
Map Reduce

History
• A simple paradigm that popped up several times as paradigm

• Observed by google as a software pattern:

• Data gets filtered locally and filtered data is then
reassembled elsewhere

• Software pattern: Many engineers are re-engineering the
same steps

• Map-reduce:

• Engineer the common steps efficiently

• Individual problems only need to be engineered for what
makes them different

History
• Open source project (in part sponsored by Yahoo!)

• Java-based Hadoop

• Eventually a first tier Apache Foundation project

• Other projects at higher level: Pig, Hive, HBase, Mahout,
Zookeeper

• Use Hadoop as foundation

• Hadoop is becoming a distributed OS

Map Reduce Paradigm
• Input: Large amount of data spread over many different

nodes

• Output: A single file of results

• Two important phases:

• Mapper: Records are processed into key-value pairs.
Mapper sends key-value pairs to reducers

• Reducer: Create final answer from mapper

Simple Example
• Hadoop Word Count

• Given different documents on many different sites

• Mapper:

• Extract words from record

• Combines words and generates key-value pairs of type word:
key

• Sends to the reducers based on hash of key

• Reducer:

• Receives key-value pairs

• Adds values for each key

• Sends accumulated results to aggregator - client

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

Mapper

Mapper

Mapper

Mapperdocument

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

document

document
document

document
document

document

Reducer

Reducer

Reducer

Reducer

Reducer

Reducer
ant: 2

ant: 3

ant: 1 ant: 4

Client

ani: 1
ant: 10
ape: 39
asp: 2
ass: 5
auk: 2

rat: 5
rat: 3

rat: 1

ram: 12
rat: 9
ray: 5
roe: 2

HFS

Map-reduce paradigm in
detail

• The simple mapper-reducer paradigm can be expanded
into several, typical components

Map Reduce in Detail
• Mapper:

• Record Reader

• Parses the data into records

• Example: Stackoverflow comments.

• <row Id="5" PostId="5" Score="2" Text="Programming in

Portland, cooking in Chippewa ; it makes sense that these
would be unlocalized. But does bicycling.se need to follow
only that path? I agree that route a to b in city x is not
a good use of this site; but general resources would be."
CreationDate="2010-08-25T21:21:03.233" UserId="21" />

• Record reader extract the “Text=” string

• Passes record into a key-value format to rest of mapper

Map Reduce in Detail
• Mapper

•map
• Produces “intermediate” key-value pairs from the record

• Example:

• "Programming in Portland, cooking in Chippewa ; it

makes sense that these would be unlocalized. But does
bicycling.se need to follow only that path? I agree
that route a to b in city x is not a good use of this
site; but general resources would be.”

• Map produces: <programming: 1> <in: 1>
<Portland: 1> <cooking: 1> <in: 1> …

Map Reduce in Detail
• Mapper

• Combiner — a local reducer

• Takes key-value pairs and processes them

• Example:

• Map produces: <programming: 1> <in: 1>
<Portland: 1> <cooking: 1> <in: 1> …

• Combiner combines words: <programming: 1>
<in: 4> <Portland: 3> …

Map Reduce in Detail
• Combiners allow us to reduce network traffic

• By compacting the same information

Map Reduce in Detail
• Mapper

• Partitioner

• Partitioner creates shards of the key-value pairs
produced

• One for each reducer

• Often uses a hash function or a range

• Example:

• md5(key) mod (#reducers)

Map Reduce in Detail
• Reducer

• Shuffle and Sort

• Part of the map-reduce framework

• Incoming key-value pairs are sorted by key into one
large data list

• Groups keys together for easy agglomeration

• Programmer can specify the comparator, but nothing
else

Map Reduce in Detail
• Reducer

•reduce

• Written by programmer

• Works on each key group

• Data can be combined, filtered, aggregated

• Output is prepared

Map Reduce in Detail
• Reducer

• Output format

• Formats final key-value pair

Inverted Index Pattern
• Task: Create an inverted index for a large set of

documents

• Desired output:

• A database that gives all documents (as URL) where a
certain word appears.

