#### Map Reduce

# History

- A simple paradigm that popped up several times as paradigm
- Observed by google as a software pattern:
  - Data gets filtered locally and filtered data is then reassembled elsewhere
  - Software pattern: Many engineers are re-engineering the same steps
- Map-reduce:
  - Engineer the common steps efficiently
  - Individual problems only need to be engineered for what makes them different

# History

- Open source project (in part sponsored by Yahoo!)
  - Java-based Hadoop
  - Eventually a first tier Apache Foundation project

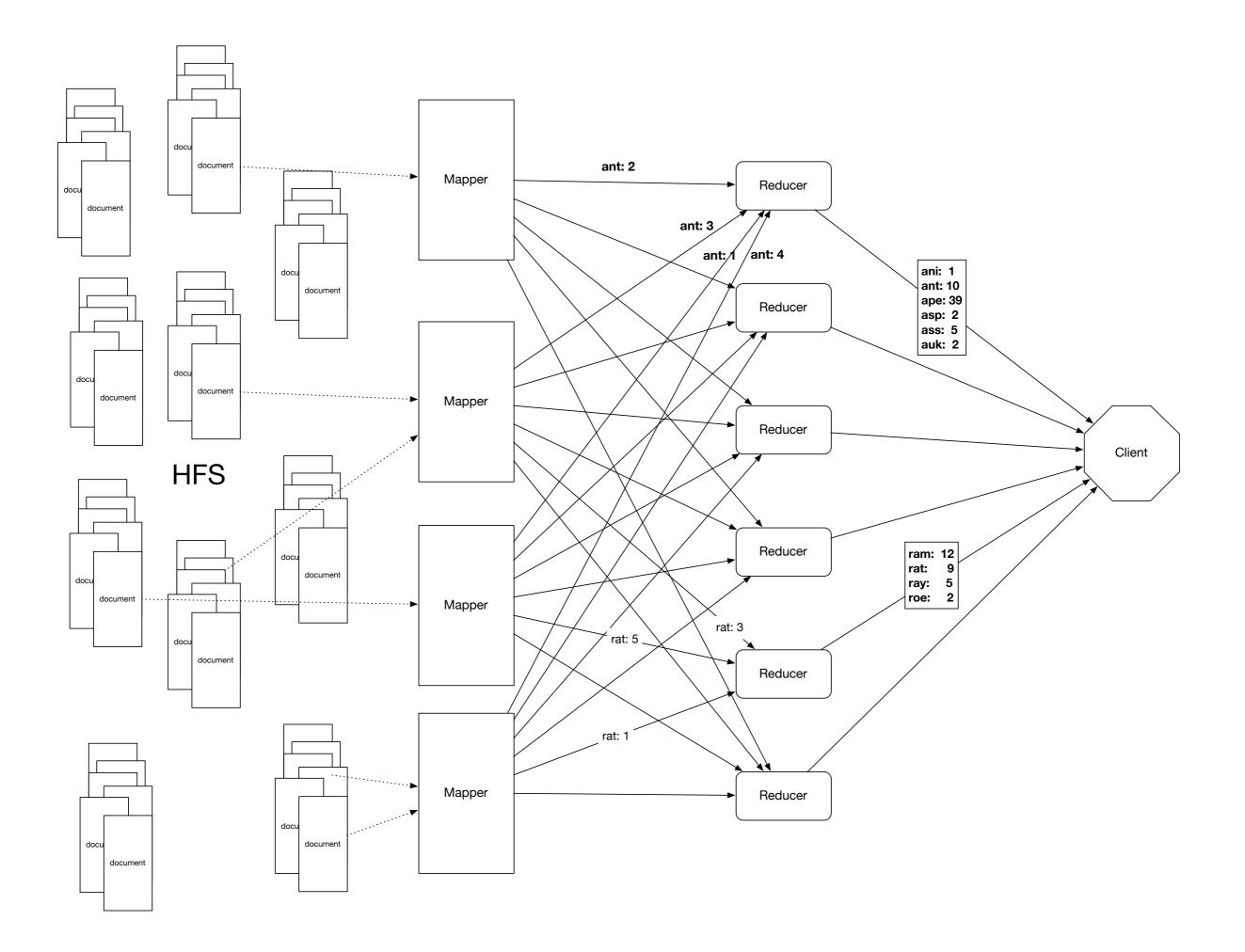
- Other projects at higher level: Pig, Hive, HBase, Mahout, Zookeeper
  - Use Hadoop as foundation
  - Hadoop is becoming a distributed OS

# Map Reduce Paradigm

- Input: Large amount of data spread over many different nodes
- Output: A single file of results
- Two important phases:
  - Mapper: Records are processed into key-value pairs. Mapper sends key-value pairs to reducers
  - **Reducer:** Create final answer from mapper

# Simple Example

- Hadoop Word Count
  - Given different documents on many different sites
    - Mapper:
      - Extract words from record
      - Combines words and generates key-value pairs of type word: key
      - Sends to the reducers based on hash of key
    - Reducer:
      - Receives key-value pairs
      - Adds values for each key
      - Sends accumulated results to aggregator client



# Map-reduce paradigm in detail

• The simple mapper-reducer paradigm can be expanded into several, typical components

- Mapper:
  - Record Reader
    - Parses the data into records
    - Example: Stackoverflow comments.
      - <row Id="5" PostId="5" Score="2" Text="Programming in Portland, cooking in Chippewa ; it makes sense that these would be unlocalized. But does bicycling.se need to follow only that path? I agree that route a to b in city x is not a good use of this site; but general resources would be." CreationDate="2010-08-25T21:21:03.233" UserId="21" />
    - Record reader extract the "Text=" string
    - Passes record into a key-value format to rest of mapper

#### • Mapper

- map
  - Produces "intermediate" key-value pairs from the record
  - Example:
    - "Programming in Portland, cooking in Chippewa ; it makes sense that these would be unlocalized. But does bicycling.se need to follow only that path? I agree that route a to b in city x is not a good use of this site; but general resources would be."
    - Map produces: <programming: 1> <in: 1>
       <Portland: 1> <cooking: 1> <in: 1> ...

#### • Mapper

- Combiner a local reducer
  - Takes key-value pairs and processes them
  - Example:
    - Map produces: <programming: 1> <in: 1>
       <Portland: 1> <cooking: 1> <in: 1> ...
    - Combiner combines words: <programming: 1>
       <in: 4> <Portland: 3> …

- Combiners allow us to reduce network traffic
  - By compacting the same information

#### Mapper

- Partitioner
  - Partitioner creates shards of the key-value pairs produced
  - One for each reducer
  - Often uses a hash function or a range
  - Example:
    - md5(key) mod (#reducers)

