
Coordination
Thomas Schwarz, SJ

Contents
1. Clock Synchronization

2. Logical Clocks

3. Mutual Exclusion

4. Election

5. Gossiping

6. Event Matching

7. Location

Distributed Time
Thomas Schwarz, SJ

Physical Time
• System clock

• Precisely machined quartz crystal

• Counter and Holding register

• Each oscillation of quartz decrements counter

• When counter gets to zero, generate interrupt

• Counter is reloaded from holding register

• Time is incremented

Physical Time
• On a single system:

• Absolute time does not really matter

• Important are relative times

• Example:

• Make will recompile *.c files if their modified time is
later than the corresponding *.o file

Physical Time
• Multiple CPU with their own clock

• Distributed systems

• Need to deal with clock skew

• Is there a single notion of time?

• Astronomical time

• Atom clock time TAI

• Leap seconds, UTC

Physical Time

In a distributed system, applications often

rely on a single notion of time

Physical Time

Physical Time

Physical Time

Physical Time
• Clock synchronization algorithms

• Cristian’s algorithm

• Ask time server for time

• Determine time

Physical Time
• To determine most likely time given a value send by a time

server:

• Repeat several times

• Record request send and answer received times (in local time)

• Record answer received

• Eliminate outliers

• Calculate delta

• Average delta

• Adjust local time

Physical Time
• Group quiz

• Calculate clock adjustment

sent received value
300 350 410
450 495 555
600 750 620

800 845 915

1000 1055 1135
1200 1400 1590

Physical Time
• Berkeley Algorithm

• Time daemon polls all machines asking for their time

• Calculates average time

• Tells all other machines how to adjust

Physical Time
• Reference Broadcast Synchronization (RBS)

• Assumes no routing, e.g. sensor network

• A node broadcasts a reference message m

• Only receivers synchronize their clocks

Physical Time
• Reference Broadcast Synchronization (RBS)

• Two receivers then exchange their mutual, relative
offsets several times

• Use linear regression to estimate relative difference

Physical Time
• Google’s TrueTime Server

• Uses a number of time machines per data center

• With different sources of time

• Given a time stamp:

• Service decides on:

• Now — a range of values ~ 6msec long

• After — definitely passed

• Before — definitely in the future

Physical Time
• Google’s TrueTime Server

• Transactions can be time-stamped

• Time service can determine whether and how two
transactions are ordered

Logical Clocks
• Absolute time is rarely used

• Exceptions: time outs

• For distributed protocols:

• Need Logical Time

Logical Clocks
• Lamport time stamps

• Happens before relationship between events:

• a <* b

• Axioms:

• a, b events in the same process, and a happens before b, then a<*b

• If

• a — message being sent

• b — message being received

• then

• a <* b

Logical Clocks
• Each system maintains its own logical time

• Each local event advances the logical time by (at least
one tick)

• Each message is time-stamped

• When a message is received, set local time to

• MAX(local_time + 1, time_stamp + 1)

• Properties

• Local events have different times

Logical Clocks
• Consider three processes with event counters operating

at different rates

Group Quiz Solution
p1

p2

p3

1 2 3 4 5

1 2 3 4 5 6 7

1 2 3

8

106

9

10

Logical Clocks
• Adjustments implemented in middleware

Logical Clocks
• Replica management

• All replicas need to see the same sequence of updates

Logical Clocks
• Concurrent updates on a replicated database are seen in the

same order everywhere

• P1 adds $100 to an account (initial value: $1000)

• P2 increments account by 1%

• There are two replicas

• In absence of proper synchronization: replica #1 ← $1111,
while replica #2 ← $1110.