Inverted Index Pattern
Mapper

Mapper

Mapper

Mapper

Partitioner

Partitioner

Partitioner

Partitioner

keyword, URL
keyword, URL
keyword, URL
keyword, URL
keyword, URL
keyword, URL

keyword, URL
keyword, URL
keyword, URL
keyword, URL
keyword, URL
keyword, URL

keyword, URL
keyword, URL
keyword, URL
keyword, URL
keyword, URL
keyword, URL

keyword, URL
keyword, URL
keyword, URL
keyword, URL
keyword, URL
keyword, URL

Reducer

Reducer

Reducer

keyword: list of URLs
keyword: list of URLs

keyword: list of URLs

keyword: list of URLs
keyword: list of URLs

keyword: list of URLs

keyword: list of URLs
keyword: list of URLs

keyword: list of URLs

Inverted Index Pattern
• Mapper Code:

• Input: A wikipedia article

• Procedure:

• Create a bag of words, stem words, decide whether
words are proper names or non-frequent words

• Output: Create a list of key-value pairs:

• Keys: important words or proper names

• Value: URL of article

Inverted Index Pattern
• Combiner Optimization:

• Weed out duplicate results

Inverted Index Pattern
• Reducer:

• Input: A list of ordered key value pairs

• <word, URL>

• Output: Agglomerate to:

• <word, list of URLs>

Shuffle and Sort
• Each reduce job gets sorted input

• System part that sorts input and transfers to outputs of
mappers to reducers is shuffle

Shuffle and Sort
• Map side

• Output is not simply written to disk

• For better performance:

• Output is put into buffers

• Buffers are partitioned and sorted when flushed to disk
as spill files

• When mapper finishes:

• Spill files are combined

• Output is made available to reducers using HDFS

Shuffle and Sort
• Reduce side:

• Reducers start copying mapper output as soon as they
are available (copy phase)

• If mapper outputs at reducer reach critical size, they
are placed into spill files on disk

• Spill files are sorted and combined in batches —
typically 10 spill files

• Final combination feeds directly to reducer

Map Reduce Patterns
• Summarizations

• Input: A large data set that can be grouped according
to various criteria

• Output: A numerical summary

• Example:

• Calculate minimum, maximum, total of certain fields
in documents in xml format ordered by user-id

Summarization
• Example:

• Given a database in xml-document format

• Determine the earliest, latest, and number of posts for
each user

<row Id="193" PostTypeId="1" AcceptedAnswerId="194"
CreationDate="2010-10-23T20:08:39.740" Score="3" ViewCount="30"
Body="<p>Do you lose one point of reputation when you
down vote community wiki? Meta? </p>

<p>I
know that you do for "regular questions". </
p>
" OwnerUserId="134"
LastActivityDate="2010-10-24T05:41:48.760" Title="Do you lose
one point of reputation when you down vote community wiki?
Meta?" Tags="<discussion>" AnswerCount="1"
CommentCount="0" />

Summarization
• Mapper:

• Step 1: Preprocess document by extracting the user ID
and the date of the post

• Step 2: map:

• User ID becomes the key.

• Value stores the date twice in Java-date format and
adds a long value of 1

“134”: (2010-10-23T20:08:39.740, 2010-10-23T20:08:39.740, 1)

Summarization
• Mapper:

• Step 3: Combiner

• Take intermediate User-ID — value pairs

• Combine the value pairs

• Combination of two values:

• first item is minimum of the dates

• second item is maximum of the dates

• third item is sum of third items

Summarization
• The map reduce framework is given the number of

reducers

• Autonomously maps combiner results to reducers

• Each reducer gets key-value parts for a range of user-
IDs grouped by user-ID

Summarization
• Reducer:

• Passes through each group combining key-value pairs

• End-result:

• Key-value pair with key = user-id

• Value is a triple with

• minimum posting date

• maximum posting date

• number of posts

Summarization
• Reducer:

• Each summary key— value pair is sent to client

Summarization
• Example (cont.)