#### Reducer

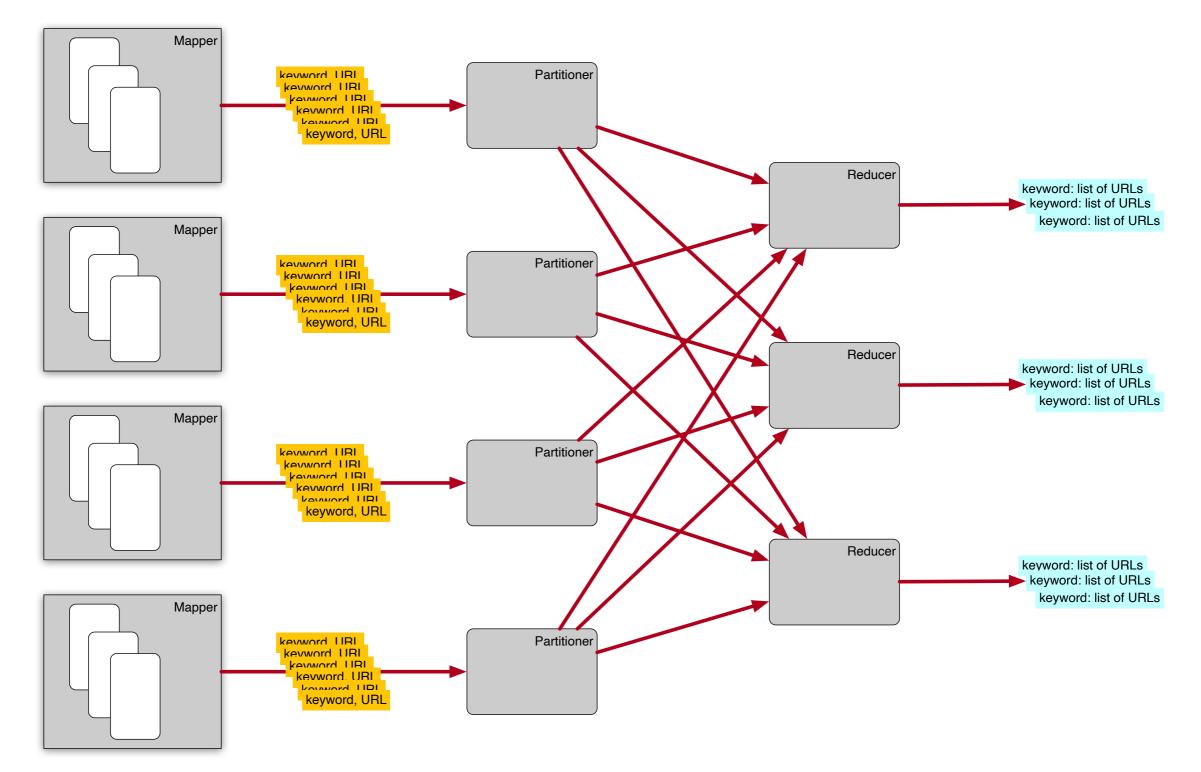
- Shuffle and Sort
- Part of the map-reduce framework
  - Incoming key-value pairs are sorted by key into one large data list
  - Groups keys together for easy agglomeration
  - Programmer can specify the comparator, but nothing else

- Reducer
  - reduce
    - Written by programmer
    - Works on each key group
    - Data can be combined, filtered, aggregated
    - Output is prepared

#### • Reducer

- Output format
  - Formats final key-value pair

- Task: Create an inverted index for a large set of documents
- Desired output:
  - A database that gives all documents (as URL) where a certain word appears.



- Mapper Code:
  - Input: A wikipedia article
  - Procedure:
    - Create a bag of words, stem words, decide whether words are proper names or non-frequent words
  - Output: Create a list of key-value pairs:
    - Keys: important words or proper names
    - Value: URL of article

- Combiner Optimization:
  - Weed out duplicate results

- Reducer:
  - Input: A list of **ordered** key value pairs
    - <word, URL>
  - Output: Agglomerate to:
    - <word, list of URLs>

# Shuffle and Sort

- Each reduce job gets sorted input
- System part that sorts input and transfers to outputs of mappers to reducers is shuffle

# Shuffle and Sort

- Map side
  - Output is not simply written to disk
  - For better performance:
    - Output is put into buffers
    - Buffers are partitioned and sorted when flushed to disk as spill files
  - When mapper finishes:
    - Spill files are combined
  - Output is made available to reducers using HDFS

# Shuffle and Sort

- Reduce side:
  - Reducers start copying mapper output as soon as they are available (copy phase)
  - If mapper outputs at reducer reach critical size, they are placed into spill files on disk
  - Spill files are sorted and combined in batches typically 10 spill files
  - Final combination feeds directly to reducer

# Map Reduce Patterns

- Summarizations
  - Input: A large data set that can be grouped according to various criteria
  - Output: A numerical summary
  - Example:
    - Calculate minimum, maximum, total of certain fields in documents in xml format ordered by user-id

- Example:
  - Given a database in xml-document format

<row Id="193" PostTypeId="1" AcceptedAnswerId="194"
CreationDate="2010-10-23T20:08:39.740" Score="3" ViewCount="30"
Body="&lt;p&gt;Do you lose one point of reputation when you
down vote community wiki? Meta? &lt;/p&gt;&#xA;&#xA;&lt;p&gt;I
know that you do for &quot;regular questions&quot;. &lt;/
p&gt;&#xA;" OwnerUserId="134"
LastActivityDate="2010-10-24T05:41:48.760" Title="Do you lose
one point of reputation when you down vote community wiki?
Meta?" Tags="&lt;discussion&gt;" AnswerCount="1"
CommentCount="0" />

 Determine the earliest, latest, and number of posts for each user

- Mapper:
  - Step 1: Preprocess document by extracting the user ID and the date of the post
  - Step 2: map:
    - User ID becomes the key.
    - Value stores the date twice in Java-date format and adds a long value of 1
- "134": (2010-10-23T20:08:39.740, 2010-10-23T20:08:39.740, 1)

- Mapper:
  - Step 3: Combiner
    - Take intermediate User-ID value pairs
    - Combine the value pairs
      - Combination of two values:
        - first item is minimum of the dates
        - second item is maximum of the dates
        - third item is sum of third items

- The map reduce framework is given the number of reducers
  - Autonomously maps combiner results to reducers
  - Each reducer gets key-value parts for a range of user-IDs grouped by user-ID

- Reducer:
  - Passes through each group combining key-value pairs
  - End-result:
    - Key-value pair with key = user-id
    - Value is a triple with
      - minimum posting date
      - maximum posting date
      - number of posts

- Reducer:
  - Each summary key value pair is sent to client

#### • Example (cont.)

Mapper 1

Mapper 2

| UserID 12345 | 01.02.2010 | 01.02.2010 | 1 |
|--------------|------------|------------|---|
| UserID 12345 | 02.02.2010 | 02.02.2010 | 1 |
| UserID 12345 | 04.02.2010 | 04.02.2010 | 1 |
| UserID 98765 | 12.02.2010 | 12.02.2010 | 1 |
| UserID 98765 | 02.02.2010 | 02.02.2010 | 1 |
| UserID 98765 | 05.02.2010 | 05.02.2010 | 1 |
| UserID 56565 | 02.02.2010 | 02.02.2010 | 1 |
| UserID 56565 | 03.02.2010 | 03.02.2010 | 1 |

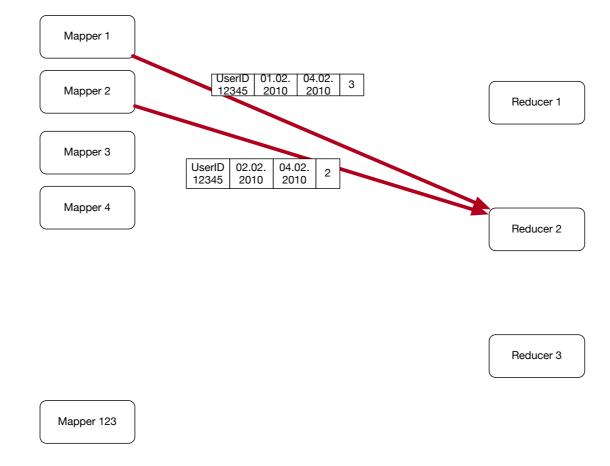
| UserID 12345 | 02.02.2010 | 02.02.2010 | 1 |
|--------------|------------|------------|---|
| UserID 12345 | 04.02.2010 | 04.02.2010 | 1 |
| UserID 77444 | 12.02.2010 | 12.02.2010 | 1 |
| UserID 77444 | 02.02.2010 | 02.02.2010 | 1 |
| UserID 98765 | 05.02.2010 | 05.02.2010 | 1 |

|          | UserID 12345 | 01.02.2010 | 04.02.2010 | 3 |
|----------|--------------|------------|------------|---|
| Combiner | UserID 98765 | 02.02.2010 | 12.02.2010 | 3 |
|          | UserID 56565 | 02.02.2010 | 03.02.2010 | 2 |

| Combiner |        |
|----------|--------|
|          | $\neg$ |
|          |        |

| UserID 12345 | 02.02.2010 | 04.02.2010 | 2 |
|--------------|------------|------------|---|
| UserID 77444 | 02.02.2010 | 12.02.2010 | 2 |
| UserID 98765 | 05.02.2010 | 05.02.2010 | 1 |

- Example (cont.) Automatic Shuffle and Sort
  - Records with the same key are sent to the same reducer



