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Overview
• Process: A program in execution


• OS-Level: Management and Scheduling of Processes


• Distributed Systems: Other issues become more 
important


1.Threads


2.Virtualization


3.Client Server Organization


4.Process Migration



Threads
• Provide finer granularity for processes


• Use case: Server for a client-server system


• One listening thread:


• Receives incoming request


• Dispatches request to a number of worker 
requests


• Worker threads: 


• Generated by listening thread or reside in a thread 
pool



Threads
• To execute a program:


• OS generates a number of virtual processors


• Each one for running a different program


• Tracked in a process table 

• with CPU register values, memory maps, file 
handlers, privileges, accounting information, …


• Entries jointly form a process content


• Process content is the software analogue of a 
processor context, needed to handle an interrupt



Threads
• OS provides process isolation


• Despite sharing of CPUs, 
cores, … by several 
processes


• OS create completely 
independent address 
space


• Necessitates Memory 
Management Unit and 
Translation Lookaside 
Buffer



Threads
• Threads share the process’s memory space


• Thread context is small: 


• Processor context plus thread management


• E.g. blocked by a mutex variable



Threads
• Advantages of threads in nondistributed systems


• Deal with blocking system calls


• Exploit parallelism 


• Large applications use Inter-Process 
Communications (IPC)


• pipes, message queues, shared memory segments


• Threads are more light-weight



Threads

• Trade-offs


• Threads use the same address space: more prone to errors


• No support from OS/HW to protect threads using each other’s memory


• Thread context switching may be faster than process context 
switching



Threads
• Context Switch Costs:


• Direct costs: switch and accessing handler


• Indirect costs: Caches are messed up



Threads
• Threading and multiprocessing in Python


• Multiprocessing is dependent on platform



import threading 
import time 
import random as rd 

def to_str(my_time): 
    return f'{my_time.tm_min}:{my_time.tm_sec:02d}' 

def sleeper(name): 
    while True: 
        t = time.gmtime()  
        s = rd.randint(1,5) 
        print(f'{to_str(t)}  {name} is going to sleep for {s} 
seconds') 
        time.sleep(s) 
        t = time.gmtime() 
        print(f'{to_str(t)}  {name} has woken up') 
        time.sleep(rd.randint(1,5))



if __name__ == '__main__': 
    x = threading.Thread(target=sleeper, args=('Bob',)) 
    y = threading.Thread(target=sleeper, args=('Alice',)) 
    x.start(); time.sleep(0.1); y.start() 
    x.join(); y.join() 



def to_str(my_time): 
    return f'{my_time.tm_min}:{my_time.tm_sec:02d}' 

shared_variable = rd.randint(0,1000) 

def sleeper(name): 
    while True: 
        t = time.gmtime()  
        s = rd.randint(1,5) 
        print(f'{to_str(t)}  {name} is going to sleep for {s} 
seconds') 
        time.sleep(s) 
        t = time.gmtime() 
        print(f'{to_str(t)}  {name} has woken up, sees 
{shared_variable}') 
        time.sleep(rd.randint(1,5)) 



def changer(): 
    while True: 
        print('changer') 
        global shared_variable 
        time.sleep(rd.randint(1,5)) 
        shared_variable = (shared_variable + rd.randint(1,50))%1000 
            
if __name__ == '__main__': 
    x = threading.Thread(target=sleeper, args=('Bob',)) 
    y = threading.Thread(target=sleeper, args=('Alice',)) 
    c = threading.Thread(target=changer, args=()) 
    c.start() 
    x.start(); time.sleep(0.1); y.start() 
    x.join(); y.join(); c.join()



Threads
• Threading in C++

#include <thread> 

int main(int argc, const char * argv[]) { 
    for(int i=0; i<NRTHREADS; i++){ 
        my_threads[i] = std::thread(insert_, 
                                    i*NRELEMENTS/NRTHREADS, 
                                    (i+1)*NRELEMENTS/NRTHREADS-1, 
                                    std::ref(my_SH)); 
    } 
    for(int i=0; i<NRTHREADS; i++){ 
        my_threads[i].join(); 
    } 
}



Threads
• Use locks

class Bucket{ 
protected: 
    unsigned int bucket_no; 
    std::vector<key_value_pair> my_bucket; 
    mutable std::shared_mutex bucket_guard; 
}  

Bucket::look_up(const unsigned int& key) 
{ 
    std::shared_lock lock(bucket_guard); 
    for (auto& element: my_bucket) 
    { 
        if(element.key == key) { 
            return &element; 
       } 
    } 
    return nullptr; 
}



Threads
• Implemented by packages


• Option 1: User-level threads


    + Cheap to create a new thread


• Basically, allocation of a stack for each thread


    + Context switches are simple


• Only CPU registers 


• No need to change memory maps, flush the TLB, do 
CPU accounting



Threads
• Implemented by packages


• Option 1: User-level threads 

    - Many-to-one threading model:


• A single schedulable unit: 


• If a system call blocks, all threads are blocked




Threads
• Option 2: Kernel-level Threads


• One-to-one threading model:


• Each thread can be scheduled


• Switching thread contexts may now become as 
expensive as switching process contexts.