Logical Clocks
• Totally Ordered Multicast

• Multicast in which all messages are delivered in the same order to receivers

• Group of processes multicasting to each other

• Each message is time-stamped

• Messages are received in order sent

• Messages are sent to everyone, including the sender

• Messages are put in local queues ordered by timestamp

• Receiver multicast acknowledgments to the other processes

• Lamport clock algorithm assures that all messages have different
timestamps

• All processes eventually have the same messages in their queue

Vector Clocks
• Causal dependency

• We assume that all local events before sending a
message might have caused events at the receiver
after receiving the message

Vector Clocks
• Observation

• Lamport’s clocks do not guarantee that if C(a) < C(b)
that a causally preceded b.

 is received at time 16
 is received at time 24

But:
There is no causal connection
between these events

m1
m2

Vector Clocks
• Lamport timestamps do not capture causality

• Vector timestamps better capture causality

• Label the th event at process as

• If two events happen at , then the causal history
of at is

k Pi pi,k

Pi
pi,2 Pi H(p2) = {pi,1, pi,2}

Vector Clocks
• Now assume sends a message to .

• Sending the message is event

• Assume the history at is

• Receiving the message by is event .

• Upon arrival, updates its history to include the
history at . This gives

•

Pi Pj

pi,2

Pj {pj,1}

Pj pj,2

Pj
Pi

{pi,1, pi,2, pi,3, pj,1, pj,2}

Vector Clocks
• An event causally precedes an event if

•
p q

H(p) ⊊ H(q)

Vector Clocks
• Capturing potential causality

• Each maintains a vector

• is the local logical clock at process

• If then knows that events have
occurred at

Pi VCi

VCi[i] Pi

VCi[j] = k Pi k
Pj

Vector Clocks
• Maintaining vector clocks

• Before executing an event, executes

• When process sends a message m to , it sets the
timestamp of to

• Upon receipt of a message , process sets

•

• then increments its clock

• then delivers the message to the application

Pi VCi[i] + +

Pi Pj
m ts(m) VCi

m Pj

VCj[k] = max{VCj[k], ts(m)[k]}

VCj[j] + +

Vector Clocks

P3

P2

P1

m1

(0,1,0)

(1,1,0)

m2

(2,1,0) (3,1,0)

(2,1,1)

m3

(4,1,0)

m4(4,2,0)

(4,3,0)

(4,3,2)

 ts(m2) = (2,1,0)
ts(m4) = (4,3,0)

 ts(m2) < ts(m4)
ts(m2) ≯ ts(m4)

 may causally precede m2 m4

Vector Clocks

 ts(m2) = (4,1,0)
ts(m4) = (2,3,0)

 ts(m2) ≮ ts(m4)
ts(m2) ≯ ts(m4)

 and might conflictm2 m4

Vector Clocks
• Strictly ordered multicasting:

• All processes receive messages in exactly the same
order

• Causally ordered multicasting:

• Message that are not related to each other can be
delivered in any order

Vector Clocks
• Causally ordered multicasting

• Observation:

• We can now ensure that a message is delivered only
if all causally preceding messages have already been
delivered.

• Adjustment

• increments only when sending a message

• adjusts only when delivering a message

Pi VCi[i]

Pj VCj

Vector Clocks
• Causally ordered multicasting

• Adjustment

• increments only when sending a message

• adjusts only when delivering a message

• postpones delivery until:

•

•

Pi VCi[i]

Pj VCj

Pj

ts(m)[i] = VCj[i] + 1

ts(m)[k] ≤ VCj[k] for all k ≠ i

Vector Clocks

 multicasts m to the other processes at time

 receives with

P1 (1,0,0)

ts(m) = (1,0,0)

P2 m VC2 = (1,1,0)

Vector Clocks

 multicasts to the other processes at time

 receives

P2 m* (1,1,0)

ts(m*) = (1,1,0)

P1 m*

Vector Clocks

 arrives at before

 compares with its clock

This shows that is missing a message from and is delayed

m* P3 m

ts(m*) = (1,1,0)

P3 ts(m*) = (1,1,0) VC3 = (0,0,0)

P3 P1 m

Vector Clocks

 arrives with

 compares with and delivers

 now has

Now can be delivered and

m ts(m) = (1,0,0)

