
Hadoop Distributed 
File System

Thomas Schwarz, SJ



HDFS Design
• HDFS is designed for:


• Very large files


• Streaming data access: 


• write-once-read-often


• Latency is not important, but time to read the whole 
dataset is


• Commodity hardware



HDFS Design
• HDFS is not good for:


• Lots of small files


• Uses a namenode, which has limited memory


• ~150B per entry: 1GB gives 6.7 Million entries


• Low-latency data access


• Use HBase instead


• Multiple writers with consistency


• Writes are made only in append mode by a single 
writer



HDFS Design
• Blocks


• Not storage blocks (~4KB), but much larger: > 128MB


• Breaking files into blocks means HDFS is not limited by 
storage device sizes



HDFS Design
• Namenode and datanodes:


• Namenode manages the file system:


• Stored persistently are:


• namespace image


• edit log


• Datanodes store and retrieve blocks


• Periodically report to the namenode the blocks that 
they are storing



HDFS Design
• Client interface:


• Portable Operating System Interface (POSIX)



HDFS Design
• Failure resilience:


• Backup namenode image and entry log 


• Second namenode periodically merges the namenode 
image with the edit log


• In case of primary namenode failure, some data is 
likely lost because of lag between primary and 
secondary namenode


• Run a “hot standby namenode” 



HDFS Design
• HDFS Federation:


• A collection of namespaces (namenode volume) with 
their own namenode



HDFS Interface
• HDFS implements an abstract file system defined by 


• org.apache.hadoop.fs.FileSystem 

• Hadoop accesses HDFS mostly through a Java API


• Alternative: HTTP REST API 



HDFS Interface

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataInputStream

open

read

close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

get block information

read

read

Reads



HDFS Interface

1. HDFS client makes an open call to HDFS, an instance of 

DistributedFileSystem.

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataInputStream

open

read

close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

get block information

read

read



HDFS Interface

2. API translates into RPC calls to the NameNode

DistributedFileSystem.


Determines the addresses of the first blocks.


Prefers access to locally cached blocks

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataInputStream

open

read

close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

get block information

read

read



HDFS Interface

3. DistributedFileSystem returns a DFSDataInputStream, 

which wraps a DFSInputStream to manage I/O from 

NameNode and DataNode


Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataInputStream

open

read

close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

get block information

read

read



HDFS Interface

4. HDFS Client calls “read” to various DataNodes 

repeatedly. After stream is ended, DFSDataInputStream

will close the connection to the DataNode and access 

the DataNode with the next block.


Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataInputStream

open

read

close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

get block information

read

read



HDFS Interface

5. HDFS client will eventually close the DFSInputStream


Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataInputStream

open

read

close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

get block information

read

read



HDFS Interface
Writes

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataOutputStream

create

write
close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

create

write ack



HDFS Interface

1. Client creates a file in DistributedFileSystem

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataOutputStream

create

write
close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

create

write ack

Writes



HDFS Interface

2. DistributedFileSystem makes an RPC call to the NameNode. NameNode

    checks whether the file can be created. If not, the nack results in 

    DistributedFileSystem throwing an exception.

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataOutputStream

create

write
close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

create

write ack

Writes



HDFS Interface

3.  Client writes to DFSDataOutputStream. DFSDataOutputStream breaks

     output into packets, written to a data queue. The data queue is consumed

     by the DataStreamer, which is responsible for asking the namenode to 

     allocate new blocks by picking a list of suitable datanodes to store the 

     replicas.

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataOutputStream

create

write
close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

create

write ack

Writes



HDFS Interface

4.  DataStreamer streams data to the first DataNode, which stores each packet

     and forwards them to the second DataNode, which forwards them to the

     third DataNode, etc. 

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataOutputStream

create

write
close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

create

write ack

Writes



HDFS Interface

5.  DFSDataOutputStream maintains an internal queue of packets waiting 

     for acks, the ack queue.  

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataOutputStream

create

write
close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

create

write ack

Writes



HDFS Interface

6.  Eventually, the HDFS Client closes the file. It receives an ack if the ack

     queue is empty.   

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataOutputStream

create

write
close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

create

write ack

Writes



HDFS Interface

7.  The NameNode is informed by the DataStreamer of all locations

Client Node

Client JVM

HDFS 
Client

Distributed 

FileSystem

DFSDataOutputStream

create

write
close name node

NameNode

data node

DataNode

data node

DataNode

data node

DataNode

create

write ack

Writes



HDFS Interface
• If there is a failure of a DataNode:


• Pipeline is closed.


