
Map Reduce



History
• A simple paradigm that popped up several times as paradigm


• Observed by google as a software pattern:


• Data gets filtered locally and filtered data is then 
reassembled elsewhere


• Software pattern:  Many engineers are re-engineering the 
same steps


• Map-reduce:  


• Engineer the common steps efficiently


• Individual problems only need to be engineered for what 
makes them different



History
• Open source project (in part sponsored by Yahoo!)


• Java-based Hadoop


• Eventually a first tier Apache Foundation project


• Other projects at higher level:  Pig, Hive, HBase, Mahout, 
Zookeeper


• Use Hadoop as foundation


• Hadoop is becoming a distributed OS



Map Reduce Paradigm
• Input:  Large amount of data spread over many different 

nodes


• Output:  A single file of results


• Two important phases:


• Mapper:  Records are processed into key-value pairs. 
Mapper sends key-value pairs to reducers


• Reducer:  Create final answer from mapper



Simple Example
• Hadoop Word Count


• Given different documents on many different sites


• Mapper:


• Extract words from record


• Combines words and generates key-value pairs of type word: 
key


• Sends to the reducers based on hash of key


• Reducer:


• Receives key-value pairs 


• Adds values for each key


• Sends accumulated results to aggregator - client
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Map-reduce paradigm in 
detail

• The simple mapper-reducer paradigm can be expanded 
into several, typical components



Map Reduce in Detail
• Mapper:


• Record Reader 

• Parses the data into records


• Example:  Stackoverflow comments.  

• <row Id="5" PostId="5" Score="2" Text="Programming in 

Portland, cooking in Chippewa ; it makes sense that these 
would be unlocalized. But does bicycling.se need to follow 
only that path? I agree that route a to b in city x is not 
a good use of this site; but general resources would be." 
CreationDate="2010-08-25T21:21:03.233" UserId="21" /> 

• Record reader extract the “Text=” string


• Passes record into a key-value format to rest of mapper 



Map Reduce in Detail
• Mapper 

•map 
• Produces “intermediate” key-value pairs from the record


• Example:

• "Programming in Portland, cooking in Chippewa ; it 

makes sense that these would be unlocalized. But does 
bicycling.se need to follow only that path? I agree 
that route a to b in city x is not a good use of this 
site; but general resources would be.” 

• Map produces:  <programming: 1>  <in: 1> 
<Portland: 1> <cooking: 1> <in: 1> …



Map Reduce in Detail
• Mapper


• Combiner  — a local reducer


• Takes key-value pairs and processes them


• Example:


• Map produces:  <programming: 1>  <in: 1> 
<Portland: 1> <cooking: 1> <in: 1> …


• Combiner combines words:  <programming: 1> 
<in: 4> <Portland:  3> …



Map Reduce in Detail
• Combiners allow us to reduce network traffic 


• By compacting the same information



Map Reduce in Detail
• Mapper 

• Partitioner


• Partitioner creates shards of the key-value pairs 
produced


• One for each reducer


• Often uses a hash function or a range


• Example:


• md5(key) mod (#reducers)



Map Reduce in Detail
• Reducer 

• Shuffle and Sort


• Part of the map-reduce framework 

• Incoming key-value pairs are sorted by key into one 
large data list


• Groups keys together for easy agglomeration


• Programmer can specify the comparator, but nothing 
else



Map Reduce in Detail
• Reducer


•reduce 

• Written by programmer


• Works on each key group


• Data can be combined, filtered, aggregated


• Output is prepared 



Map Reduce in Detail
• Reducer 

• Output format


• Formats final key-value pair 



Inverted Index Pattern
• Task: Create an inverted index for a large set of 

documents


• Desired output:


• A database that gives all documents (as URL) where a 
certain word appears.