- Example (cont.)
  - Reducer receives records already ordered by user-ID
  - Combines records with same key



- In (pseudo-)pig:
  - Load data

```
posts = LOAD '/stackexchange/posts.tsv.gz'
USING PigStorage('\t') AS (
post_id : long,
user_id : int,
text : chararray,
...
post : date
)
```

- In (pseudo-)pig:
  - Group by user-id

post\_group = GROUP posts BY user\_id;

• Obtain min, max, count:

```
result = FOREACH post_group GENERATE group,
MIN(posts.date), MAX(posts.date),
COUNT_STAR(post_group)
```

- In (pseudo-)pig:
  - Load data

```
orders = LOAD '/stackexchange/posts.tsv.gz'
USING PigStorage('\t') AS (
post_id : long,
user_id : int,
text : chararray,
...
post : date
)
```

- Your turn:
  - Calculate the average score per user
  - The score is kept in the "score"-field

- Solution:
  - Need to aggregate sum of score and number of posts
  - Mapper: for each user-id, create a record with score

```
userid: score, 1
```

Combiner adds scores and counts

```
userid: sum_score, count
```

- Reducer combines as well
- Generates output key-value pair and sends it to the user
- userid: sum\_score/count

- Finding the median of a numerical variable
  - Mapper aggregates all values in a list
  - Reducer aggregates all values in a list
  - Reducer then determines median of the list
- Can easily run into memory problems

- Median calculation:
  - Can compress lists by using counts
    - 2, 3, 3, 3, 2, 4, 5, 2, 1, 2 becomes

(1,1), (2,4), (3,3), (4,1) (5,1)

- Combiner creates compressed lists
- Reducer code directly calculates median
  - An instance where combiner and reducer use different code

- Standard Deviation
  - Square-root of variance
  - Variance Average square deviation from average

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

• Leads to a two pass solution, calculate average first

- Standard Deviation
  - Numerically dangerous one-path solution

•  

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2$$

$$= \frac{1}{N} \sum_{i=1}^N (x_i^2 - 2\bar{x}x_i + \bar{x}^2)$$

$$= \frac{1}{N} \sum_{i=1}^N x_i^2 - 2\bar{x}\frac{1}{N} \sum_{i=1}^N x_i + \bar{x}^2$$

$$= \frac{1}{N} \sum_{i=1}^N x_i^2 - 2\bar{x}^2 + \bar{x}^2 = \frac{1}{N} \sum_{i=1}^N x_i^2 + \bar{x}^2$$

- Chan's adaptation of Welford's online algorithm
  - Using the counts of elements, can calculate the variance in parallel from any number of partitions

```
def parallel_variance(avg_a, count_a, var_a, avg_b, count_b, var_b):
    delta = avg_b - avg_a
    m_a = var_a * (count_a - 1)
    m_b = var_b * (count_b - 1)
    M2 = m_a + m_b + delta ** 2 * count_a * count_b / (count_a + count_b)
    return M2 / (count_a + count_b - 1)
```

• Unfortunately, can still be numerically instable

- Standard Deviation:
  - Schubert & Gertz: Numerically Stable Parallel Computation of (Co)-Variance
    - SSDBM '18 Proceedings of the 30th International Conference on Scientific and Statistical Database Management

- Inverted Index
  - Analyze each comment in StackOverflow to find hyperlinks to Wikipedia
  - Create an index of wikipedia pages pointing to StackOverflow comments that link to them

 Inverted Index is a group-by problem solved almost entirely in the map-reduce framework

#### Summarization / Inverted Index

#### • Mapper

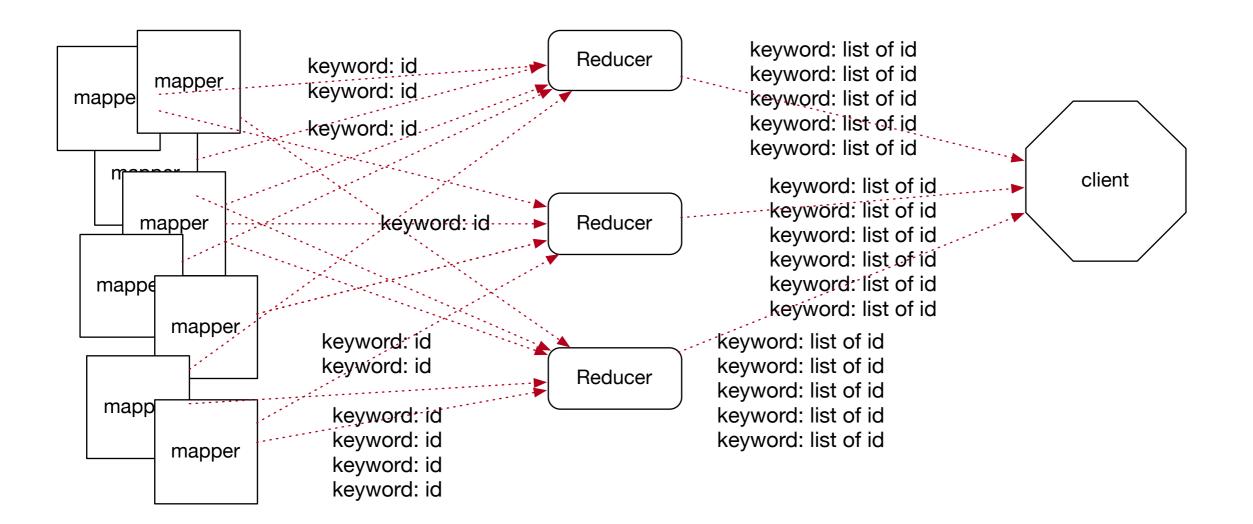
- Parser:
  - Processes posts
  - Checks for right type of post, extracts a list of wikipedia urls (or Null if there are none)
  - Outputs key-value pairs :
    - Keys: wikipedia url
    - Value: row-ID of post
  - Optional combiner:
    - Aggregates values for a wikipedia url in a single list

#### Summarization / Inverted Index

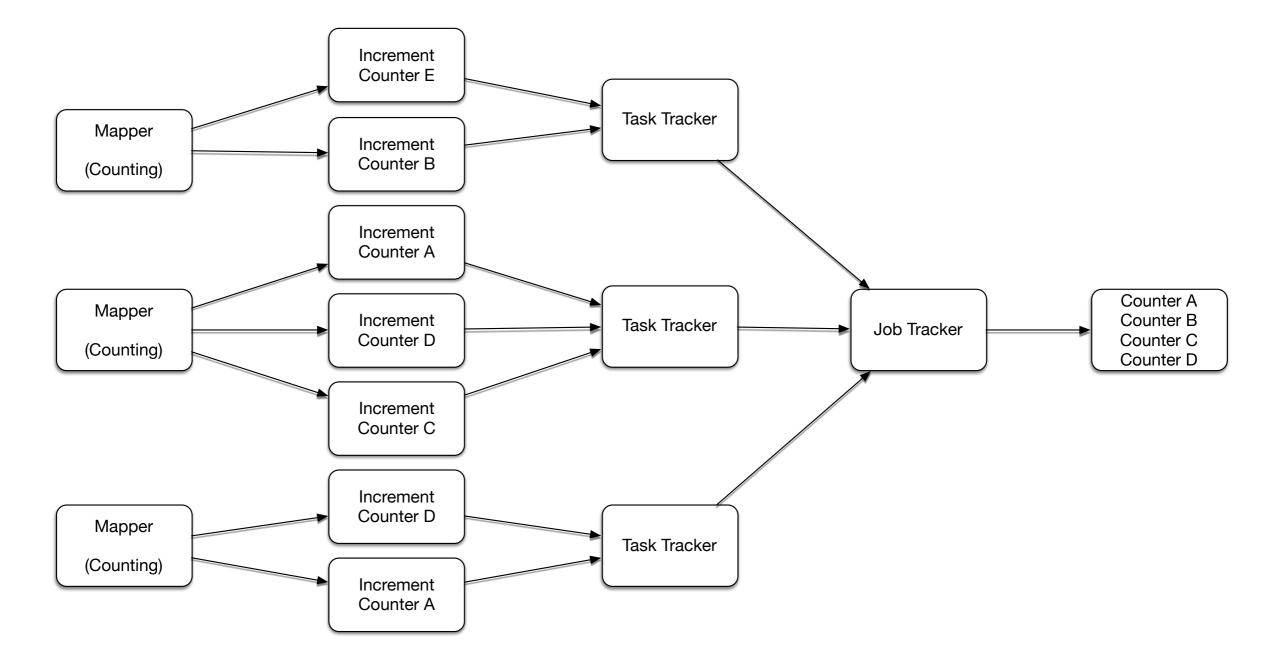
- Reducer
  - Aggregates values belonging to the same key in a list