UserID 12345 01.02.2010 01.02.2010 1

UserID 12345 02.02.2010 02.02.2010 1

UserID 12345 04.02.2010 04.02.2010 1

UserID 98765 12.02.2010 12.02.2010 1

UserID 98765 02.02.2010 02.02.2010 1

UserID 98765 05.02.2010 05.02.2010 1

UserID 56565 02.02.2010 02.02.2010 1

UserID 56565 03.02.2010 03.02.2010 1

UserID 12345 02.02.2010 02.02.2010 1

UserID 12345 04.02.2010 04.02.2010 1

UserID 77444 12.02.2010 12.02.2010 1

UserID 77444 02.02.2010 02.02.2010 1

UserID 98765 05.02.2010 05.02.2010 1

Mapper 1

Mapper 2

 Combiner

 Combiner

UserID 12345 01.02.2010 04.02.2010 3

UserID 98765 02.02.2010 12.02.2010 3

UserID 56565 02.02.2010 03.02.2010 2

UserID 12345 02.02.2010 04.02.2010 2

UserID 77444 02.02.2010 12.02.2010 2

UserID 98765 05.02.2010 05.02.2010 1

Summarization
• Example (cont.) Automatic Shuffle and Sort

• Records with the same key are sent to the same
reducer

Reducer 1

Reducer 2

Reducer 3

Mapper 1

Mapper 2

Mapper 3

Mapper 4

Mapper 123

UserID
12345

01.02.
2010

04.02.
2010 3

UserID
12345

02.02.
2010

04.02.
2010 2

Summarization
• Example (cont.)

• Reducer receives records already ordered by user-ID

• Combines records with same key

UserID 12345 01.02.2010 04.02.2010 3

UserID 12345 02.02.2010 04.02.2010 2

UserID 12345 26.03.2010 30.04.2010 5

UserID 12345 19.01.2010 01.04.2010 3

UserID 16542 02.02.2010 04.02.2010 6

UserID 16542 26.03.2010 29.05.2010 5

UserID 16542 19.01.2010 19.01.2010 1

UserID 12345 01.02.2010 30.02.2010 13

UserID 16542 19.01.2010 29.05.2010 12

Summarization
• In (pseudo-)pig:

• Load data

posts = LOAD '/stackexchange/posts.tsv.gz'
USING PigStorage('\t') AS (
post_id : long,
user_id : int,
text : chararray,
…
post : date
)

Summarization
• In (pseudo-)pig:

• Group by user-id

• Obtain min, max, count:

post_group = GROUP posts BY user_id;

result = FOREACH post_group GENERATE group,
MIN(posts.date), MAX(posts.date),
COUNT_STAR(post_group)

Summarization
• In (pseudo-)pig:

• Load data

orders = LOAD ‘/stackexchange/posts.tsv.gz'
USING PigStorage('\t') AS (
post_id : long,
user_id : int,
text : chararray,
…
post : date
)

Summarization
• Your turn:

• Calculate the average score per user

• The score is kept in the “score”-field

Summarization
• Solution:

• Need to aggregate sum of score and number of posts

• Mapper: for each user-id, create a record with score

• Combiner adds scores and counts

• Reducer combines as well

• Generates output key-value pair and sends it to the user

•

userid: score, 1

userid: sum_score, count

userid: sum_score/count

Summarization
• Finding the median of a numerical variable

• Mapper aggregates all values in a list

• Reducer aggregates all values in a list

• Reducer then determines median of the list

• Can easily run into memory problems

Summarization
• Median calculation:

• Can compress lists by using counts

• becomes

• Combiner creates compressed lists

• Reducer code directly calculates median

• An instance where combiner and reducer use
different code

2, 3, 3, 3, 2, 4, 5, 2, 1, 2

(1,1), (2,4), (3,3), (4,1) (5,1)

Summarization
• Standard Deviation

• Square-root of variance

• Variance — Average square deviation from average

•

• Leads to a two pass solution, calculate average first

σ =
1
N

N

∑
i=1

(xi − x̄)2

Summarization
• Standard Deviation

• Numerically dangerous one-path solution

• σ2
x =

1
N

N

∑
i=1

(xi − x̄)2

=
1
N

N

∑
i=1

(x2
i − 2x̄xi + x̄2)

