephemeral or persistent 

• Persistent nodes need to be explicitly created and 
deleted


• Ephemeral nodes need to be explicitly created, but 
vanish if there is no contact with the client



Mutual Exclusion
• Zookeeper client should not have to poll


• Clients can subscribe to notifications for updates on 
nodes or subtrees



Mutual Exclusion
• Notification problem with locking:


(1) A client  creates a node /lock .


(2) A client  wants to acquire the lock but is notified 
that the associated node already exists.


(3) Before  subscribes to a notification,  releases the 
lock, i.e., deletes /lock


(4) Client  subscribes to changes to /lock and blocks 
locally.

C1

C2

C2 C1

C2



Mutual Exclusion
• Zookeeper


• Need to prevent a scenario, where a node is changed 
twice


• Client is notified for the first update and should react 
to that update



Mutual Exclusion
• Zookeeper


• Need to prevent the scenario where a client reads a 
node, its value changes, and the client now updates


• User version numbers



Mutual Exclusion
• Zookeeper locking:


• First lock: A client  creates a node /lock .


• Second lock: A client  wants to acquire the lock but is 
notified that the associated node already exists 


• ⇒  subscribes to notification on changes of /lock .


• Unlock: Client  deletes node /lock 


• ⇒ all subscribers to changes are notified.

C1

C2

C2

C1



Leader Election



Election Algorithms
• Principle


• An algorithm requires that some process acts as a 
coordinator. The question is how to select this special 
process dynamically.


• In many systems, the coordinator is chosen manually 
(e.g., file servers). This leads to centralized solutions  
and a single point of failure 



Election Algorithms
• All processes have unique id’s


• All processes know id’s of all processes in the system (but 
not if they are up or down)


• Election means identifying the process with the highest id 
that is up



Election Algorithms
• Bullying Algorithm


• Consider  processes  and let . 
When a process  notices that the coordinator is no longer 
responding to requests, it initiates an election:


•  sends an ELECTION message to all processes with 
higher identifiers:  .


• If no one responds,  wins the election and becomes 
coordinator.


• If one of the higher-ups answers, it takes over and ’s job is 
done.

N {P0, P1, …, PN−1} id(Pk) = k
Pk

Pk
Pk+1, Pk+2, …, PN−1

Pk

Pk



Election Algorithms
• Bully Algorithm



Election Algorithms
• Election in a ring principle


• Process priority is obtained by organizing processes into a 
(logical) ring. The process with the highest priority should be 
elected as coordinator.


• Any process can start an election by sending an election 
message to its successor. If a successor is down, the message 
is passed on to the next successor.


• If a message is passed on, the sender adds itself to the list. 
When it gets back to the initiator, everyone had a chance to 
make its presence known.


• The initiator sends a coordinator message around the ring 
containing a list of all living processes. The one with the highest 
priority is elected as coordinator.



Election Algorithms

Processes 3 and 6 start procedure



• Each server  in the server group has an identifier 


• Each server has a monotonically increasing counter  of the 
latest transaction it handled (i.e., series of operations on the 
namespace).


• When follower s suspects leader crashed, it broadcasts an 
ELECTION message, along with the pair (voteID,voteTX ). 
Initially,


• voteID ← ;   voteTX ← 


• When  believes it should be the leader, it broadcasts 
.


• This is bullying.

s id(s)

τ(s)

id(s) τ(s)

s*
< id(s*), τ( * ) >

Election Algorithm in 
Zookeeper



Election Algorithm in 
Zookeeper

• Each server  maintains two variables:


• leader(): records the server that s believes may be final 
leader. Initially, leader(s) ← id(s).


• lastTX(s): what s knows to be the most recent 
transaction. Initially, lastTX(s) ← .τ(s)



Election Algorithm in 
Zookeeper

• When  receives (voteID,voteTX )


• If lastTX( ) < voteTX , then  just received more up-to-
date information on the most recent transaction, and sets


• leader( ) ← voteID; lastTX( ) ← voteTX


• If lastTX(s∗) = voteTX and leader( ) < voteID, then  
knows as much about the most recent transaction as what 
it was just sent, but its perspective on which server will be 
the next leader needs to be updated:


• leader( ) ← voteID

s*

s* s*

s* s*

s* s*

s*



Election Algorithm in 
Zookeeper

• Coming to the conclusion that one server is now the 
leader is difficult


• If a server is no longer able to become a leader, it 
becomes a follower of the alleged leader


• If a server has enough followers, it promotes itself the 
leader



Election Algorithm in 
Zookeeper

• Newer algorithms uses the node creation mechanism


• ZAB (ZooKeeper Atomic Broadcast) protocol 





Election Algorithm in RAFT
• Raft is an improvement on Paxos


• We have a (relatively small) group of servers


• A server is in one of three states: follower, candidate, or 
leader


• The protocol works in terms, starting with term 0


• Each server starts in the follower state.