#### Summarization / Inverted Index

• Generic Inverted Index diagram



- Used to gather stats on an Hadoop job
  - Create various counters (but not too many)
  - Counters work exclusively in the Map-Reduce Paradigm



- Mapper processes each input
  - Increments counter for each record
- Counters are aggregated by Task Trackers
- Task Trackers report counts to Job Tracker
- Job Tracker aggregates counts (unless task tracker failed)

public static class CountNrUsersByState extends Mapper<Object, Text, NullWritable, Null Writable> {

```
public void map(Object key, Text value, Context context)
throws IOException, Interrupted Exception {
Map<String, String> parsed =
MRDPUtils.transformXmlToMap(value.toString())
```

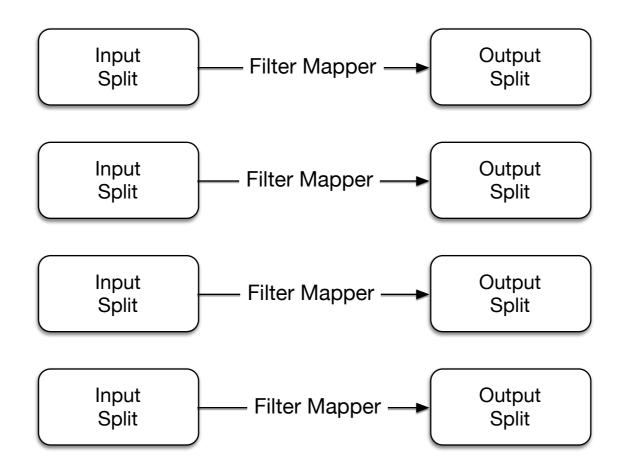
#### • To get the counts, just

- Extract data from records without changing them
  - Sampling:
    - get a few random records
    - get records with very high or low values in a field

- Simple filtering:
  - User defined function or condition is a boolean
    - Decides whether record is to be kept or not
  - Very generic pattern

```
map(key, record):
    if(user_condition(record){
        emit key, value
```

• Simple Filtering



- Simple Filtering
  - There is no "reduce" operation because there is no aggregation
  - If output splits are saved, they can serve as new inputs

- Simple Filtering in Pig
  - Uses the FILTER keyword
  - b = **FILTER** a BY value < 3

- Because there are no reducers
  - Data never has to be transmitted
  - There is no sort phase and no reduce phase

- Filtering pattern:
  - Grep: filtering for a regular expression

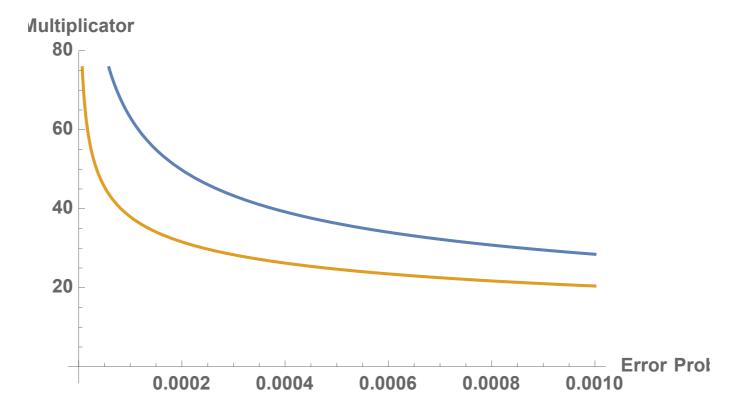
- Getting a random sample
  - Simple random sampling (SRS)
    - Grab a random subset of data
  - Can get filter\_percentage property:
    - context.getConfiguration().get("filter\_ percentage")
  - Mapper writes objects with a given probability
  - There neither combiner nor reducer

- Bloom filters (1970 Burton Howard Bloom)
  - Use to test membership in a set
  - Idea:
    - A data structure that can quickly decide whether an element does **not** belong to a large set
    - And probabilistically whether an element is present
      - With a low probability of error

- Idea: A bloom filter is a large bit array
  - (How large: Deduplication proposes sizes of several GB)
  - Uses a good hash function
  - For each element in the set:
    - Calculate h(ele,0) h(ele,1) h(ele,2)
    - Change the resulting bits in the bit array

- To test for the presence of x in the set S
  - Calculate h(x,0) h(x,1) h(x,2)
  - Check whether the corresponding bits are set.
    - Bits are set, but  $x \notin S$ 
      - Then bits were set by other elements.
      - If |S| = n and there are N elements in the bit array, this happens with probability

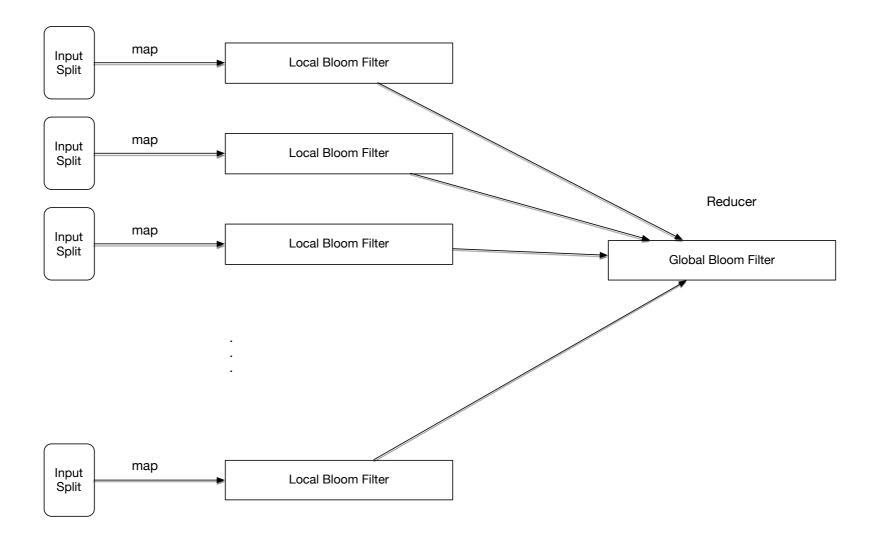
$$\left(1 - (1 - \frac{1}{N})^{3n}\right)^3 \approx (1 - \exp(\frac{-3n}{N}))^3$$



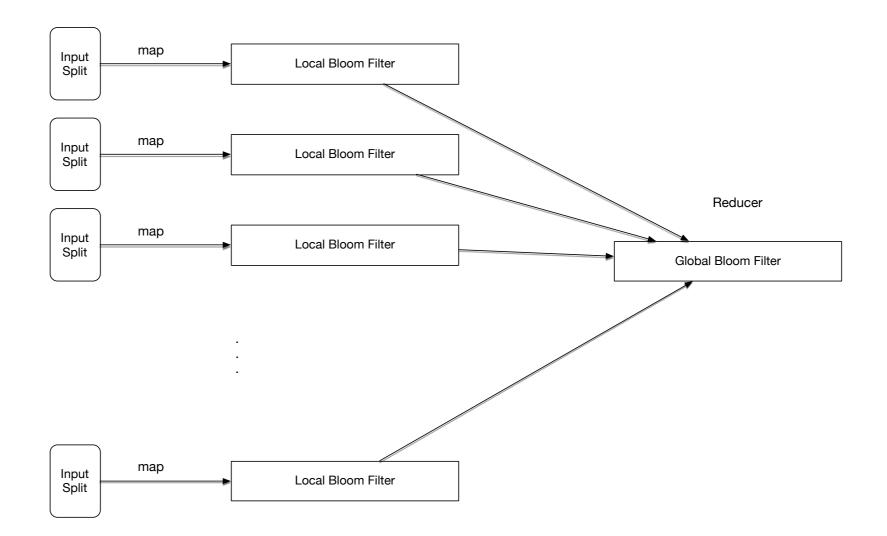
Number of bits = number of set elements times multiplicator needed to achieve a certain error probability with 3 and 4 hashes