• In practice: costs of context switch are determined 
mainly by effectives on caches


• Most OS offer this model



Threads
• Option 3: Many-to-many threading model 

• Introduce a two-level threading approach: kernel 
threads that can execute user-level threads.



Threads
• User thread does system call 


              ⇒ the kernel thread that is executing that user thread, 
blocks. 


• The user thread remains bound to the kernel thread


• The kernel can schedule another kernel thread having a 
runnable user thread bound to it. 


• Note: this user thread can switch to any other runnable user 
thread currently in user space.


•



Threads
• A user thread calls a blocking user-level operation 


           ⇒ do context switch to a runnable user thread, (then 
bound to the same kernel thread).


• When there are no user threads to schedule, a kernel 
thread may remain idle, and may even be removed 
(destroyed) by the kernel.


•



Threads
• Threads in distributed systems


• Using threads at the client side


• E.g.: Multithreaded web client


• Hiding network latencies:


• Web browser scans an incoming HTML page, and 
finds that more files need to be fetched.


• Each file is fetched by a separate thread, each 
doing a (blocking) HTTP request.


• As files come in, the browser displays them.



Threads
• Threads in distributed systems


• Using threads at the client side


• E.g.: Multiple request-response calls to other 
machines (RPC)


• A client does several calls at the same time, each 
one by a different thread.


• It then waits until all results have been returned.


• Note: if calls are to different servers, we may have a 
linear speed-up.



Threads
• Multi-threaded clients: Does it help?


• Thread-Level Parallelism (TLP)


• Let  be the proportion of time that exactly  threads 
are running 


• 


• Web browser: TLP between 1.5 and 2.5


• So, should use 2 or 3 cores

ci i

TLP =
∑N

i=1 i ⋅ ci

1 − c0



Threads
• Multi-threaded servers


• Dispatch — Worker Thread Model



Threads
• Example: File server that occasionally needs to wait for a 

block to be provided


• Can be organized as above


• Can be organized as a single thread


• The main loop of the file server 


• gets a request


• examines it, 


• carries it out to completion 


• before getting the next one.



Threads
• Third option: run the server as a big single-threaded finite-

state machine


• Disk operations are non-blocking (asynchronous)


• When terminated, OS informs process


• Server maintains information about each disk 
operation


• Once disk operation has finished, server looks up 
information on the operation and proceeds


• Basically, a finite state machine simulating threads



Threads
• File Server Construction



Virtualization
• Threads appear to be parallel even on a single-threaded 

architecture


• Virtual memory gives impression of a very large memory 
system


• These are instance of resource virtualization 

• Virtualization allows application software to outlive 
systems software and hardware



Virtualization
• IBM System/370:


• Machine Virtualization: multiple “concurrent” use


• Hypervisor / Virtual Machine Monitor (VMM):


• Allocates and manages hardware resources



Virtualization
• Hypervisor implemented in software only


• Needed tricks to interact with x86 hardware


• Some tricks use a lot of time


• Modify OS: paravirtualization 

• Guest OS is now aware of running in a hypervisor 

• Hardware vendors use hardware extensions in order 
to avoid the need for paravirtualization


• But can still be used for better performance



Virtualization
• Operating System Virtualization


• Multiple instances of an OS environment run 
simultaneously


• BSD Jail, Cells, LXC, LPAR

OS virtualization Hardware  
virtualization

• Kernel provides basic 
services



Virtualization
• Interfaces


• Hardware <—> Software


• Instruction Set Architecture (ISA) 

• Privileged instructions (only available to kernel)


• General instructions (can be executed by any 
programs)


• An interface consisting of system calls offered by OS


• An interface of library calls (API)



Virtualization



Virtualization
• Process Virtual Machine


• provides an abstract instruction 
set


• instructions can be interpreted


• Java Virtual Machine


• instructions can be emulated


• e.g. running windows 
applications on Unix



Virtualization
• Native virtual machine monitor


• Implemented directly on 
hardware


• Allows different OS to run


• Has to provide and regulate 
access to various resources



Virtualization
• Hosted virtual machine monitor 

• Instead of reimplementing device 
drivers etc. fresh


• Use a host operating system



Virtualization

• Virtual machines perform in general well


• Large part of code runs directly on the hardware



Virtualization
• How to make virtualization fast:


• Machine is either in user- or in system-mode


• Some instructions are only available in system-mode


• Memory addressing is relative


• A privileged instruction if executed in user mode 
causes a trap to the OS



Virtualization
• How to make virtualization fast:


• Control-sensitive instruction can affect the configuration of 
a machine


• E.g. changes the memory offset, changes interrupt table, 
…


• Behavior-sensitive instruction is an instruction whose 
behavior is determined by the context in which it is executed. 