P3 VC3 = (0,0,0) m

P3 VC3 = (1,0,0)

m* VC3 = (1,1,0)

Vector Clocks
• Some middleware (ISIS, Horus) support totally and

causally ordered multicasting

• Controversy over which to choose

• Middleware can only capture potential causality

• Not all causality is captured because of out-of-band
messaging

Mutual Exclusion

Mutual Exclusion
• Problem: Several processes want exclusive access to

some resource

• Solutions:

• Permission-based: A process wanting to grab a
resource needs permission from the other processes

• Token-based: A token is passed between processes.
Only the one who has the token can grab the resource,
but if it does not need the resource, pass it on to
another process.

Mutual Exclusion
• A centralized solution

• Have a single coordinator

• Processes request from
the coordinator and wait
for an OK

Mutual Exclusion
• If requests overlap:

• Coordinator queues request

Mutual Exclusion
• When the resource is

released (by), then the
request is dequeued and
process obtains the
resource

P1

P2

Mutual Exclusion
• Centralized solution without queue:

• If the resource is held by another process, then
permission is denied

• Denied processes back-off and have to ask later

Mutual Exclusion
• Central Coordinator Protocol

• guarantees mutual exclusions

• is fair: all processes have equal chance to obtain
access to the resource

Mutual Exclusion
• Central Coordinator Protocol

• has a single point of failure

• Processors cannot distinguish between a dead
coordinator and a busy resource

• can become a bottleneck

• relies on reliable messaging

Mutual Exclusion
• Lamport clocks

• Use Lamport clocks for totally ordered multicasting

• If a process wants to get the resource:

• Sends a multicast REQUEST message to all other
processes

• Waits for answers from all other processes

Mutual Exclusion
• Lamport clocks

• When a process receives a REQUEST:

• If the process is not interested in the resource:

• Send GO_AHEAD to the process with earliest REQUEST
timestamp

• If the process is interested in the resources: Check

• whether it has already sent a GO_AHEAD to another
process

• whether it has made a REQUEST itself at an earlier time

• Then do not send a GO_AHEAD

Mutual Exclusion
• Lamport clocks

• After request, wait for a GO_AHEAD from all other
processes

• Access the resource when this is true

Mutual Exclusion
• Lamport clocks

• If a process no longer needs the resource

• Send RELEASE to all other processes

• If a process receives a RELEASE

• Remove REQUEST from the message queue

• Remove GO_AHEADs for this request

Mutual Exclusion
• Servers with replicas but messages can be out of order

• Totally ordered multicast (almost correct)

• At a replica: On receiving an update from a client, broadcast to other
servers

• On receiving an update from another replica:

• Add it to your local queue

• Broadcast an acknowledgement message to every replica

• On receiving an acknowledgment:

• Mark corresponding update acknowledged in your queue

• Remove and process updates everyone has acknowledged from the
head of the queue

Mutual Exclusion
• Totally ordered multicast (almost correct)

• queues $, queues %

• queues % and acks %

• marks % fully acked

P1 P2

P1

P2

P1

P2

$ %

% $
P1

acks
% P2 processes %

and eventually P1 will process $ and then %

Mutual Exclusion
• So, this does not work. Correct version

• At a replica: On receiving an update from a client, broadcast to
other servers

• On receiving an update from another replica:

• Add it to your local queue

• Broadcast an acknowledgement message to every replica for
the head of the queue only

• On receiving an acknowledgment:

• Mark corresponding update acknowledged in your queue

• Remove and process updates everyone has acknowledged from
the head of the queue

Mutual Exclusion

• Why is this correct?

Mutual Exclusion
• A simpler version by Ricart and Agrawala

• Assume a total ordering of events

• If the receiver is not accessing the resource and does not want to
access it, it sends back an OK message to the sender.

• If the receiver already has access to the resource, it simply does not
reply. Instead, it queues the request.