Inverted Index Pattern
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Inverted Index Pattern
• Mapper Code:


• Input: A wikipedia article


• Procedure: 


• Create a bag of words, stem words, decide whether 
words are proper names or non-frequent words 


• Output: Create a list of key-value pairs:


• Keys: important words or proper names


• Value: URL of article 



Inverted Index Pattern
• Combiner Optimization:


• Weed out duplicate results



Inverted Index Pattern
• Reducer:


• Input: A list of ordered key value pairs


• <word, URL>


• Output: Agglomerate to:


• <word, list of URLs> 



Shuffle and Sort
• Each reduce job gets sorted input


• System part that sorts input and transfers to outputs of 
mappers to reducers is shuffle



Shuffle and Sort
• Map side


• Output is not simply written to disk


• For better performance:


• Output is put into buffers


• Buffers are partitioned and sorted when flushed to disk 
as spill files 


• When mapper finishes:


• Spill files are combined


• Output is made available to reducers using HDFS



Shuffle and Sort
• Reduce side:


• Reducers start copying mapper output as soon as they 
are available (copy phase)


• If mapper outputs at reducer reach critical size, they 
are placed into spill files on disk


• Spill files are sorted and combined in batches — 
typically 10 spill files


• Final combination feeds directly to reducer



Map Reduce Patterns
• Summarizations


• Input:  A large data set that can be grouped according 
to various criteria


• Output:  A numerical summary


• Example:


• Calculate minimum, maximum, total of certain fields 
in documents in xml format ordered by user-id



Summarization
• Example:


• Given a database in xml-document format


• Determine the earliest, latest, and number of posts for 
each user

<row Id="193" PostTypeId="1" AcceptedAnswerId="194" 
CreationDate="2010-10-23T20:08:39.740" Score="3" ViewCount="30" 
Body="&lt;p&gt;Do you lose one point of reputation when you 
down vote community wiki?  Meta? &lt;/p&gt;&#xA;&#xA;&lt;p&gt;I 
know that you do for &quot;regular questions&quot;. &lt;/
p&gt;&#xA;" OwnerUserId="134" 
LastActivityDate="2010-10-24T05:41:48.760" Title="Do you lose 
one point of reputation when you down vote community wiki? 
Meta?" Tags="&lt;discussion&gt;" AnswerCount="1" 
CommentCount="0" />



Summarization
• Mapper: 


• Step 1: Preprocess document by extracting the user ID 
and the date of the post


• Step 2:  map: 


• User ID becomes the key.


• Value stores the date twice in Java-date format and 
adds a long value of 1

“134”:  (2010-10-23T20:08:39.740, 2010-10-23T20:08:39.740, 1)



Summarization
• Mapper:


• Step 3: Combiner


• Take intermediate User-ID — value pairs


• Combine the value pairs


• Combination of two values:


• first item is minimum of the dates


• second item is maximum of the dates


• third item is sum of third items 



Summarization
• The map reduce framework is given the number of 

reducers


• Autonomously maps combiner results to reducers


• Each reducer gets key-value parts for a range of user-
IDs grouped by user-ID



Summarization
• Reducer:


• Passes through each group combining key-value pairs


• End-result:


• Key-value pair with key = user-id


• Value is a triple with 


• minimum posting date


• maximum posting date


• number of posts



Summarization
• Reducer:


• Each summary key— value pair is sent to client



Summarization
• Example (cont.)