- Bloom Filtering pattern:
  - Need to accept a few false positives
- Creating Bloom Filter
- Using Bloom Filter

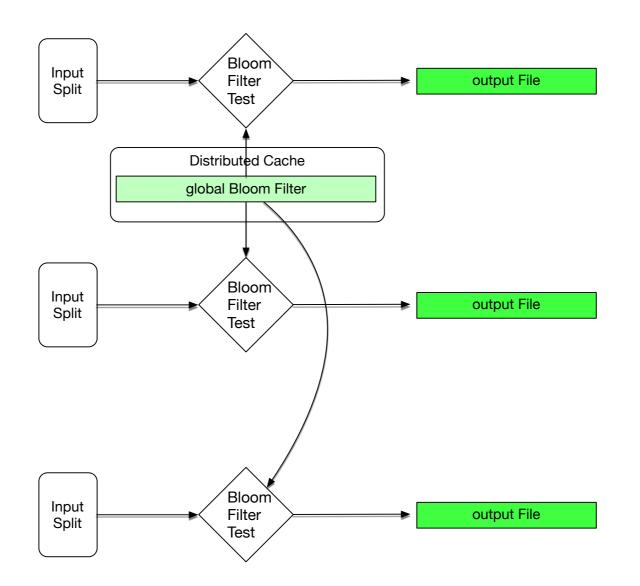
- Mappers create local bloom filter
- Reducer combines them



 Could use more than one reducer by breaking up local bloom filter into ranges



• Bloom Filtering



- Bloom Filtering is used for
  - Removing (almost all of) unwatched items
  - Prefiltering data

 Pig: Need to implement Bloom filtering as user-defined functions

- Top-ten
  - Retrieve the records that have the k largest values in a certain attribute

• Group Exercise

# Filtering Patterns

- A set of distinct records
  - Example: Web page log
    - Want to have records where user-name, device, or browser are different, but we don't care about time stamps

# Filtering Patterns

- Unique records:
  - Use the map-reduce grouping properties
    - Mapper group by the attributes we are interested in
    - Combiners emit one value for each group
    - Reducer only emits one value for each group

```
map(key, record):
    emit record, null
reduce(key, records):
    emit key
```

## Filtering Patterns

- Unique records
  - Pig:

b = distinct a;

- Problem:
  - Transform data to a different format
    - Row-based data to hierarchical format such as JSON or XML

#### • Example

- StackOverflow data
  - Posts and comments are separated
    - Lines in an XML document
  - Hierarchy combines posts and comments
- Hierarchical data model allows us to correlate length of posts with number of comments, etc.

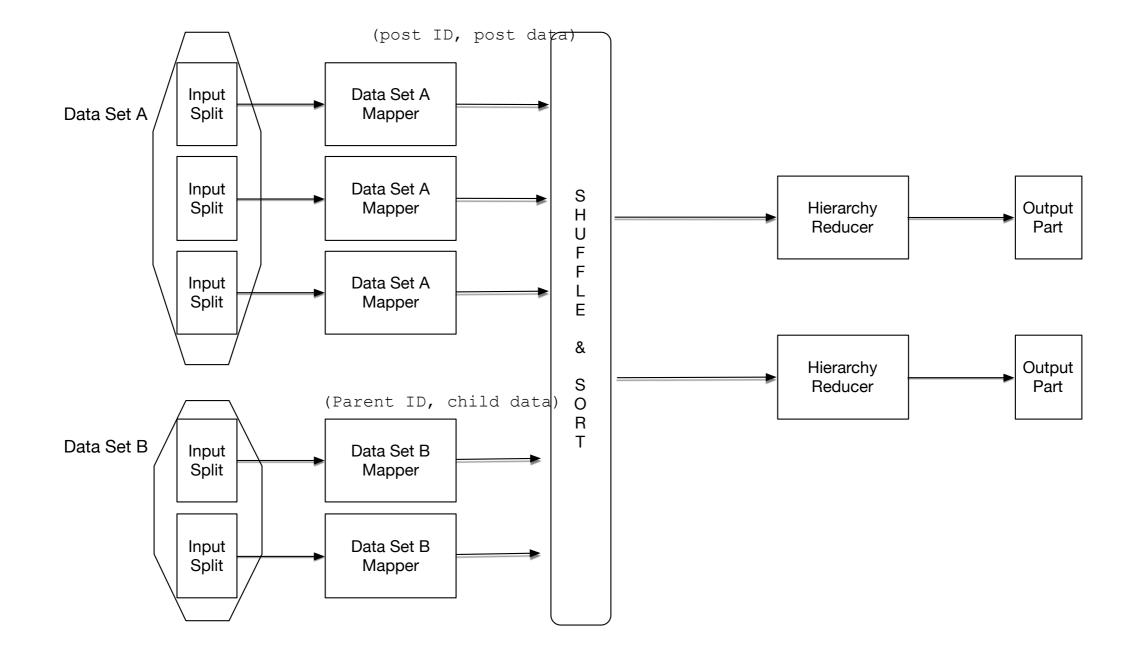


- Often, the data to be combined comes from different data sets
  - Hadoop class MultipleInputs from org.apache.hadoop.mapreduce.lib.input
  - Allows to specify different input paths and different mappers for each input
  - Configuration is done in the driver

- Multiple sources to hierarchical Pattern
  - Mappers load data and parse it into a cohesive format
  - Output key corresponds to root of hierarchical record
    - E.g. StackOverflow: root is post\_id
  - Need to identify the source for each mapper output
    - E.g. StackOverflow: is this a post or a comment
  - Combiners are pretty useless because we create large strings

- Multiple sources to hierarchical Pattern
  - Reducers receive data from different sources key by key
  - For each key, can now build hierarchical data structure

- Multiple sources to hierarchical Pattern
  - Result is in hierarchical form
  - Probably need to add header and footer so that it is well-formed



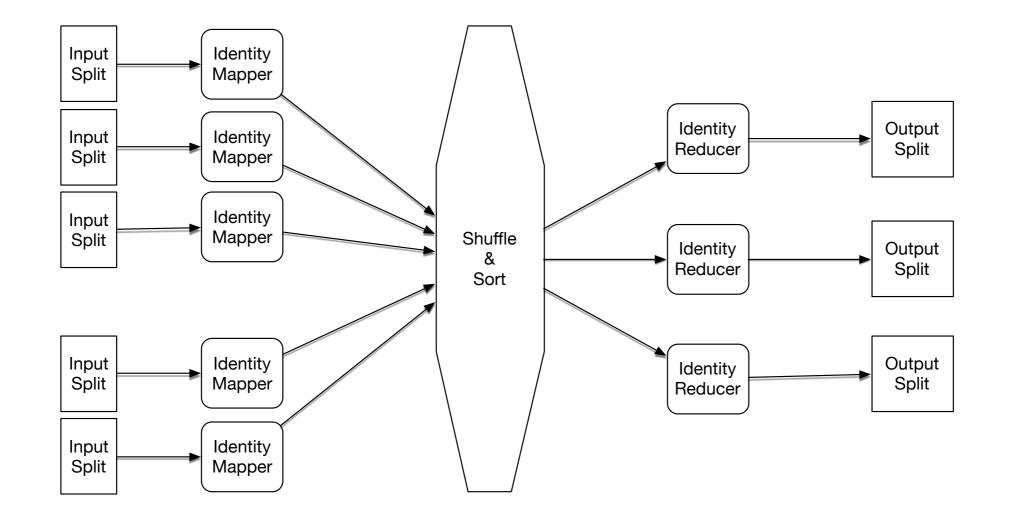
- Multiple sources to Hierarchical Pattern
  - Performance problems
    - Need enough reducers
    - Reducers might see a lot of skew:
      - Some are busy, others are not
    - Hot spots can result in humongous strings moved between mappers and reducers
      - Could take up the heap of a Java Virtual Machine