• If the receiver wants to access the resource as well but has not yet
done so: it compares the timestamp of the incoming message with
the one contained in the message that it has sent everyone. The
lowest one wins. If the incoming message has a lower timestamp,
the receiver sends back an OK message. If its own message has a
lower timestamp, the receiver queues the incoming request and
sends nothing.

Mutual Exclusion
• Example:

a. Two processes want to access a shared resource at the same
moment.

b. has the lowest timestamp, so it wins.

c. When process is done, it sends an OK also, so can now go
ahead.

P0

P0 P2

Mutual Exclusion
• Token Ring Algorithm

• Only the process with the token can gain access to the
resource

An overlay network organized as a ring

Mutual Exclusion
• A voting algorithm

• Assume replica with its own coordinator

• Access requires a majority vote from
coordinators. A coordinator always responds
immediately to a request.

• When a coordinator crashes, it will recover quickly, but
will have forgotten about permissions it had granted.

N

m > N/2

Mutual Exclusion
• A voting algorithm

• How robust is this system?

• Processor restarts and has forgotten that it already gave
permission to someone else.

• Let be the probability that a coordinator resets
during a time interval , while having a lifetime of .

• The probability that coordinators out of have reset is

• Need a majority of functioning coordinators:

p = Δt/T
ΔT T

k m

(m
k) pk(1 − p)m−k

N − (m − f) ≥ m ⟺ f ≥ 2m − N

Mutual Exclusion
• This gives the probabilities for a violation

m

∑
k=2m−N

(m
k) pk(1 − p)m−k

Mutual Exclusion
• Number of messages

Mutual Exclusion
• Delays:

• Measured in Message Transfer Time Units (MTTU)

• Centralized: 2 MTTU

• Distributed: request messages and
grant messages: MTTU

• Token ring: 0 MTTU to MTTU

• Decentralized: depends on the number of votes that
have to be taken

N − 1 N − 1
2(N − 1)

N − 1

Mutual Exclusion
• Zookeeper

• Developed for various coordination tasks:

• locking

• leader election

• monitoring

• …

Mutual Exclusion
• Zookeeper basics

• No blocking:

• Client sends messages to ZooKeeper and immediately
receives a response

• Zookeeper uses a namespace

• Organized as a tree

• Creating and deleting nodes

• Reading and updating data in a node

• Partial updates are not possible

• Checking whether a node exists

Mutual Exclusion
• Zookeeper example:

• To acquire a lock:

• Create a node lock if the node does not already exist

• Release a lock by deleting the node

• Zookeeper nodes can be ephemeral or persistent

• Persistent nodes need to be explicitly created and
deleted

• Ephemeral nodes need to be explicitly created, but
vanish if there is no contact with the client

Mutual Exclusion
• Zookeeper client should not have to poll

• Clients can subscribe to notifications for updates on
nodes or subtrees

Mutual Exclusion
• Notification problem with locking:

(1) A client creates a node /lock .

(2) A client wants to acquire the lock but is notified
that the associated node already exists.

(3) Before subscribes to a notification, releases the
lock, i.e., deletes /lock

(4) Client subscribes to changes to /lock and blocks
locally.

C1

C2

C2 C1

C2

Mutual Exclusion
• Zookeeper

• Need to prevent a scenario, where a node is changed
twice

• Client is notified for the first update and should react
to that update

Mutual Exclusion
• Zookeeper

• Need to prevent the scenario where a client reads a
node, its value changes, and the client now updates

• User version numbers

Mutual Exclusion
• Zookeeper locking:

• First lock: A client creates a node /lock .

• Second lock: A client wants to acquire the lock but is
notified that the associated node already exists

• ⇒ subscribes to notification on changes of /lock .

• Unlock: Client deletes node /lock

• ⇒ all subscribers to changes are notified.

C1

C2

C2

C1

Leader Election

Election Algorithms
• Principle

• An algorithm requires that some process acts as a
coordinator. The question is how to select this special
process dynamically.