=
1
N

N

∑
i=1

x2
i − 2x̄

1
N

N

∑
i=1

xi + x̄2

=
1
N

N

∑
i=1

x2
i − 2x̄2 + x̄2 =

1
N

N

∑
i=1

x2
i + x̄2

Summarization
• Chan’s adaptation of Welford’s online algorithm

• Using the counts of elements, can calculate the
variance in parallel from any number of partitions

• Unfortunately, can still be numerically instable

def parallel_variance(avg_a, count_a, var_a, avg_b, count_b, var_b):
 delta = avg_b - avg_a
 m_a = var_a * (count_a - 1)
 m_b = var_b * (count_b - 1)
 M2 = m_a + m_b + delta ** 2 * count_a * count_b / (count_a + count_b)
 return M2 / (count_a + count_b - 1)

Summarization
• Standard Deviation:

• Schubert & Gertz: Numerically Stable Parallel
Computation of (Co)-Variance

• SSDBM '18 Proceedings of the 30th International
Conference on Scientific and Statistical Database
Management

Summarization
• Inverted Index

• Analyze each comment in StackOverflow to find
hyperlinks to Wikipedia

• Create an index of wikipedia pages pointing to
StackOverflow comments that link to them

Summarization
• Inverted Index is a group-by problem solved almost

entirely in the map-reduce framework

Summarization /
Inverted Index

• Mapper

• Parser:

• Processes posts

• Checks for right type of post, extracts a list of wikipedia urls
(or Null if there are none)

• Outputs key-value pairs :

• Keys: wikipedia url

• Value: row-ID of post

• Optional combiner:

• Aggregates values for a wikipedia url in a single list

Summarization /
Inverted Index

• Reducer

• Aggregates values belonging to the same key in a list

Summarization /
Inverted Index

• Generic Inverted Index diagram

mapper

Reducer

mapper

mapper

mapper
mapper

mapper

mapper

mapper

Reducer

Reducer

keyword: id
keyword: id

keyword: id
keyword: id
keyword: id
keyword: id

keyword: id

keyword: id
keyword: id

keyword: id

keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id

keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id

keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id

client

Counter Pattern
• Used to gather stats on an Hadoop job

• Create various counters (but not too many)

• Counters work exclusively in the Map-Reduce
Paradigm

Counter Pattern
Mapper

(Counting)

Mapper

(Counting)

Mapper

(Counting)

Increment
Counter E

Increment
Counter B

Increment
Counter A

Increment
Counter D

Increment
Counter C

Increment
Counter D

Increment
Counter A

Task Tracker

Task Tracker

Task Tracker

Job Tracker
Counter A
Counter B
Counter C
Counter D

Counter Pattern
• Mapper processes each input

• Increments counter for each record

• Counters are aggregated by Task Trackers

• Task Trackers report counts to Job Tracker

• Job Tracker aggregates counts (unless task tracker failed)

Counter Pattern
public static class CountNrUsersByState extends Mapper<Object,
Text, NullWritable, Null Writable> {

public void map(Object key, Text value, Context context)
throws IOException, Interrupted Exception {
Map<String, String> parsed =
MRDPUtils.transformXmlToMap(value.toString())

String location = parsed.get(“Location”);
if location !=null && !location.isEmpty()) {
 if (states.contains(state)) {
 context.getCounter(STATE_COUNTER_GROUP, state).increment(1);
 break;
 }
…
}

Counter Pattern
• To get the counts, just

int code = job.waitForCompletion(true)? 0 : 1;
if(code == 0){
 for (Counter counter : job.getCounters().getGroup(
 CountNumUsersByStateMapper.STATECOUNTERGROUP)){
 System.out.println(counter.getDisplayName() +
 “t” + counter.getValue());
 }
}

Filtering Patterns
• Extract data from records without changing them

• Sampling:

• get a few random records

• get records with very high or low values in a field

Filtering Patterns
• Simple filtering:

• User defined function or condition is a boolean

• Decides whether record is to be kept or not

• Very generic pattern

map(key, record):
 if(user_condition(record){
 emit key, value

Filtering Patterns
• Simple Filtering

Input
Split

Input
Split

Input
Split

Input
Split

Output
Split

Output
Split

Output
Split

Output
SplitFilter Mapper

Filter Mapper

Filter Mapper

Filter Mapper

Filtering Patterns
• Simple Filtering

• There is no “reduce” operation because there is no
aggregation

• If output splits are saved, they can serve as new inputs

Filtering Patterns
• Simple Filtering in Pig

• Uses the FILTER keyword

• b = FILTER a BY value < 3

Filtering Patterns
• Because there are no reducers

• Data never has to be transmitted

• There is no sort phase and no reduce phase

Filtering Patterns
• Filtering pattern:

• Grep: filtering for a regular expression

Filtering Patterns
• Getting a random sample

• Simple random sampling (SRS)

• Grab a random subset of data

• Can get filter_percentage property:

• context.getConfiguration().get(“filter_
percentage”)

• Mapper writes objects with a given probability

• There neither combiner nor reducer

Excurse: Bloom Filters
• Bloom filters (1970 Burton Howard Bloom)

• Use to test membership in a set

• Idea:

• A data structure that can quickly decide whether an
element does not belong to a large set

• And probabilistically whether an element is present

• With a low probability of error

Excurse: Bloom Filters
• Idea: A bloom filter is a large bit array

• (How large: Deduplication proposes sizes of several
GB)

• Uses a good hash function

• For each element in the set:

• Calculate

• Change the resulting bits in the bit array
h(ele,0) h(ele,1) h(ele,2)

Excurse: Bloom Filters
• To test for the presence of in the set

• Calculate

• Check whether the corresponding bits are set.

• Bits are set, but

• Then bits were set by other elements.

• If and there are elements in the
bit array, this happens with probability

x
h(x,0) h(x,1) h(x,2)

S

x ∉ S

|S | = n N

(1 − (1 −
1
N

)3n)3 ≈ (1 − exp(
−3n

N
))3

Excurse: Bloom Filters

0.0002 0.0004 0.0006 0.0008 0.0010
Error Prob

20

40

60

80
Multiplicator

Number of bits = number of set elements times multiplicator

needed to achieve a certain error probability with 3 and 4 hashes

Filtering Patterns
• Bloom Filtering pattern:

• Need to accept a few false positives

• Creating Bloom Filter

• Using Bloom Filter

Filtering Patterns
• Mappers create local bloom filter

• Reducer combines them

Input
Split Local Bloom Filter

map

Input
Split Local Bloom Filter

map

Input
Split Local Bloom Filter

map

Input
Split Local Bloom Filter

map

.

.

.

Global Bloom Filter

Reducer

Filtering Patterns
• Could use more than one reducer by breaking up local

bloom filter into ranges

Input
Split Local Bloom Filter

map

Input
Split Local Bloom Filter

map

Input
Split Local Bloom Filter

map

Input
Split Local Bloom Filter

map

.

.

.

Global Bloom Filter

Reducer

Filtering Patterns
• Bloom Filtering

Distributed Cache

Input
Split

global Bloom Filter

Bloom
Filter
Test

output File

Input
Split

Bloom
Filter
Test

output File

Input
Split

Bloom
Filter
Test

output File

Filtering Patterns
• Bloom Filtering is used for

• Removing (almost all of) unwatched items

• Prefiltering data

• Pig: Need to implement Bloom filtering as user-defined
functions

Filtering Patterns
• Top-ten

• Retrieve the records that have the k largest values in a
certain attribute

• Group Exercise

Filtering Patterns
• A set of distinct records

• Example: Web page log

• Want to have records where user-name, device, or
browser are different, but we don’t care about time
stamps

Filtering Patterns
• Unique records:

• Use the map-reduce grouping properties

• Mapper group by the attributes we are interested in

• Combiners emit one value for each group

• Reducer only emits one value for each group

map(key, record):
 emit record, null

reduce(key, records):
 emit key

Filtering Patterns
• Unique records

• Pig:

b = distinct a;

Data Organization Patterns
• Problem:

• Transform data to a different format

• Row-based data to hierarchical format such as
JSON or XML

Data Organization Patterns
• Example

• StackOverflow data

• Posts and comments are separated

• Lines in an XML document

• Hierarchy combines posts and
comments

• Hierarchical data model allows us to
correlate length of posts with number
of comments, etc.