• POPF instruction for Intel x86


• sets an interrupt enabled flag, but only if executed in 
system mode



Virtualization
• How to make virtualization fast


• For any conventional computer, a virtual machine 
monitor can be constructed if the set of sensitive 
instructions is a subset of the set of privileged 
instructions 

• As long as sensitive instructions are caught when 
executed in user mode, all non-sensitive instructions 
can run natively on the underlying hardware



Virtualization
• How to make virtualization fast


• Intel x86 instruction set has 17 sensitive instructions 
that are not privileged


• First solution: Emulate all instructions


• Too slow


• VMWare: scan the executable and insert code 
around the non-privileged sensitive instructions to 
divert control to the virtual machine monitor



Virtualization
• Second solution: Paravirtualization (XEN)


• Modifies guest OS


• all side effects of running non-privileged sensitive 
instructions in user mode, which would normally be 
executed in system mode, are dealt with.



Virtualization / Containers
• Frequent scenario:


• Applications are stable, but need their own 
environment to run


• Containers allow that 



Virtualization / Containers
• Naïve version


• Copies the entire environment


• Install it in a subdirectory of the root file system


• Use chroot to divert user into the subdirectory and 
run one or more applications


• Does not isolate applications running in different 
containers


• Copying is inefficient since many libraries, etc. are shared


• Host OS needs some control over resource usage 



Virtualization / Containers
• Mechanism used:


• Namespaces: a collection of processes in a container is 
given their own view of identifiers


• Union file system: combine several file systems into a 
layered fashion with only the highest layer allowing for 
write operations (and the one being part of a container).


• Control groups: resource restrictions can be imposed 
upon a collection of processes



Virtualization / Containers
• Namespaces


• Give a process running inside the container the illusion 
that they are running on their own


• E.g. PID


• Every machine should have a single init process 
with PID 1


• Can be done with Unix unshare command:  
unshare --pid --fork --mount-proc 
bash 



Virtualization / Containers
• brings the calling process into a new shell in which 

the command ps -ef yields:


• New collection of processes with just one with PID 1



Virtualization / Containers
• Efficient sharing of existing file systems


• Many containers have a common instance of an OS, 
e.g. Ubuntu 20.4


• Use this as a base layer and stack other parts on top of 
it


• For example, replace all the subdirectories of PHP7.4 
by an older version of PHP



Virtualization / Containers
• cgroups control what a container uses


• the collection of processes running in a cgroup is 
restricted to the amount of main memory that they can 
use, the priority when it comes to using the CPU, …


• Host OS can prevent a single container from using too 
much of the resources



Virtualization / Containers



Example: PlanetLab
• PlanetLab was a collaborative distributed system


•  different organizations each donated one or more 
computers


• adding up to a total of hundreds of nodes 


• these computers formed a 1-tier server cluster, where 
access, processing, and storage could all take place on 
each node individually. 


• Management of PlanetLab was by necessity almost 
entirely distributed. 


• The project closed down in 2020.



Example: PlanetLab

• Independent and protected environment with its own 
libraries, server versions, and so on. 



Example: PlanetLab
• VMM: Virtual Machine Monitor 


• enhanced Linux OS


• Capable of supporting containers


• Supports Vservers 

• Vserver : container in execution


• VMM ensures that Vservers are separated



Example: PlanetLab
• PlanetLab slices


• Each slice is a set of Vservers running on different 
nodes



Example: PlanetLab
• Node Manager:


• Each node has a Vserver that creates other Vservers 
and monitors resource use


• Slice Creation Service: 

• contacts node managers to ask for a Vserver


• only slice authorities could do so


• In practice, there was only one



Example: PlanetLab



Example: PlanetLab
• PlanetLab replaced by EdgeNet


• Uses Docker with Kybernetes instead



Virtualization / Containers
• Comparing virtual machines with containers


• Sharma et al 2016: LXC - Linux containers vs. KVM 
hypervisor



Virtualization / Containers



Virtualization / Containers
• The performance overhead of hardware virtualization is 

low when the application does not have to go through the 
hypervisor, as is the case of CPU and memory oper- 
ations. Throughput and latency of I/O intensive 
applications can suffer even with paravirtualized I/O.