• Packets in the ack-queue are added to the front of a 
new pipeline containing surviving DataNodes


• So, no packets are missed


• Current block is given a new identifier, communicated 
to the NameNode so that a partially written block can 
be deleted when the DataNode recovers



HDFS Interface
• Coherency:


• After creating a file, it takes time for the NameNode to 
know about the blocks that have been written.


• This is visible to users


• Flushing only means that the NameNode knows about 
the file



Hadoop 
• Classic Map-Reduce


• Client that submits the map-reduce job


• Job trackers which coordinate the job run


• Task trackers that run the tasks that the job has been 
split into


• Distributed file system (HDFS — Hadoop file system) 
for file sharing between entities



Hadoop Classic
client Node

client JVM

MapReduce 
Program Job

jobtracker node

client JVM

JobTracker1

2

4

HDFS

3

tasktracker node

TaskTracker

Child JVM

child 

MapTask
ReduceTask

7

5

6

8
9

10

1: run job

2: get new job id

3: copy job resources

4: submit job

5: initialize job

6: retrieve input splits

7: heartbeat

8: retrieve job resources

9: launch

10: run



Hadoop 
• Job submission


• Creates an internal JobSummitter instance


• JobSubmitter


• asks jobtracker for a new jobid


• check the output specifications of the job


• computes the input split for the job


• copies the resources needed for the job


• tells the jobtracker that the job is ready for 
submission



Hadoop Classic
client Node

client JVM

MapReduce 
Program Job

jobtracker node

client JVM

JobTracker1

2

4

HDFS

3

tasktracker node

TaskTracker

Child JVM

child 

MapTask
ReduceTask

7

5

6

8
9

10

1: run job

2: get new job id

3: copy job resources

4: submit job

5: initialize job

6: retrieve input splits

7: heartbeat

8: retrieve job resources

9: launch

10: run



Hadoop 
• Jobtracker receives call from submitJob( )


• places it in internal queue


• retrieves the input splits computed by the client


• creates a map task for each split


• number of mappers is set by the 
mapred.reduce.tasks


• runs job setup task


• runs job cleanup task



Hadoop 
• Task assignment


• Tasktrackers periodically send heartbeat to jobtracker


• Includes message if task is done so that node can get 
a new job


• Tasktrackers have a set number of map and reduce jobs 
that they can handle


• To create a reduce task, the jobtracker simply goes 
through the list of reduce tasks and assigns one


• Preference is given to data-local (reduce on the same 
node) or rack-local



Hadoop Classic
client Node

client JVM

MapReduce 
Program Job

jobtracker node

client JVM

JobTracker1

2

4

HDFS

3

tasktracker node

TaskTracker

Child JVM

child 

MapTask
ReduceTask

7

5

6

8
9

10

1: run job

2: get new job id

3: copy job resources

4: submit job

5: initialize job

6: retrieve input splits

7: heartbeat

8: retrieve job resources

9: launch

10: run



Classical Hadoop 
• Task execution


• Tasktracker localizes the job JAR from the file system


• It copies any files needed from the distributed cache


• Creates instances of TaskRunner to run the task


• TaskRunners launch a new Java Virtual Machine


• Child informs parent of progress



Classical Hadoop 
• Streaming and pipes run special map and reduce tasks


• Streaming:


• communicates with process using standard input and 
output streams


• Pipes:


• Pipes task listens on socket


• passes C++ process a port number 


• In both cases


• Java process passes input key-value pairs to the external 
process



Classic Hadoop  
Streaming and Piping

TaskTracker

Child JVM

child 

MapTask
ReduceTask

Streaming 
Process

launch

run

stdin stout
launch

Streaming Pipes

TaskTracker

Child JVM

child 

MapTask
ReduceTask

launch

run

input socket

launch

C++ wrapper library

C++ map or 
reduce class



Classical Hadoop 
• Progress and status updates


• Map-Reduce jobs can take hours


• Each job has a status


• System estimates progress for each task


• Mappers: per cent input dealt with


• Reducers: More complicated, but estimates are 
possible


• Tasks use set of counters for various events


• Can be user defined — see below



Classical Hadoop 
• Job completion


• If job tracker receives notification that last task has 
completed


• Job status changes to “successful”