• A leader is to regularly broadcast messages (perhaps 
just a simple heartbeat)



Election Algorithm in RAFT
• Selecting a new leader


• When follower  hasn’t received anything from the alleged leader s 
for some time,  broadcasts that it volunteers to be the next leader, 
increasing the term by 1.  enters the candidate state. Then:


• If leader s receives the message, it responds by acknowledging that 
it is still the leader.  returns to the follower state.


• If another follower  gets the election message from , and it is 
the first election message during the current term,  votes for . 
Otherwise, it simply ignores the election message from . When  
has collected a majority of votes, a new term starts with a new 
leader.

s*
s*

s*

s*

s** s*
s** s*

s* s*



Election in  
Large Scale Systems

• E.g. in permission-less blockchains


• Proof by Work:


• Validators run a race. The first one to finish is the leader 
and get a payment


• Each validator computes the hash of its block of 
validated transaction 


• Race: Validator finds a nonce  such that 
 has a certain number of leading zeroes

H

N
hash(M, N)



Election in  
Large Scale Systems

• The number of zeroes controls the difficulty


• Bitcoin: Race finishes in about 10 minutes


• Since blocks have 2500 transactions, Bitcoin can 
handle four transactions per second


• If races are too short, we can have a fork that needs to 
be dealt with


• Also: this gives rise to insecurity



Election in  
Large Scale Systems

• Bitcoin uses 127 terawatt-hours of electricity


• More than Norway


• Alternative: proof of stake


• Assume that each transaction has one or more 
tokens


• Each token has a unique owner


• There are  tokens per blockchain N



Election in  
Large Scale Systems

• Proof of stake:


• Public process generates a random number generator 
for a number between 1 and 


• Owner of the corresponding token is made the leader


• Lots of problems remain

N



Electing the Best Leader
• Wireless networks: Find the best leader


• Vasudevan: Best leader in a wireless network — max 
capacity



Electing the best leader



Electing the best leader



Electing the best leader



Electing the best leader



Electing the best leader



Gossip-based 
Coordination

• Data dissemination: Perhaps the most important one.


• Aggregation: Let every node  maintain a variable  . 


• When two nodes gossip, they each reset their variable 

to 


• Result: in the end each node will have computed the 

average 

Pi vi

vi, vj =
vi + vj

2
,

vi + vj

2

∑N
i=1 vj

N



Gossip-based 
Coordination

Histogram of values at peers original, after 2000,  
4000, 6000, and 8000 interchanges of gossip



Gossip-based 
Coordination

• Estimating the number N of peers:


• One peer sets value to one


• All others set value to zero, when contacted


• Gives 1/N



Gossip-based Coordination: 
Peer Sampling

• Problem: For many gossip-based applications, you need to select a peer 
uniformly at random from the entire network. In principle, this means you 
need to know all other peers. Impossible?


• Basics:


• Each node maintains a list of c references to other nodes


• Regularly, pick another node at random (from the list), and exchange 
roughly c/2 references


• When the application needs to select a node at random, it also picks a 
random one from from its local list.


• Observation:


• Statistically, it turns out that the selection of a peer from the local list is 
indistinguishable from selecting uniformly at random peer from the entire 
network



Gossip-based Coordination: 
Peer Sampling

• Task: have a node  choose another node  at random 

• Peer-Sampling Service (PSS) 


• Each node maintains a list of c nodes (with age of entry) (partial 
view)


• Algorithm updates the partial view as follows:


•  selectPeer: Randomly select a neighbor from the local partial 
view


• selectToSend: Select some other entries from the partial view, 
and add to the list intended for the selected neighbor.


• selectToKeep: Add received entries to the partial view, remove 
repeated items, and shrink the view to c items.

P Q



Gossip-based Coordination: 
Peer Sampling

selectPeer(&Q);  
selectToSend(&bufs); 
sendTo(Q, bufs);  

receiveFrom(Q, &bufr); 
selectToKeep(p_view, bufr);  

receiveFromAny(&P, &bufr);  
selectToSend(&bufs);  
sendTo(P, bufs);  
selectToKeep(p_view, bufr);  

Initiator P Selected Peer Q



Gossip-based Coordination: 
Peer Sampling

• Constructing the new partial views


• First approach:


• Discard the nodes sent to each other. Swaps parts of 
the partial view.