UserID  12345 01.02.2010 01.02.2010 1

UserID  12345 02.02.2010 02.02.2010 1

UserID  12345 04.02.2010 04.02.2010 1

UserID 98765 12.02.2010 12.02.2010 1

UserID  98765 02.02.2010 02.02.2010 1

UserID  98765 05.02.2010 05.02.2010 1

UserID  56565 02.02.2010 02.02.2010 1

UserID  56565 03.02.2010 03.02.2010 1

UserID  12345 02.02.2010 02.02.2010 1

UserID  12345 04.02.2010 04.02.2010 1

UserID 77444 12.02.2010 12.02.2010 1

UserID  77444 02.02.2010 02.02.2010 1

UserID  98765 05.02.2010 05.02.2010 1

Mapper 1

Mapper 2

 Combiner

 Combiner

UserID  12345 01.02.2010 04.02.2010 3

UserID  98765 02.02.2010 12.02.2010 3

UserID  56565 02.02.2010 03.02.2010 2

UserID  12345 02.02.2010 04.02.2010 2

UserID 77444 02.02.2010 12.02.2010 2

UserID  98765 05.02.2010 05.02.2010 1



Summarization
• Example (cont.)  Automatic Shuffle and Sort


• Records with the same key are sent to the same 
reducer

Reducer 1

Reducer 2

Reducer 3

Mapper 1

Mapper 2

Mapper 3

Mapper 4

Mapper 123

UserID  
12345

01.02.
2010

04.02.
2010 3

UserID  
12345

02.02.
2010

04.02.
2010 2



Summarization
• Example (cont.)


• Reducer receives records already ordered by user-ID


• Combines records with same key

UserID  12345 01.02.2010 04.02.2010 3

UserID  12345 02.02.2010 04.02.2010 2

UserID  12345 26.03.2010 30.04.2010 5

UserID  12345 19.01.2010 01.04.2010 3

UserID  16542 02.02.2010 04.02.2010 6

UserID  16542 26.03.2010 29.05.2010 5

UserID  16542 19.01.2010 19.01.2010 1

UserID  12345 01.02.2010 30.02.2010 13

UserID  16542 19.01.2010 29.05.2010 12



Summarization
• In (pseudo-)pig:


• Load data

posts = LOAD '/stackexchange/posts.tsv.gz' 
USING PigStorage('\t') AS ( 
post_id : long, 
user_id : int, 
text : chararray, 
… 
post : date 
)



Summarization
• In (pseudo-)pig:


• Group by user-id


• Obtain min, max, count:

post_group = GROUP posts BY user_id;

result = FOREACH post_group GENERATE group, 
MIN(posts.date), MAX(posts.date),  
COUNT_STAR(post_group)



Summarization
• In (pseudo-)pig:


• Load data

orders = LOAD ‘/stackexchange/posts.tsv.gz' 
USING PigStorage('\t') AS ( 
post_id : long, 
user_id : int, 
text : chararray, 
… 
post : date 
)



Summarization
• Your turn:


• Calculate the average score per user


• The score is kept in the “score”-field



Summarization
• Solution:


• Need to aggregate sum of score and number of posts


• Mapper:  for each user-id, create a record with score


• Combiner adds scores and counts


• Reducer combines as well


• Generates output key-value pair and sends it to the user


•

userid: score, 1

userid: sum_score, count

userid: sum_score/count  



Summarization
• Finding the median of a numerical variable


• Mapper aggregates all values in a list


• Reducer aggregates all values in a list


• Reducer then determines median of the list


• Can easily run into memory problems



Summarization
• Median calculation:


• Can compress lists by using counts


•                                                         becomes


• Combiner creates compressed lists


• Reducer code directly calculates median


• An instance where combiner and reducer use 
different code

2, 3, 3, 3, 2, 4, 5, 2, 1, 2

(1,1), (2,4), (3,3), (4,1) (5,1)



Summarization
• Standard Deviation


• Square-root of variance 


• Variance — Average square deviation from average


•   


• Leads to a two pass solution, calculate average first

σ =
1
N

N

∑
i=1

(xi − x̄)2



Summarization
• Standard Deviation


• Numerically dangerous one-path solution


• σ2
x =

1
N

N

∑
i=1

(xi − x̄)2

=
1
N

N

∑
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(x2
i − 2x̄xi + x̄2)

=
1
N
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i=1

x2
i − 2x̄

1
N
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1
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Summarization
• Chan’s adaptation of Welford’s online algorithm


• Using the counts of elements, can calculate the 
variance in parallel from any number of partitions


• Unfortunately, can still be numerically instable

def parallel_variance(avg_a, count_a, var_a, avg_b, count_b, var_b):
    delta = avg_b - avg_a
    m_a = var_a * (count_a - 1)
    m_b = var_b * (count_b - 1)
    M2 = m_a + m_b + delta ** 2 * count_a * count_b / (count_a + count_b)
    return M2 / (count_a + count_b - 1)