- Needs two mappers: one for comments, one for posts
- Both: extract post-id to use as output key
- Append "P" or "C" to distinguish between sources

- Reducer:
  - Reducers receive post-id + marker as key and text as value
    - For each post-id with "P" marker:
      - Create a post entry in the XML
      - For each post-id with "C" marker:
        - Create child

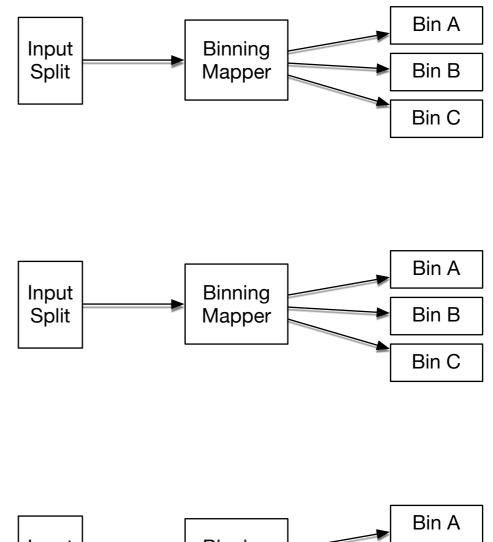
- Partitioning
  - Moves records into shards, but does not care about ordering
    - Example: partitioning by date
  - Need to know number of partitions ahead of time

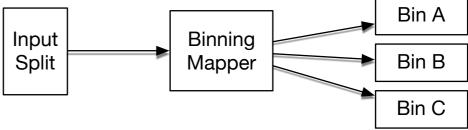
• Partitioning: Let the partitioner do the job



- Binning:
  - Moves records into categories irrespective of order
  - Related to partitioning
    - Which one works better depends on the system
    - Binners do not use reducers

- Binning
  - Number of outputs = Number of mappers times Number of bins





- Binning:
  - Pig
    - Split data INTO eights IF col1==8, bigs IF col1>8, smalls IF col1<8;</li>

- Total Order Sorting
  - Data needs to be sorted by a given comparator
  - Result is a set of shards that are ordered
    - Need to know the distribution of data first
      - Run an analyze phase first

- Total order sorting:
  - Analyze phase
    - Mapper does random sampling
    - Only outputs the key after which we sort
    - Use only one reducer which will give us the sort keys in order

- Total order sorting:
  - Order phase
    - Mapper extracts the sort key and stores the record as a value
    - Custom partitioner is loaded based on the results of the analysis phase
      - TotalOrderPartitioner in Hadoop
      - Takes the data ranges prescribed and uses them to partition
    - Reducer simply outputs the values
    - Shuffle and sort has already done all the work

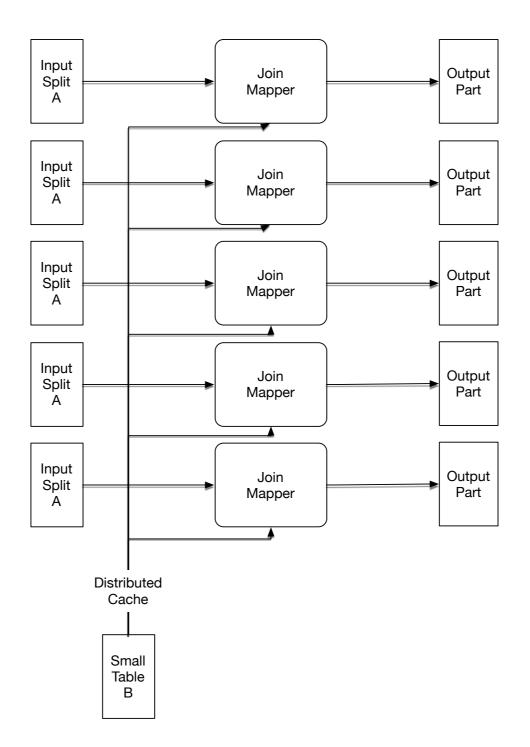
- Total Ordering in Pig
  - c = order b by col1;

- Shuffling
  - Randomizes the order of a set of records

- Shuffling
  - Mapper maintains the records, but creates a random key
  - Reducer sort according to random keys
  - Only record is printed out

- Shuffling
  - Pig:
    - c = Group b by Random();
    - d = FOREACH c generate Flatten(c);

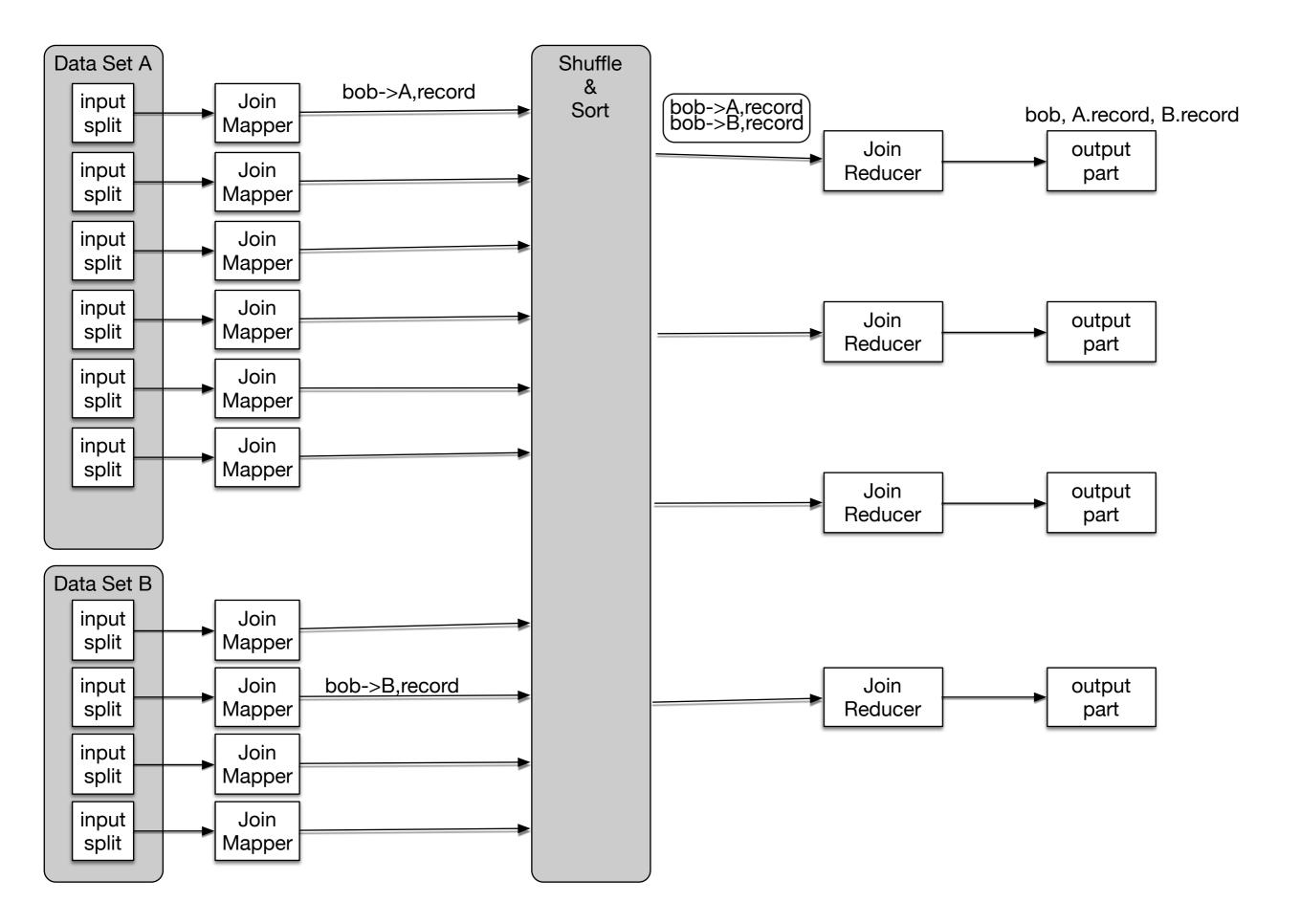
- Join Pattern
  - Different cases
    - Simplest Case: Join with a small table
      - Send small table to all mappers
      - Mappers calculate local join
      - Reducers