• Second approach:


• Discard the oldest peers



Gossip-based Coordination: 
Peer Sampling

• If selecting a random peer from a partial view happens at 
the same frequency as the exchange of partial views, 
peer selection is statistically indistinguishable from 
random selection



Gossip-based Coordination: 
Peer Sampling

• Application: Overlay construction


• Uses a two-layer approach



Gossip-based Coordination: 
Peer Sampling

• Lower layer passes on a 
list of randomly chosen 
nodes to upper layer


• Use Ranking in order to 
select peers


• Example:


• Nearest nodes in 
terms of network hops



Distributed Event Matching
• A process specifies in which events it is interested 

(subscription S)


• When a process publishes a notification N we need to see 
whether S matches N.



Distributed Event Matching
• Event matching a.k.a. notification filtering is used for 

publish-subscribe systems


• A process specifies through a subscription S in which 
events it is interested.


• When a process publishes a notification N on the 
occurrence of an event, the system needs to see if S 
matches N.


• In the case of a match, the system should send the 
notification N, possibly including the data associated 
with the event that took place, to the subscriber.



Distributed Event Matching
1. Match subscriptions against events


2. Notify subscriber in case of a match



Distributed Event Matching
• Centralized implementation


• E.g. a centralized server is the canonical solution for 
implementing Linda tuple spaces



Distributed Event Matching
• Deterministically divide work between servers


• Needs a function sub2node(S), which takes a 
subscription S and maps it to a nonempty subset of 
servers


• Needs a function not2node(N), which takes a 
notification N and maps it to a nonempty subset of 
servers.


• Ensure that sub2node(S)  not2node(N) .


• In topic based subscription services, use a hash on the 
topic to map to servers

∩ ≠ ∅



Distributed Event Matching
• Use brokers:


• Organized in an overlay network


• Use flooding to ensure that notifications reach 
subscribers


• Store each subscription at each broker and send a 
notification to only one broker


• Store subscription at only one broker and flood 
notifications to all brokers



Distributed Event Matching
• Use brokers with selective routing


• Routers receive list of subscriptions and make routing 
decision based on these lists



Distributed Event Matching
• Gossiping based solutions: Sub2Sub


• Goal: To realize scalability, make sure that subscribers 
with the same interests form just a single group


• Model: There are  attributes . An attribute 
value is always (mappable to) a floating-point number.


• Subscription: Takes forms such as 



• a1 should be 0.3; a4 should lie between 0.0 and 0.5; 
other attribute values don’t matter.

N a1, a2, …, aN

S = < a1 → 0.3,a4 → [0.0,0.5) >



Distributed Event Matching
• Sub2Sub


• Each subscription  specifies a subset 


• Notifications in  are only ones of interest


• Use gossiping to partition  into disjoint subspaces


• each part is in a subscription set 

si Si ⊂ ℝn

𝕊 = ∪i Si

𝕊

Si



Distributed Event Matching
• Sub2Sub


• Nodes regularly exchange subscriptions though gossiping


• If their subscriptions intersect, keep references to each 
other


• If  and  then


• nodes i, j, k are grouped in a single overlay network 
for 


• nodes ,  are grouped in a single overlay network for 
.

Sijk = Si ∩ Sj ∩ Sk ≠ ∅ Sij − Sijk ≠ ∅

Sijk

i j
Sij



Positioning
• In large-scale distributed systems, we often need to take 

some notion of proximity or distance into account 


• It starts with determining a (relative) location of a node. 



Computing Position
• A point needs  landmarks to compute its position in 

-space
d + 1

d



Global Positioning System
• Assuming that the clocks of the satellites are accurate 

and synchronized


• It takes a while before a signal reaches the receiver


• The receiver’s clock is definitely out of sync with the 
satellite



Global Positioning System

4 satellites ⇒ 4 equations in 4 unknowns 
(with ∆r as one of them)



WIFI based location system
• Basic idea


• Assume we have a database of known access points 
(APs) with coordinates


• Assume we can estimate distance to an AP


• Then: with 3 detected access points, we can compute 
a position.



WIFI based location system
• War driving: locating access points


• Use a WiFi-enabled device along with a GPS receiver, 
and move through an area while recording observed 
access points.


• Compute the centroid: assume an access point AP has 
been detected at  different locations  
with known GPS location.


• Compute location of AP as the mean 

N {x1, x2, …, xN}

∑N
i=1 xi

N



WIFI based location system
• Geometric Overlay Networks 


• Each node is given a position in an -dimensional 
space


• Distance between nodes reflect network-latency


• Network Coordinate System

N