Posts
Post

Comment
Comment

Post
Post

Comment
Comment
Comment

Data Organization Patterns
• Often, the data to be combined comes from different data

sets

• Hadoop class MultipleInputs from
org.apache.hadoop.mapreduce.lib.input

• Allows to specify different input paths and different
mappers for each input

• Configuration is done in the driver

Data Organization Patterns
• Multiple sources to hierarchical Pattern

• Mappers load data and parse it into a cohesive format

• Output key corresponds to root of hierarchical record

• E.g. StackOverflow: root is post_id

• Need to identify the source for each mapper output

• E.g. StackOverflow: is this a post or a comment

• Combiners are pretty useless because we create large
strings

Data Organization Patterns
• Multiple sources to hierarchical Pattern

• Reducers receive data from different sources key by
key

• For each key, can now build hierarchical data structure

Data Organization Patterns
• Multiple sources to hierarchical Pattern

• Result is in hierarchical form

• Probably need to add header and footer so that it is
well-formed

Data Organization Patterns

Input
Split

Input
Split

Input
Split

Input
Split

Input
Split

Data Set A

Data Set B

Data Set A
Mapper

Data Set A
Mapper

Data Set A
Mapper

S
H
U
F
F
L
E

&

S
O
R
TData Set B

Mapper

Data Set B
Mapper

(post ID, post data)

(Parent ID, child data)

Hierarchy
Reducer

Hierarchy
Reducer

Output
Part

Output
Part

Data Organization Patterns
• Multiple sources to Hierarchical Pattern

• Performance problems

• Need enough reducers

• Reducers might see a lot of skew:

• Some are busy, others are not

• Hot spots can result in humongous strings moved
between mappers and reducers

• Could take up the heap of a Java Virtual Machine

Data Organization Patterns
• Needs two mappers: one for comments, one for posts

• Both: extract post-id to use as output key

• Append “P” or “C” to distinguish between sources

Data Organization Patterns
• Reducer:

• Reducers receive post-id + marker as key and text as
value

• For each post-id with “P” marker:

• Create a post entry in the XML

• For each post-id with “C” marker:

• Create child

Data Organization Patterns
• Partitioning

• Moves records into shards, but does not care about
ordering

• Example: partitioning by date

• Need to know number of partitions ahead of time

Data Organization Patterns
• Partitioning: Let the partitioner do the job

Input
Split

Input
Split

Input
Split

Input
Split

Input
Split

Identity
Mapper

Identity
Mapper

Identity
Mapper

Identity
Mapper

Identity
Mapper

Shuffle
&

Sort

Identity
Reducer

Identity
Reducer

Identity
Reducer

Output
Split

Output
Split

Output
Split

Data Organization Patterns
• Binning:

• Moves records into categories irrespective of order

• Related to partitioning

• Which one works better depends on the system

• Binners do not use reducers

Data Organization Patterns
• Binning

• Number of outputs =
Number of mappers
times Number of bins

Input
Split

Binning
Mapper

Bin A

Bin B

Bin C

Input
Split

Binning
Mapper

Bin A

Bin B

Bin C

Input
Split

Binning
Mapper

Bin A

Bin B

Bin C

Data Organization Patterns
• Binning:

• Pig

• Split data INTO eights IF col1==8, bigs IF col1>8,
smalls IF col1<8;

Data Organization Patterns
• Total Order Sorting

• Data needs to be sorted by a given comparator

• Result is a set of shards that are ordered

• Need to know the distribution of data first

• Run an analyze phase first

Data Organization Patterns
• Total order sorting:

• Analyze phase

• Mapper does random sampling

• Only outputs the key after which we sort

• Use only one reducer which will give us the sort keys
in order

Data Organization Patterns
• Total order sorting:

• Order phase

• Mapper extracts the sort key and stores the record as a value

• Custom partitioner is loaded based on the results of the
analysis phase

• TotalOrderPartitioner in Hadoop

• Takes the data ranges prescribed and uses them to
partition

• Reducer simply outputs the values

• Shuffle and sort has already done all the work

Data Organization Patterns
• Total Ordering in Pig

• c = order b by col1;