• In many systems, the coordinator is chosen manually
(e.g., file servers). This leads to centralized solutions
and a single point of failure

Election Algorithms
• All processes have unique id’s

• All processes know id’s of all processes in the system (but
not if they are up or down)

• Election means identifying the process with the highest id
that is up

Election Algorithms
• Bullying Algorithm

• Consider processes and let .
When a process notices that the coordinator is no longer
responding to requests, it initiates an election:

• sends an ELECTION message to all processes with
higher identifiers: .

• If no one responds, wins the election and becomes
coordinator.

• If one of the higher-ups answers, it takes over and ’s job is
done.

N {P0, P1, …, PN−1} id(Pk) = k
Pk

Pk
Pk+1, Pk+2, …, PN−1

Pk

Pk

Election Algorithms
• Bully Algorithm

Election Algorithms
• Election in a ring principle

• Process priority is obtained by organizing processes into a
(logical) ring. The process with the highest priority should be
elected as coordinator.

• Any process can start an election by sending an election
message to its successor. If a successor is down, the message
is passed on to the next successor.

• If a message is passed on, the sender adds itself to the list.
When it gets back to the initiator, everyone had a chance to
make its presence known.

• The initiator sends a coordinator message around the ring
containing a list of all living processes. The one with the highest
priority is elected as coordinator.

Election Algorithms

Processes 3 and 6 start procedure

• Each server in the server group has an identifier

• Each server has a monotonically increasing counter of the
latest transaction it handled (i.e., series of operations on the
namespace).

• When follower s suspects leader crashed, it broadcasts an
ELECTION message, along with the pair (voteID,voteTX).
Initially,

• voteID ← ; voteTX ←

• When believes it should be the leader, it broadcasts
.

• This is bullying.

s id(s)

τ(s)

id(s) τ(s)

s*
< id(s*), τ(*) >

Election Algorithm in
Zookeeper

Election Algorithm in
Zookeeper

• Each server maintains two variables:

• leader(): records the server that s believes may be final
leader. Initially, leader(s) ← id(s).

• lastTX(s): what s knows to be the most recent
transaction. Initially, lastTX(s) ← .τ(s)

Election Algorithm in
Zookeeper

• When receives (voteID,voteTX)

• If lastTX() < voteTX , then just received more up-to-
date information on the most recent transaction, and sets

• leader() ← voteID; lastTX() ← voteTX

• If lastTX(s∗) = voteTX and leader() < voteID, then
knows as much about the most recent transaction as what
it was just sent, but its perspective on which server will be
the next leader needs to be updated:

• leader() ← voteID

s*

s* s*

s* s*

s* s*

s*

Election Algorithm in
Zookeeper

• Coming to the conclusion that one server is now the
leader is difficult

• If a server is no longer able to become a leader, it
becomes a follower of the alleged leader

• If a server has enough followers, it promotes itself the
leader

Election Algorithm in
Zookeeper

• Newer algorithms uses the node creation mechanism

• ZAB (ZooKeeper Atomic Broadcast) protocol

Election Algorithm in RAFT
• Raft is an improvement on Paxos

• We have a (relatively small) group of servers

• A server is in one of three states: follower, candidate, or
leader

• The protocol works in terms, starting with term 0

• Each server starts in the follower state.

• A leader is to regularly broadcast messages (perhaps
just a simple heartbeat)

Election Algorithm in RAFT
• Selecting a new leader

• When follower hasn’t received anything from the alleged leader s
for some time, broadcasts that it volunteers to be the next leader,
increasing the term by 1. enters the candidate state. Then:

• If leader s receives the message, it responds by acknowledging that
it is still the leader. returns to the follower state.