Summarization
• Standard Deviation:


• Schubert & Gertz: Numerically Stable Parallel 
Computation of (Co)-Variance


• SSDBM '18 Proceedings of the 30th International 
Conference on Scientific and Statistical Database 
Management



Summarization
• Inverted Index


• Analyze each comment in StackOverflow to find 
hyperlinks to Wikipedia


• Create an index of wikipedia pages pointing to 
StackOverflow comments that link to them



Summarization
• Inverted Index is a group-by problem solved almost 

entirely in the map-reduce framework



Summarization /  
Inverted Index

• Mapper 

• Parser:


• Processes posts


• Checks for right type of post, extracts a list of wikipedia urls 
(or Null if there are none)


• Outputs key-value pairs :


• Keys: wikipedia url


• Value: row-ID of post


• Optional combiner:


• Aggregates values for a wikipedia url in a single list



Summarization /  
Inverted Index

• Reducer 

• Aggregates values belonging to the same key in a list



Summarization /  
Inverted Index

• Generic Inverted Index diagram

mapper

Reducer

mapper

mapper

mapper
mapper

mapper

mapper

mapper

Reducer

Reducer

keyword: id
keyword: id

keyword: id
keyword: id
keyword: id
keyword: id

keyword: id

keyword: id
keyword: id

keyword: id

keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id

keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id

keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id
keyword: list of id

client



Counter Pattern
• Used to gather stats on an Hadoop job


• Create various counters (but not too many)


• Counters work exclusively in the Map-Reduce 
Paradigm



Counter Pattern
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Counter Pattern
• Mapper processes each input


• Increments counter for each record


• Counters are aggregated by Task Trackers


• Task Trackers report counts to Job Tracker


• Job Tracker aggregates counts (unless task tracker failed)



Counter Pattern
public static class CountNrUsersByState extends Mapper<Object, 
Text, NullWritable, Null Writable> { 

public void map(Object key, Text value, Context context)                      
throws IOException, Interrupted Exception { 
Map<String, String> parsed = 
MRDPUtils.transformXmlToMap(value.toString()) 

String location = parsed.get(“Location”); 
if location !=null && !location.isEmpty()) { 
  if (states.contains(state)) { 
     context.getCounter(STATE_COUNTER_GROUP, state).increment(1); 
     break; 
  } 
… 
} 



Counter Pattern
• To get the counts, just 

int code = job.waitForCompletion(true)? 0 : 1; 
if(code == 0){ 
   for (Counter counter : job.getCounters().getGroup(      
        CountNumUsersByStateMapper.STATECOUNTERGROUP)){ 
       System.out.println(counter.getDisplayName() +  
           “t” + counter.getValue());    
   } 
}



Filtering Patterns
• Extract data from records without changing them


• Sampling:  


• get a few random records


• get records with very high or low values in a field 



Filtering Patterns
• Simple filtering:


• User defined function or condition is a boolean 


• Decides whether record is to be kept or not


• Very generic pattern


map(key, record): 
    if(user_condition(record){ 
         emit key, value



Filtering Patterns
• Simple Filtering

Input
Split

Input
Split

Input
Split

Input
Split

Output
Split

Output
Split

Output
Split

Output
SplitFilter Mapper

Filter Mapper

Filter Mapper

Filter Mapper



Filtering Patterns
• Simple Filtering


• There is no “reduce” operation because there is no 
aggregation


• If output splits are saved, they can serve as new inputs



Filtering Patterns
• Simple Filtering in Pig


• Uses the FILTER keyword


• b = FILTER a BY value < 3



Filtering Patterns
• Because there are no reducers


• Data never has to be transmitted


• There is no sort phase and no reduce phase



Filtering Patterns
• Filtering pattern:


• Grep: filtering for a regular expression



Filtering Patterns
• Getting a random sample


• Simple random sampling (SRS)


• Grab a random subset of data


• Can get filter_percentage property:


• context.getConfiguration().get(“filter_
percentage”) 