Data Organization Patterns
• Shuffling

• Randomizes the order of a set of records

Data Organization Patterns
• Shuffling

• Mapper maintains the records, but creates a random
key

• Reducer sort according to random keys

• Only record is printed out

Data Organization Patterns
• Shuffling

• Pig:

• c = Group b by Random();

• d = FOREACH c generate Flatten(c);

Join Patterns
• Join Pattern

• Different cases

• Simplest Case: Join with a small table

• Send small table to all mappers

• Mappers calculate local join

• Reducers

Join Patterns
Input
Split

A

Input
Split

A

Input
Split

A

Input
Split

A

Small
Table

B

Input
Split

A

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Distributed
Cache

Output
Part

Output
Part

Output
Part

Output
Part

Output
Part

Join Patterns
• Pig allows you to give hints for joins

huge = LOAD ‘huge.txt’ AS (h1,h2);
smallest = LOAD ‘smallest.txt’ AS (ss1, ss2);
small = LOAD ‘small.txt’ AS (s1,s2);
A = JOIN huge BY h1, small BY s1, smallest BY ss1 USING
‘replicated’;

Join Patterns
• Reduce Side Join

• Join large multiple data sets together by some foreign key

• Structure:

• Mapper goes through all records in both data sets

• Mapper creates pairs

• foreign key —> source, rest of record

• source is the name of the table

• Can use hash partitioner or a customized partitioner

• Reducer combines values of each input group into two lists

Join
Mapper

Data Set A
input
split

input
split

input
split

input
split

input
split

input
split

Data Set B
input
split

input
split

input
split

input
split

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Shuffle
&

Sort
bob->A,record

bob->B,record

Join
Reducer

Join
Reducer

Join
Reducer

Join
Reducer

output
part

output
part

output
part

output
part

bob->A,record
bob->B,record bob, A.record, B.record

Join Patterns
• The reducer is given within the input group all records

with a foreign key

• This allows the reducer to create many types of joins
based on equality

Join Patterns
• Inner join:

• Records from Table A and Table B are joined if they
share the same foreign key

foreign key attribute 1 attribute 2
Table A

foreign key attribute 1 attribute 2 attribute 3
Table B

Inner Join

Join Patterns
• Outer Join

• If the foreign key is not present in one table than the
lacking values are made into Null values

foreign key attribute 1 attribute 2
Table A

foreign key attribute 1 attribute 2 attribute 3
Table B

Outer Join
NULL NULLNULL

NULL

Join Patterns
• Optimization with Bloom Filters

• If we calculate an inner join with map-reduce, a mapper
does not have to create a key-value pair if the foreign
key value is not present in the other table

foreign key attribute 1 attribute 2
Table A

foreign key attribute 1 attribute 2 attribute 3
Table B

value

NULL value not present

Join Patterns
• Create a Bloom Filter for both sets (or for only one)

• Put Bloom filter in distributed cache or send it to all
mappers for the other table

• Then only send records to the reducer when we know that
the foreign key value is also present in the other table

Join
Mapper

Data Set A
input
split

input
split

input
split

input
split

input
split

input
split

Data Set B
input
split

input
split

input
split

input
split

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Join
Mapper

Shuffle
&

Sort
bob->A,record

bob->B,record

Join
Reducer

Join
Reducer

Join
Reducer

Join
Reducer

output
part

output
part

output
part

output
part

bob->A,record
bob->B,record bob, A.record, B.record

Bloom Filter
for foreign
key values
of Table B

Join Patterns
• Bloom filter does not need to be very good to be efficient

• Bloom filter does not have false negatives, only false
positives

• Bloom filter needs to be created before it can be used,
making this into a two phase job

Join Patterns
• Composite Join

• Supported by Hadoop: CompositeInputFormat

• Idea:

• Preprocess all table contents to create input shards
that are sorted and partitioned by foreign key.