• If another follower gets the election message from , and it is
the first election message during the current term, votes for .
Otherwise, it simply ignores the election message from . When
has collected a majority of votes, a new term starts with a new
leader.

s*
s*

s*

s*

s** s*
s** s*

s* s*

Election in
Large Scale Systems

• E.g. in permission-less blockchains

• Proof by Work:

• Validators run a race. The first one to finish is the leader
and get a payment

• Each validator computes the hash of its block of
validated transaction

• Race: Validator finds a nonce such that
 has a certain number of leading zeroes

H

N
hash(M, N)

Election in
Large Scale Systems

• The number of zeroes controls the difficulty

• Bitcoin: Race finishes in about 10 minutes

• Since blocks have 2500 transactions, Bitcoin can
handle four transactions per second

• If races are too short, we can have a fork that needs to
be dealt with

• Also: this gives rise to insecurity

Election in
Large Scale Systems

• Bitcoin uses 127 terawatt-hours of electricity

• More than Norway

• Alternative: proof of stake

• Assume that each transaction has one or more
tokens

• Each token has a unique owner

• There are tokens per blockchain N

Election in
Large Scale Systems

• Proof of stake:

• Public process generates a random number generator
for a number between 1 and

• Owner of the corresponding token is made the leader

• Lots of problems remain

N

Electing the Best Leader
• Wireless networks: Find the best leader

• Vasudevan: Best leader in a wireless network — max
capacity

Electing the best leader

Electing the best leader

Electing the best leader

Electing the best leader

Electing the best leader

Gossip-based
Coordination

• Data dissemination: Perhaps the most important one.

• Aggregation: Let every node maintain a variable .

• When two nodes gossip, they each reset their variable

to

• Result: in the end each node will have computed the

average

Pi vi

vi, vj =
vi + vj

2
,

vi + vj

2

∑N
i=1 vj

N

Gossip-based
Coordination

Histogram of values at peers original, after 2000,
4000, 6000, and 8000 interchanges of gossip

Gossip-based
Coordination

• Estimating the number N of peers:

• One peer sets value to one

• All others set value to zero, when contacted

• Gives 1/N

Gossip-based Coordination:
Peer Sampling

• Problem: For many gossip-based applications, you need to select a peer
uniformly at random from the entire network. In principle, this means you
need to know all other peers. Impossible?

• Basics:

• Each node maintains a list of c references to other nodes

• Regularly, pick another node at random (from the list), and exchange
roughly c/2 references

• When the application needs to select a node at random, it also picks a
random one from from its local list.

• Observation:

• Statistically, it turns out that the selection of a peer from the local list is
indistinguishable from selecting uniformly at random peer from the entire
network

Gossip-based Coordination:
Peer Sampling

• Task: have a node choose another node at random

• Peer-Sampling Service (PSS)

• Each node maintains a list of c nodes (with age of entry) (partial
view)

• Algorithm updates the partial view as follows:

• selectPeer: Randomly select a neighbor from the local partial
view

• selectToSend: Select some other entries from the partial view,
and add to the list intended for the selected neighbor.

• selectToKeep: Add received entries to the partial view, remove
repeated items, and shrink the view to c items.

P Q

Gossip-based Coordination:
Peer Sampling

selectPeer(&Q);
selectToSend(&bufs);
sendTo(Q, bufs);

receiveFrom(Q, &bufr);
selectToKeep(p_view, bufr);

receiveFromAny(&P, &bufr);
selectToSend(&bufs);
sendTo(P, bufs);
selectToKeep(p_view, bufr);

Initiator P Selected Peer Q

Gossip-based Coordination:
Peer Sampling

• Constructing the new partial views

• First approach:

• Discard the nodes sent to each other. Swaps parts of
the partial view.

• Second approach:

• Discard the oldest peers

Gossip-based Coordination:
Peer Sampling

• If selecting a random peer from a partial view happens at
the same frequency as the exchange of partial views,
peer selection is statistically indistinguishable from
random selection

Gossip-based Coordination:
Peer Sampling

• Application: Overlay construction

• Uses a two-layer approach

Gossip-based Coordination:
Peer Sampling

• Lower layer passes on a
list of randomly chosen
nodes to upper layer

• Use Ranking in order to
select peers

• Example:

• Nearest nodes in
terms of network hops

Distributed Event Matching
• A process specifies in which events it is interested

(subscription S)

• When a process publishes a notification N we need to see
whether S matches N.