• Job statistics are sent to console



Apache Yarn
Yet Another Resource Negotiator  



Yarn Design

MapReduce Spark Tez …

Yarn

HDFS and HBase

Application

Computation

Storage

Pig HiveCrunch



Yarn
• Yarn provides services via two daemons


• Resource manager (one per cluster)


• Node managers (running on all nodes in a cluster)


• Node managers run containers 

• Container = application-specific process with resources


• Typically a Unix process or a Linux cgroup



Yarn: Hadoop 2
• Classic structure runs into bottlenecks at about 4000 

nodes


• YARN: Yet Another Resource Negotiator


• YARN splits jobtrackers into various entities:


• Resource manager daemon


• Application master



Yarn: Hadoop 2
• Each application instance has a dedicated application 

master



Yarn: Hadoop 2
1:  run job

2: get new application

3:  copy job resources

4: submit application

5: start container and

    launch

6: initialize job

7: retrieve input splits

8: allocate resources

9: start container 

    and launch

10: retrieve job resources

11: run

client Node

client JVM

MapReduce 
Program Job1

2

4

3

HDFS

resource manager node

resource manager JVM

resource 
manager

node manager node
resource manager JVM

node
manager

MRAppMaster

5

node manager node

task JVM

node
manager

YarnChild

9

MapTask or
ReduceTask

11

5

6

7

11

8



Yarn: Hadoop 2
• Job submission as before


• When resource manager receives a call to 
submitApplication() hands off to scheduler


• Scheduler allocates a container


• Resource manager launches application master process 
there (5)


•



Yarn: Hadoop 2
1:  run job

2: get new application

3:  copy job resources

4: submit application

5: start container and

    launch

6: initialize job

7: retrieve input splits

8: allocate resources

9: start container 

    and launch

10: retrieve job resources

11: run

client Node

client JVM

MapReduce 
Program Job1

2

4

3

HDFS

resource manager node

resource manager JVM

resource 
manager

node manager node
resource manager JVM

node
manager

MRAppMaster

5

node manager node

task JVM

node
manager

YarnChild

9

MapTask or
ReduceTask

11

5

6

7

11

8



Yarn: Hadoop 2
• Application master 


• initializes the job by creating book-keeping objects


• to receive and report on progress by individual tasks


• Retrieves input splits 


• Creates a map task object for each split


• Creates a number of reduce tasks (mapreduce.job.reduces)


• Decides how to run job


• Small jobs might be run in the same node 


• Uber tasks 



Yarn: Hadoop 2
• Application master requests containers for all map and 

reduce tasks from resource manager


• Scheduler gets enough information to make smart 
decisions


• One of the selling points of Yarn: Resource allocation is 
much smarter



Yarn: Hadoop 2
1:  run job

2: get new application

3:  copy job resources

4: submit application

5: start container and

    launch

6: initialize job

7: retrieve input splits

8: allocate resources

9: start container 

    and launch

10: retrieve job resources

11: run

client Node

client JVM

MapReduce 
Program Job1

2

4

3

HDFS

resource manager node

resource manager JVM

resource 
manager

node manager node
resource manager JVM

node
manager

MRAppMaster

5

node manager node

task JVM

node
manager

YarnChild

9

MapTask or
ReduceTask

11

5

6

7

11

8



Yarn: Hadoop 2
• Task execution:


• Application master starts container by contacting the 
node manager


• Streaming and pipes work in the same way as Classical 
MapReduce



Yarn: Hadoop 2
• Progress and Status reports


• tasks report progress and status to application masters


• (Classical: reports move from child through tasktracker 
to jobtracker for aggregation)


• client polls application master every second



Failures in Classic Hadoop 
• Child task is failing:


• Throwing a runtime exception


• JVM through task master informs client


• Taskmaster can take on another task


• Streaming tasks are marked as failed


• Sudden exit of child JVM


• Taskmaster notes exit and marks attempt as failed



Failures in Classic Hadoop 
• Child task is failing


• Hanging tasks


• Tasktracker notices lack of progress updates and 
marks task as failed


• Normal timeout period is 10 minutes



Failures in Classic Hadoop 
• When jobtracker is notified that a task attempt has failed