• This is somewhat similar to the idea of the hash-join

• Two-phase job again

Join Patterns
• Create hash

buckets for
records based on
foreign keys

• Buckets are
sorted

Data Set A
Foreign Keys

Data Set B
Foreign Keys

hash(fk)%5 = 0 Adam
Adam
James
Xavier

Adam
Xavier
Zazie

hash(fk)%5 = 1 Brenda
Carl

Brenda
Brenda

Carl
Oscar

hash(fk)%5 = 2

hash(fk)%5 = 3

hash(fk)%5 = 4

Jorge
Fritz
Karl

Jorge
Jorge

Aaron
Aaron
Gilbert

Gilbert
Gilbert
Gilbert

Dennis
Dennis
Frodo

Dennis
Frodo
Frodo
Frodo

Join Patterns
• Send all buckets in

the hash to the
same mapper

• Mappers then
combine

• There are no
reducers involved

Data Set A
Foreign Keys

Data Set B
Foreign Keys

hash(fk)%5 = 0 Adam
Adam
James
Xavier

Adam
Xavier
Zazie

hash(fk)%5 = 1 Brenda
Carl

Brenda
Brenda

Carl
Oscar

hash(fk)%5 = 2

hash(fk)%5 = 3

hash(fk)%5 = 4

Jorge
Fritz
Karl

Jorge
Jorge

Aaron
Aaron
Gilbert

Gilbert
Gilbert
Gilbert

Dennis
Dennis
Frodo

Dennis
Frodo
Frodo
Frodo

Mapper

Mapper

Mapper

Mapper

Mapper

Adam
Adam
Xavier

output parts:

Brenda
Brenda

Carl

Jorge
Jorge

Gilbert
Gilbert

Dennis
Dennis
Frodo
Frodo
Frodo

Join Patterns
• Composite Join Performance

• Most of the work in the creation of the Composite Join
Splits

Join Patterns
• Cartesian Product

• Cartesian product combines all values in one table with all
values in one other table

• Easily create gigantic results

• With huge execution times

• Uses essentially the composite join pattern

• Each mapper receives an input split from Table A and an
input split from Table B

• If we break Table A into n pieces and Table B into m
pieces, then we need n x m mappers

Data Set A
Foreign Keys

Data Set B
Foreign Keys

hash(fk1)%2= 0
hash(fk2)%2 = 0 Split

A-1
Split
B-1

Split
A-1

Split
B-2

Split
A-2

Split
B-1

Split
A-2

Split
B-2

Mapper

Mapper

Mapper

Mapper

cartesian
join

output parts:

cartesian
join

hash(fk1)%2= 0
hash(fk2)%2 = 1

hash(fk1)%2= 1
hash(fk2)%2 = 0

hash(fk1)%2= 1
hash(fk2)%2 = 1

cartesian
join

cartesian
join

Meta Patterns
• Job Chaining

• Run two or more map-reduce jobs

• Output of the first is input to the second
Input
Shard

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

Shuffle
&

Order

Reducer

Reducer

Reducer

Reducer

Reducer

Reducer

Reducer

Reducer

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Input
Shard

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

Input
Shard

Input
Shard

Mapper

Mapper

Shuffle
&

Order

Reducer

Reducer

Reducer

Reducer

Meta Patterns
• Map-Reduce framework is not very good at this

• Special frameworks exist

• Oozie —Apache Project Workflow Engine

• Java web application

• Workflow - collection of actions

• Map-reduce jobs, Pig jobs arranged in a DAG

• Uses XML-based Hadoop Process Definition
Language for workflow specifications

• Oozie coordinates jobs

Meta Patterns
• Doing it yourself

• Using Java

• Map-reduce drivers are simple Java classes

• Take the drivers of the individual Map-reduce jobs and
call them in sequence

• Output and input paths need to match

• Use Job.Submit(), JobisComplete(), and
Job.waitForCompletion()

Meta Patterns
• Doing it yourself

• Scripting

• Using JobControl

Chain Folding
• Opportunities for optimization

• Mappers work in isolation

• A record can be submitted to multiple mappers or to a
reducer-mapper combination

• Avoids transfer of files

Chain Folding
• Chain folding patterns

• Multiple mapping phases are adjacent

• Fold them into single mappers

• If a job ends with a map phase

• Push into the preceding reducer phase

• Split mappers that reduce data and mappers that
increase data

• Filter data as early as possible

Job Merging
• If two unrelated map-reduce jobs use the same input set

• Can combine the mappers and reducers

• Data is loaded and parsed now only once