Distributed Event Matching
• Event matching a.k.a. notification filtering is used for

publish-subscribe systems

• A process specifies through a subscription S in which
events it is interested.

• When a process publishes a notification N on the
occurrence of an event, the system needs to see if S
matches N.

• In the case of a match, the system should send the
notification N, possibly including the data associated
with the event that took place, to the subscriber.

Distributed Event Matching
1. Match subscriptions against events

2. Notify subscriber in case of a match

Distributed Event Matching
• Centralized implementation

• E.g. a centralized server is the canonical solution for
implementing Linda tuple spaces

Distributed Event Matching
• Deterministically divide work between servers

• Needs a function sub2node(S), which takes a
subscription S and maps it to a nonempty subset of
servers

• Needs a function not2node(N), which takes a
notification N and maps it to a nonempty subset of
servers.

• Ensure that sub2node(S) not2node(N) .

• In topic based subscription services, use a hash on the
topic to map to servers

∩ ≠ ∅

Distributed Event Matching
• Use brokers:

• Organized in an overlay network

• Use flooding to ensure that notifications reach
subscribers

• Store each subscription at each broker and send a
notification to only one broker

• Store subscription at only one broker and flood
notifications to all brokers

Distributed Event Matching
• Use brokers with selective routing

• Routers receive list of subscriptions and make routing
decision based on these lists

Distributed Event Matching
• Gossiping based solutions: Sub2Sub

• Goal: To realize scalability, make sure that subscribers
with the same interests form just a single group

• Model: There are attributes . An attribute
value is always (mappable to) a floating-point number.

• Subscription: Takes forms such as

• a1 should be 0.3; a4 should lie between 0.0 and 0.5;
other attribute values don’t matter.

N a1, a2, …, aN

S = < a1 → 0.3,a4 → [0.0,0.5) >

Distributed Event Matching
• Sub2Sub

• Each subscription specifies a subset

• Notifications in are only ones of interest

• Use gossiping to partition into disjoint subspaces

• each part is in a subscription set

si Si ⊂ ℝn

𝕊 = ∪i Si

𝕊

Si

Distributed Event Matching
• Sub2Sub

• Nodes regularly exchange subscriptions though gossiping

• If their subscriptions intersect, keep references to each
other

• If and then

• nodes i, j, k are grouped in a single overlay network
for

• nodes , are grouped in a single overlay network for
.

Sijk = Si ∩ Sj ∩ Sk ≠ ∅ Sij − Sijk ≠ ∅

Sijk

i j
Sij

Positioning
• In large-scale distributed systems, we often need to take

some notion of proximity or distance into account

• It starts with determining a (relative) location of a node.

Computing Position
• A point needs landmarks to compute its position in

-space
d + 1

d

Global Positioning System
• Assuming that the clocks of the satellites are accurate

and synchronized

• It takes a while before a signal reaches the receiver

• The receiver’s clock is definitely out of sync with the
satellite

Global Positioning System

4 satellites ⇒ 4 equations in 4 unknowns
(with ∆r as one of them)

WIFI based location system
• Basic idea

• Assume we have a database of known access points
(APs) with coordinates

• Assume we can estimate distance to an AP

• Then: with 3 detected access points, we can compute
a position.

WIFI based location system
• War driving: locating access points

• Use a WiFi-enabled device along with a GPS receiver,
and move through an area while recording observed
access points.

• Compute the centroid: assume an access point AP has
been detected at different locations
with known GPS location.

• Compute location of AP as the mean

N {x1, x2, …, xN}

∑N
i=1 xi

N

WIFI based location system
• Geometric Overlay Networks

• Each node is given a position in an -dimensional
space

• Distance between nodes reflect network-latency

• Network Coordinate System

N