• Pig allows you to give hints for joins

```
huge = LOAD 'huge.txt' AS (h1,h2);
smallest = LOAD 'smallest.txt' AS (ss1, ss2);
small = LOAD 'small.txt' AS (s1,s2);
A = JOIN huge BY h1, small BY s1, smallest BY ss1 USING
'replicated';
```

- Reduce Side Join
  - Join large multiple data sets together by some foreign key
  - Structure:
    - Mapper goes through all records in both data sets
    - Mapper creates pairs
      - foreign key —> source, rest of record
      - source is the name of the table
    - Can use hash partitioner or a customized partitioner
    - Reducer combines values of each input group into two lists



- The reducer is given within the input group all records with a foreign key
- This allows the reducer to create many types of joins based on equality

- Inner join:
  - Records from Table A and Table B are joined if they share the same foreign key

#### Table A

| foreign key | attribute 1 | attribute 2 |
|-------------|-------------|-------------|
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |

#### Table B

|             |             | i           |             |
|-------------|-------------|-------------|-------------|
| foreign key | attribute 1 | attribute 2 | attribute 3 |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             | 1           |             |

#### Inner Join

- Outer Join
  - If the foreign key is not present in one table than the lacking values are made into Null values

#### Table A

| foreign key | attribute 1 | attribute 2 |
|-------------|-------------|-------------|
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |

#### Table B

| foreign key | attribute 1 | attribute 2 | attribute 3 |
|-------------|-------------|-------------|-------------|
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |

#### **Outer Join**

|  | NULL | NULL | NULL |
|--|------|------|------|
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |

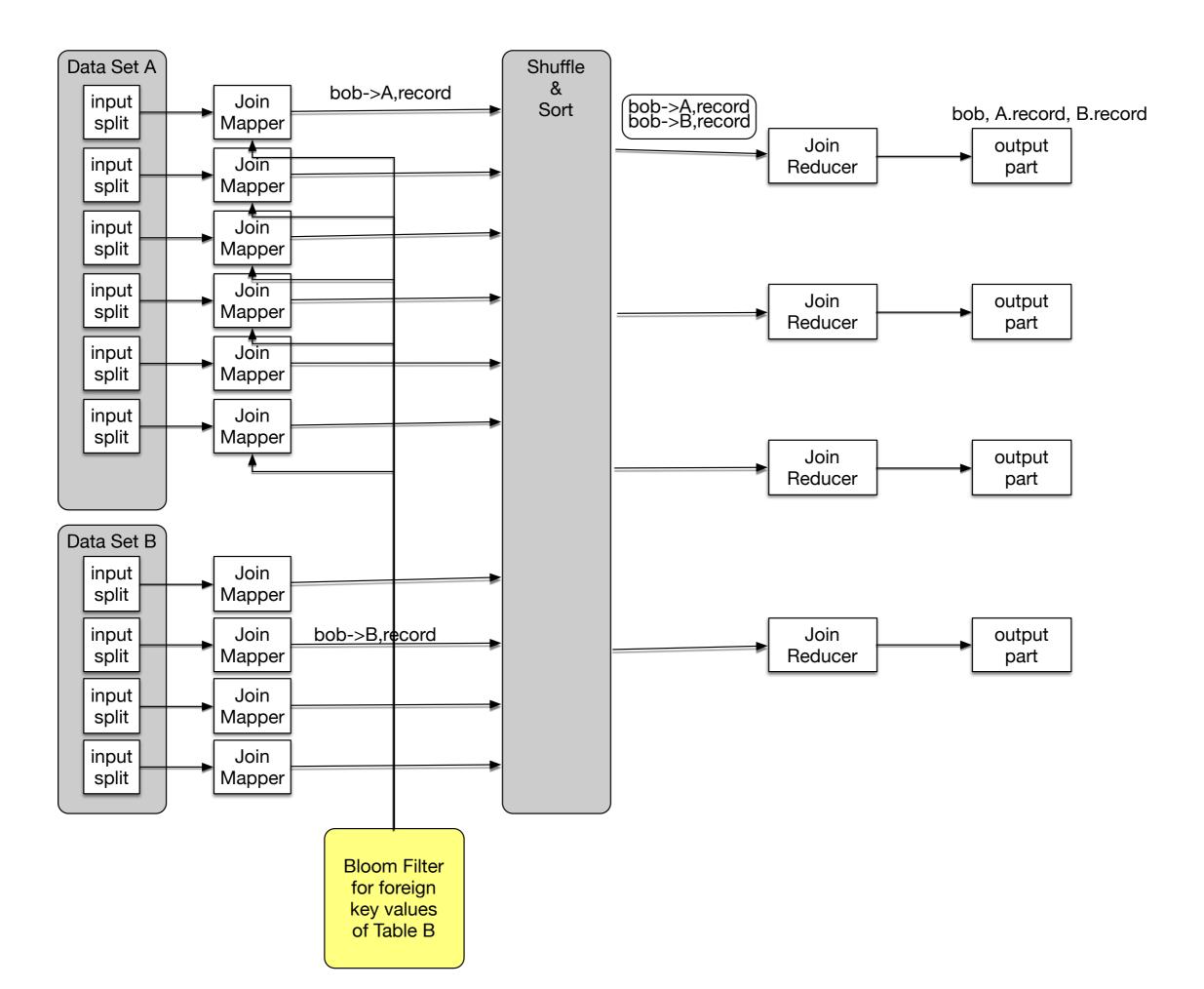
- Optimization with Bloom Filters
  - If we calculate an inner join with map-reduce, a mapper does not have to create a key-value pair if the foreign key value is not present in the other table

| attribute 1 | attribute 2 |
|-------------|-------------|
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             |             |
|             | attribute 1 |

| Table B     |             |             |             |
|-------------|-------------|-------------|-------------|
| foreign key | attribute 1 | attribute 2 | attribute 3 |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |
|             |             |             |             |

value not present

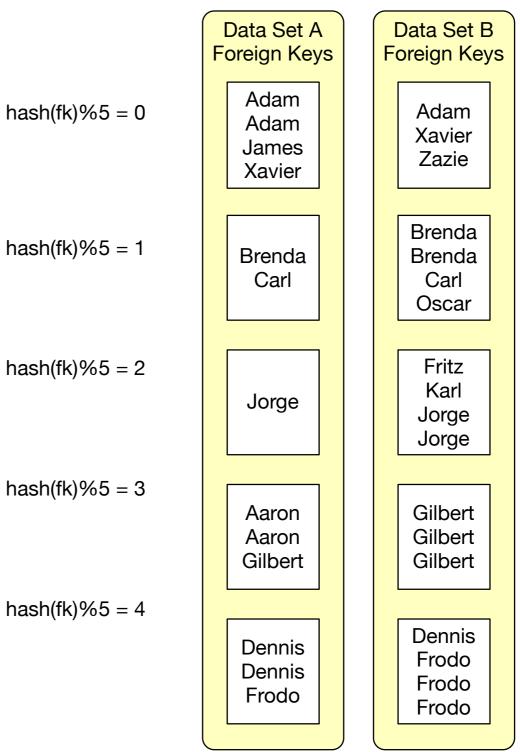
- Create a Bloom Filter for both sets (or for only one)
- Put Bloom filter in distributed cache or send it to all mappers for the other table
- Then only send records to the reducer when we know that the foreign key value is also present in the other table