• Mapper writes objects with a given probability


• There neither combiner nor reducer



Excurse: Bloom Filters
• Bloom filters (1970 Burton Howard Bloom)


• Use to test membership in a set


• Idea:  


• A data structure that can quickly decide whether an 
element does not belong to a large set


• And probabilistically whether an element is present


• With a low probability of error



Excurse: Bloom Filters
• Idea:  A bloom filter is a large bit array


• (How large: Deduplication proposes sizes of several 
GB)


• Uses a good hash function 


• For each element in the set:


• Calculate


• Change the resulting bits in the bit array  
h( ele,0) h( ele,1) h( ele,2)



Excurse: Bloom Filters
• To test for the presence of       in the set


• Calculate


• Check whether the corresponding bits are set.


• Bits are set, but    


• Then bits were set by other elements. 


• If                     and there are        elements in the 
bit array, this happens with probability

x
h(x,0) h(x,1) h(x,2)

S

x ∉ S

|S | = n N

(1 − (1 −
1
N

)3n)3 ≈ (1 − exp(
−3n

N
))3



Excurse: Bloom Filters

0.0002 0.0004 0.0006 0.0008 0.0010
Error Prob

20

40

60

80
Multiplicator

Number of bits = number of set elements times multiplicator 

needed to achieve a certain error probability with 3 and 4 hashes



Filtering Patterns
• Bloom Filtering pattern:


• Need to accept a few false positives


• Creating Bloom Filter


• Using Bloom Filter



Filtering Patterns
• Mappers create local bloom filter


• Reducer combines them

Input 
Split Local Bloom Filter

map

Input 
Split Local Bloom Filter

map

Input 
Split Local Bloom Filter

map

Input 
Split Local Bloom Filter

map

.

.

.

Global Bloom Filter

Reducer



Filtering Patterns
• Could use more than one reducer by breaking up local 

bloom filter into ranges

Input 
Split Local Bloom Filter

map

Input 
Split Local Bloom Filter

map

Input 
Split Local Bloom Filter

map

Input 
Split Local Bloom Filter

map

.

.

.

Global Bloom Filter

Reducer



Filtering Patterns
• Bloom Filtering

Distributed Cache

Input 
Split

global Bloom Filter

Bloom 
Filter 
Test

output File

Input 
Split

Bloom 
Filter 
Test

output File

Input 
Split

Bloom 
Filter 
Test

output File



Filtering Patterns
• Bloom Filtering is used for 


• Removing (almost all of) unwatched items


• Prefiltering data 


• Pig:  Need to implement Bloom filtering as user-defined 
functions



Filtering Patterns
• Top-ten


• Retrieve the records that have the k largest values in a 
certain attribute


• Group Exercise



Filtering Patterns
• A set of distinct records


• Example: Web page log


• Want to have records where user-name, device, or 
browser are different, but we don’t care about time 
stamps



Filtering Patterns
• Unique records:


• Use the map-reduce grouping properties


• Mapper group by the attributes we are interested in


• Combiners emit one value for each group


• Reducer only emits one value for each group

map(key, record): 
      emit record, null

reduce(key, records): 
      emit key



Filtering Patterns
• Unique records


• Pig:

b = distinct a;



Data Organization Patterns
• Problem:


• Transform data to a different format


• Row-based data to hierarchical format such as 
JSON or XML



Data Organization Patterns
• Example


• StackOverflow data 


• Posts and comments are separated


• Lines in an XML document


• Hierarchy combines posts and 
comments


• Hierarchical data model allows us to 
correlate length of posts with number 
of comments, etc.