• jobtracker reschedules task elsewhere


• jobtracker does try a maximum of four times


• Client can specify the percentage of tasks that are 
allowed to fail



Failures in Classic Hadoop 
• Users, jobtrackers can kill task attempts


• E.g. speculative execution can kill duplicates


• E.g. Tasktracker has failed



Failures in Classic Hadoop 
• Tasktracker failure


• Tasktracker then no longer sends heartbeats


• Jobtracker removes tasktracker from its pool


• Jobtracker arranges for map tasks to restart


• Because there might be no access to the local 
results


• Tasktrackers can be blacklisted if too many tasks there 
fail



Failures in Classic Hadoop 
• Jobtracker failure


• No mechanism in Hadoop to deal with this type of 
failure



Failures in YARN 
• Task failures like before:


• Propagated back to application master


• Application master marks them as failed


• Hanging tasks are discovered by application master



Failures in YARN 
• Application master failure


• Several attempts for a task to succeed


• Application master sends heartbeats to Resource 
manager


• Resource manager can restart application master 
elsewhere



Failures in YARN 
• Node manager failure


• Application manager will know due to lack of hearbeats



Failures in YARN 
• Resource manager failure


• Resource manager is hardened by using checkpointing 
to save state



Job Scheduling 
• First implementations just used FIFO


• Later, priorities were introduced


• Fair scheduler:  every user gets equal access to the 
capacity of the cluster


• Capacity scheduler: made up of queues 


• Each queues is run like a fair scheduler


• Gives administrator more control over how different 
users are treated



Hadoop Data Integrity
• Use hashes a.k.a. checksum to verify integrity


• E.g. CRC32, CRC32C


• Datanodes check integrity by verifying checksums 
when data is accessed


• Periodically scans all data



Hadoop Compression
• Hadoop uses a variety of compression algorithms


• Splittable compression:


• Can Hadoop blocks be uncompressed independently?



Hadoop Compression
• While Hadoop hides the movement of data, data still 

needs to be moved


• Compressing intermediate results can give large 
performance gains



Hadoop Serialization
• Serialization:


• Turning structured data 
into a byte stream, e.g. for 
storage


• Writable:


• Hadoop supports a 
variety of encodings, 
encompassed in the 
Writable class hierarchy



Example:  
The SequenceFile

Using Record Compression



Avro: 
Language-Neutral Data Serialization
• Apache Avro


• Data format which interfaces for many languages


• Avro data is described in a language-independent 
schema


• The schema itself is usually written in JSON


• Data is usually encoded in a binary format



Avro: 
Language-Neutral Data Serialization
• Avro has schema-resolution capabilities:


• Schema used to read data does not need to be the one 
used to write data


• Allows adding fields 



Parquet
• Apache Parquet


• Columnar storage format for nested data


• Columnar: 


• Values for one attribute are stored next to another


• Can use compression


• Parquet can store nested structures in a columnar 
way



Parquet
• Data is described by a schema


• Simple schema:


• message WeatherRecord { 
  required int32 year; 
  required int32 temperature; 
  required binary stationId (UTF8); 
}



Parquet
• Nesting is created with the group types



Hadoop Operations
• Hadoop is flexible with cluster size


• But need to describe network topology


• Configuration is not global:


• Each Hadoop node has its own configuration files


• Can run old and new machines in parallel


• Primary, secondary namenode and yarn resource 
manager need a lot of hardware support



Hadoop Operations
• Security:


• Uses Kerberos



Hadoop 3
• Use of erasure coding instead of replication for 

infrequently read files


• Higher availability for NameNode


• Yarn TimeLine server:


• Retrieve information on current and past application as 
well as the framework


• No longer limited by using a single disk


• Can now be replicated



Erasure Coding
•  encoding


• Data stored in  chunks


• All data is available as long as  chunks can be read

n-out-of-m

m

n



Erasure Coding
• Example: Generalized linear codes


• Data is seen as a sequence of symbols in , the 
finite field with  elements


• Store data in  arrays 


• Calculate  parity arrays via


ℱ(2n)
2n

k Di =t (di,0, di,1, di,2, …)

n − k

(D1, D2, …, Dk, Dk+1, …, Dn) =

1 0 … 0 p11 … p1,n−k

0 1 … 0 p21 … p2,n−k

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 … 1 pn1 … pn,n−k

t

⋅ (D1, D2, …, Dk)



Erasure Coding
• If some data arrays are lost:


• Calculate an inverse from the “generator matrix” after 
column elimination and use matrix multiplication



Hadoop 3

HDFS overview

in Hadoop 3



Hadoop 3



Hadoop 3



Hadoop 3



Hadoop 3