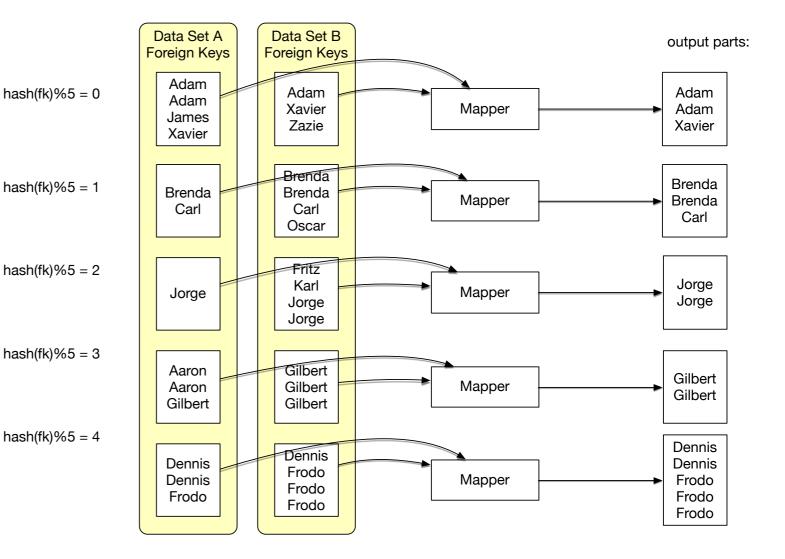
- Bloom filter does not need to be very good to be efficient
  - Bloom filter does not have false negatives, only false positives
- Bloom filter needs to be created before it can be used, making this into a two phase job

- Composite Join
  - Supported by Hadoop: CompositeInputFormat
- Idea:
  - Preprocess all table contents to create input shards that are sorted and partitioned by foreign key.
  - This is somewhat similar to the idea of the hash-join
- Two-phase job again

- Create hash buckets for records based on foreign keys
- Buckets are sorted

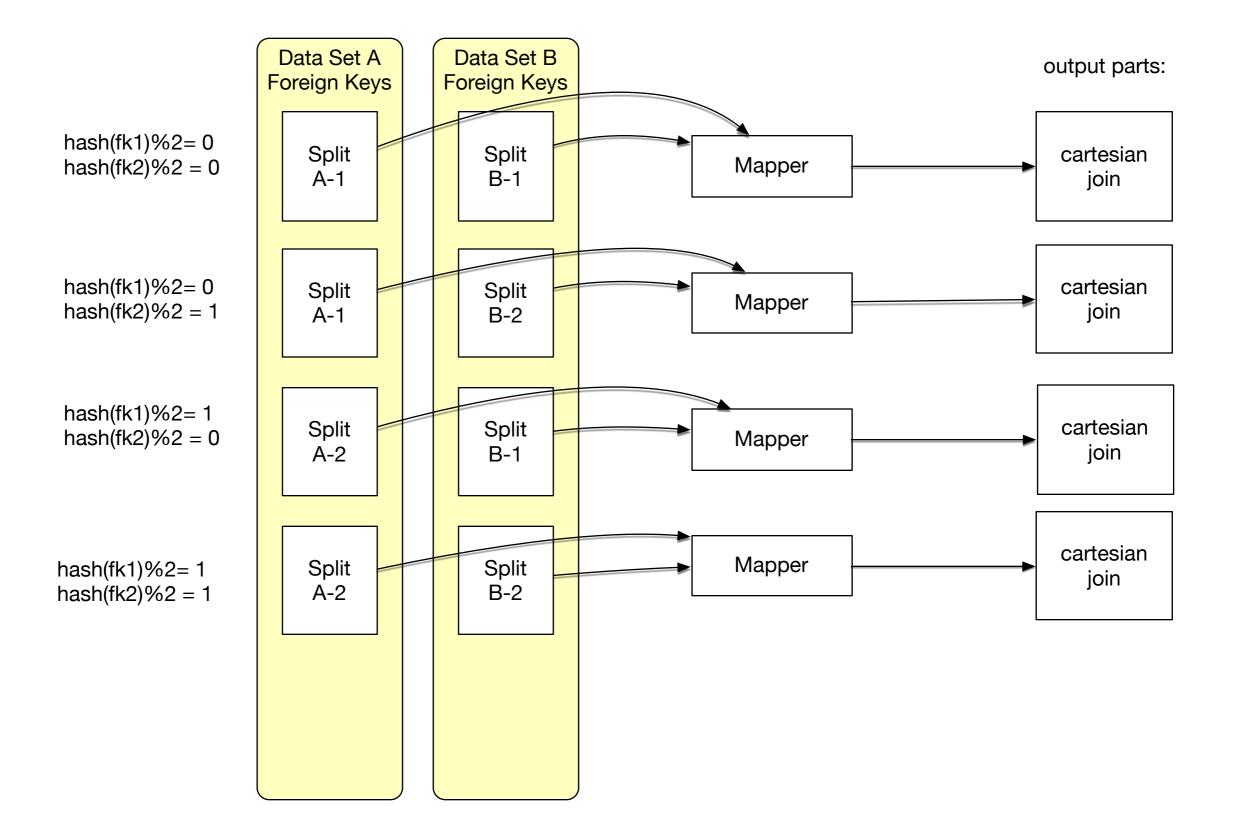


- Send all buckets in the hash to the same mapper
- Mappers then combine
- There are no reducers involved

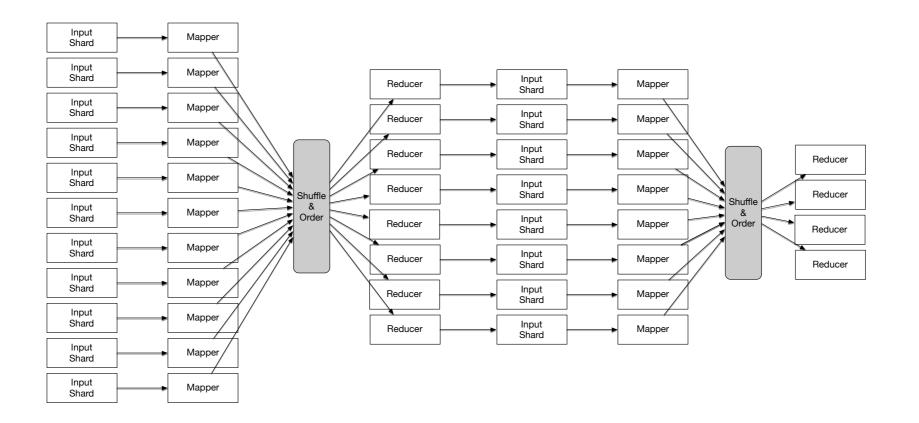


- Composite Join Performance
  - Most of the work in the creation of the Composite Join Splits

- Cartesian Product
  - Cartesian product combines all values in one table with all values in one other table
  - Easily create gigantic results
  - With huge execution times
- Uses essentially the composite join pattern
  - Each mapper receives an input split from Table A and an input split from Table B
  - If we break Table A into n pieces and Table B into m pieces, then we need n x m mappers



- Job Chaining
  - Run two or more map-reduce jobs
  - Output of the first is input to the second



- Map-Reduce framework is not very good at this
  - Special frameworks exist
    - Oozie Apache Project Workflow Engine
      - Java web application
      - Workflow collection of actions
        - Map-reduce jobs, Pig jobs arranged in a DAG
        - Uses XML-based Hadoop Process Definition
           Language for workflow specifications
    - Oozie coordinates jobs

- Doing it yourself
  - Using Java
  - Map-reduce drivers are simple Java classes
  - Take the drivers of the individual Map-reduce jobs and call them in sequence
    - Output and input paths need to match
  - Use Job.Submit(), JobisComplete(), and Job.waitForCompletion()

- Doing it yourself
  - Scripting
  - Using JobControl

## Chain Folding

- Opportunities for optimization
  - Mappers work in isolation
  - A record can be submitted to multiple mappers or to a reducer-mapper combination
- Avoids transfer of files

## Chain Folding

- Chain folding patterns
  - Multiple mapping phases are adjacent
    - Fold them into single mappers
  - If a job ends with a map phase
    - Push into the preceding reducer phase
  - Split mappers that reduce data and mappers that increase data
  - Filter data as early as possible

# Job Merging

- If two unrelated map-reduce jobs use the same input set
  - Can combine the mappers and reducers
  - Data is loaded and parsed now only once