Posts 
Post 

Comment 
Comment 

Post 
Post 

Comment 
Comment 
Comment 



Data Organization Patterns
• Often, the data to be combined comes from different data 

sets


• Hadoop class MultipleInputs from 
org.apache.hadoop.mapreduce.lib.input


• Allows to specify different input paths and different 
mappers for each input


• Configuration is done in the driver



Data Organization Patterns
• Multiple sources to hierarchical Pattern


• Mappers load data and parse it into a cohesive format


• Output key corresponds to root of hierarchical record


• E.g. StackOverflow: root is post_id


• Need to identify the source for each mapper output


• E.g. StackOverflow: is this a post or a comment


• Combiners are pretty useless because we create large 
strings



Data Organization Patterns
• Multiple sources to hierarchical Pattern


• Reducers receive data from different sources key by 
key


• For each key, can now build hierarchical data structure



Data Organization Patterns
• Multiple sources to hierarchical Pattern


• Result is in hierarchical form


• Probably need to add header and footer so that it is 
well-formed



Data Organization Patterns
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Data Organization Patterns
• Multiple sources to Hierarchical Pattern


• Performance problems


• Need enough reducers


• Reducers might see a lot of skew:


• Some are busy, others are not


• Hot spots can result in humongous strings moved 
between mappers and reducers


• Could take up the heap of a Java Virtual Machine



Data Organization Patterns
• Needs two mappers: one for comments, one for posts


• Both: extract post-id to use as output key


• Append “P” or “C” to distinguish between sources



Data Organization Patterns
• Reducer:


• Reducers receive post-id + marker as key and text as 
value


• For each post-id with “P” marker:


• Create a post entry in the XML


• For each post-id with “C” marker:


• Create child 



Data Organization Patterns
• Partitioning


• Moves records into shards, but does not care about 
ordering


• Example: partitioning by date


• Need to know number of partitions ahead of time



Data Organization Patterns
• Partitioning:  Let the partitioner do the job

Input
Split

Input
Split

Input
Split

Input
Split
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Split

Identity
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Shuffle
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Output
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Output
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Output
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Data Organization Patterns
• Binning:


• Moves records into categories irrespective of order


• Related to partitioning


• Which one works better depends on the system


• Binners do not use reducers



Data Organization Patterns
• Binning


• Number of outputs = 
Number of mappers 
times Number of bins

Input
Split

Binning 
Mapper

Bin A

Bin B

Bin C

Input
Split

Binning 
Mapper

Bin A

Bin B

Bin C

Input
Split

Binning 
Mapper

Bin A

Bin B

Bin C



Data Organization Patterns
• Binning:


• Pig


• Split data INTO eights IF col1==8, bigs IF col1>8, 
smalls IF col1<8;



Data Organization Patterns
• Total Order Sorting


• Data needs to be sorted by a given comparator


• Result is a set of shards that are ordered


• Need to know the distribution of data first


• Run an analyze phase first



Data Organization Patterns
• Total order sorting:


• Analyze phase


• Mapper does random sampling


• Only outputs the key after which we sort


• Use only one reducer which will give us the sort keys 
in order



Data Organization Patterns
• Total order sorting:


• Order phase


• Mapper extracts the sort key and stores the record as a value


• Custom partitioner is loaded based on the results of the 
analysis phase


• TotalOrderPartitioner in Hadoop


• Takes the data ranges prescribed and uses them to 
partition


• Reducer simply outputs the values


• Shuffle and sort has already done all the work



Data Organization Patterns
• Total Ordering in Pig


• c = order b by col1;



Data Organization Patterns
• Shuffling


• Randomizes the order of a set of records



Data Organization Patterns
• Shuffling


• Mapper maintains the records, but creates a random 
key


• Reducer sort according to random keys


• Only record is printed out



Data Organization Patterns
• Shuffling


• Pig:


• c = Group b by Random( ); 


• d = FOREACH c generate Flatten(c);



Join Patterns
• Join Pattern


• Different cases


• Simplest Case:  Join with a small table


• Send small table to all mappers


• Mappers calculate local join


• Reducers 



Join Patterns
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Join Patterns
• Pig allows you to give hints for joins

huge = LOAD ‘huge.txt’ AS (h1,h2); 
smallest = LOAD ‘smallest.txt’ AS (ss1, ss2); 
small = LOAD ‘small.txt’ AS (s1,s2); 
A = JOIN huge BY h1, small BY s1, smallest BY ss1 USING 
‘replicated’;



Join Patterns
• Reduce Side Join


• Join large multiple data sets together by some foreign key


• Structure:


• Mapper goes through all records in both data sets


• Mapper creates pairs  


• foreign key —> source, rest of record


• source is the name of the table


• Can use hash partitioner or a customized partitioner


• Reducer combines values of each input group into two lists
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Join Patterns
• The reducer is given within the input group all records 

with a foreign key


• This allows the reducer to create many types of joins 
based on equality



Join Patterns
• Inner join:


• Records from Table A and Table B are joined if they 
share the same foreign key



foreign key attribute 1 attribute 2
Table A

foreign key attribute 1 attribute 2 attribute 3
Table B

Inner Join



Join Patterns
• Outer Join


• If the foreign key is not present in one table than the 
lacking values are made into Null values



foreign key attribute 1 attribute 2
Table A

foreign key attribute 1 attribute 2 attribute 3
Table B

Outer Join
NULL NULLNULL

NULL



Join Patterns
• Optimization with Bloom Filters


• If we calculate an inner join with map-reduce, a mapper 
does not have to create a key-value pair if the foreign 
key value is not present in the other table

foreign key attribute 1 attribute 2
Table A

foreign key attribute 1 attribute 2 attribute 3
Table B

value

NULL value not present



Join Patterns
• Create a Bloom Filter for both sets (or for only one)


• Put Bloom filter in distributed cache or send it to all 
mappers for the other table


• Then only send records to the reducer when we know that 
the foreign key value is also present in the other table
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Join Patterns
• Bloom filter does not need to be very good to be efficient


• Bloom filter does not have false negatives, only false 
positives


• Bloom filter needs to be created before it can be used, 
making this into a two phase job



Join Patterns
• Composite Join


• Supported by Hadoop: CompositeInputFormat


• Idea:


• Preprocess all table contents to create input shards 
that are sorted and partitioned by foreign key.


• This is somewhat similar to the idea of the hash-join 


• Two-phase job again



Join Patterns
• Create hash 

buckets for 
records based on 
foreign keys


• Buckets are 
sorted
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Join Patterns
• Send all buckets in 

the hash to the 
same mapper


• Mappers then 
combine


• There are no 
reducers involved
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Join Patterns
• Composite Join Performance


• Most of the work in the creation of the Composite Join 
Splits



Join Patterns
• Cartesian Product


• Cartesian product combines all values in one table with all 
values in one other table


• Easily create gigantic results


• With huge execution times


• Uses essentially the composite join pattern


• Each mapper receives an input split from Table A and an 
input split from Table B


• If we break Table A into n pieces and Table B into m 
pieces, then we need  n x m mappers
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Meta Patterns
• Job Chaining


• Run two or more map-reduce jobs 


• Output of the first is input to the second
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Meta Patterns
• Map-Reduce framework is not very good at this


• Special frameworks exist


• Oozie —Apache Project Workflow Engine


• Java web application


• Workflow - collection of actions 


• Map-reduce jobs, Pig jobs arranged in a DAG


• Uses XML-based Hadoop Process Definition 
Language for workflow specifications


• Oozie coordinates jobs



Meta Patterns
• Doing it yourself


• Using Java


• Map-reduce drivers are simple Java classes


• Take the drivers of the individual Map-reduce jobs and 
call them in sequence


• Output and input paths need to match


• Use Job.Submit( ), JobisComplete( ), and 
Job.waitForCompletion( )



Meta Patterns
• Doing it yourself


• Scripting


• Using JobControl



Chain Folding
• Opportunities for optimization


• Mappers work in isolation


• A record can be submitted to multiple mappers or to a 
reducer-mapper combination


• Avoids transfer of files



Chain Folding
• Chain folding patterns


• Multiple mapping phases are adjacent


• Fold them into single mappers


• If a job ends with a map phase


• Push into the preceding reducer phase


• Split mappers that reduce data and mappers that 
increase data


• Filter data as early as possible



Job Merging
• If two unrelated map-reduce jobs use the same input set


• Can combine the mappers and reducers


• Data is loaded and parsed now only once