Virtualization / Containers
• van Rijn et al (2021):


• No performance overhead for CPU-bound workloads


• Sometimes overhead for memory-bound workloads


• Network throughput is usually lower


• Startup times differ 



Application: Elastic 
Compute Cloud 

• EC2: 


• Can rent Amazon Machine Images (AMI)


• Preconfigured machine images


• E.g. LAMP (Linux-Apache-MySql-PHP)


• AMI is launched: Gives EC2 instance


• In one geographical region


•



Application: Elastic 
Compute Cloud 

• CPU: allows selecting the number and type of core, 
including GPUs  


• Memory: defines how much main memory is allocated to 
an instance 


• Storage: defines how much local storage is allocated


• Platform: distinguishes between 32-bit or 64-bit 
architectures


• Networking: sets the bandwidth capacity that can be 
used



Application: Elastic 
Compute Cloud 

• AMI storage is transient


• Needs to use S3 in order to store data permanently


• Or use an Elastic Block Store (EBS)



Clients



Client - Server Anatomy
• Networked user interfaces


1. Client has a counterpart for each service


2. Client is offered only a user interface


• So that client is like a terminal



Client - Server Anatomy



Client - Server Anatomy



Client - Server Anatomy
• Application-level vs middleware level



Example: X-Window system



Example: X-Window system

• X client and server


• The application acts as a client to the X-kernel, the latter 
running as a server on the client’s machine.



Example: X-Window system
• X-kernel


• Contains all terminal-specific device drivers


• Interface available to applications via Xlib 

• which usually use toolkits on top of Xlib 

• X-protocol


• X-kernel and X-applications are not necessarily on the 
same machine


• provides application-level protocol for exchanging data 
and events with the X kernel



Example: X-Window system
• Improving X


• Practical observations


• There is often no clear separation between application logic 
and user-interface commands


• Applications tend to operate in a tightly synchronous manner 
with an X kernel


• Alternative approaches


• Let applications control the display completely, up to the pixel 
level (e.g., VNC)


• Provide only a few high-level display operations (dependent on 
local video drivers), allowing more efficient display operations



Example: X-Window system
• Several applications can communicate simultaneously 

with the X kernel


• Window manager has special rights to dictate “look and 
feel”


• X-kernel acts as a server - applications are clients



Example: X-Window system
• Improving X


• Practical observations


• There is often no clear separation between application logic 
and user-interface commands


• Applications tend to operate in a tightly synchronous manner 
with an X kernel


• Alternative approaches


• Let applications control the display completely, up to the pixel 
level (e.g., VNC)


• Provide only a few high-level display operations (dependent on 
local video drivers), allowing more efficient display operations.



Example: Virtual Desk Top 
Environments

• Logical development


• With an increasing number of cloud-based applications, the 
question is how to use those applications from a user’s 
premise?


• Issue: develop the ultimate networked user interface


• Answer: use a Web browser to establish a seamless 
experience



Example: Virtual Desk Top 
Environments

• Google Chrome OS


• Web-browser is the interface to applications in the 
cloud


• Multiple stand-alone applications 


• Each operates with a cloud-based counterpart.


• Has been extended with Android and Chrome 
applications



Example: Virtual Desk Top 
Environments

• Chrome Browser


• 25,000,000 lines of code



Example: Virtual Desk Top 
Environments

• Fetch HTML file


• Set up parallel connections to other material referenced in this 
page. (Threading!)


• Parse with Document Object Model (DOM)


• Gives structure of the html file


• Styling information is provided by a separate document


• Now we have the layout


• Painting component uses paint operations to process 
layout instruction


• Rasterization process



Example: Virtual Desk Top 
Environments

• Each browser has separate components for handling 
scripts


• JavaScript, WebAssembly codes



Example: Virtual Desk Top 
Environments

• A lot can happen in parallel


• and even on GPU


• Code is executed in a sandbox


• No direct communication with the underlying OS



Example: Virtual Desk Top 
Environments

• Browser can be sufficient for offering a virtual desktop 
environment


• But usually have to interact with local resources:


• Media: camera, microphone, speakers, …



Example: Virtual Desk Top 
Environments

• Applications can run natively on the computer hosting the 
client-side desktop


• E.g. Smartphones and mobile apps


• Can be used offline


• Progressive Web Apps (PWA) 

• Use browser as their hosting environment


• Yet appear as ordinary mobile app


• Move much of server-side content not dependent on 
network connectivity to the client, where it is cached



Example: Virtual Desk Top 
Environments

• Current Trend:


• Moving from very thin clients to hosts with 


• much more functionality


• communication over Internet is optimized


• Compared to fat clients:


• browser based apps are either to manage as servers 
can simply upload new parts



Client-Side Software for 
Distribution Transparency

• Client software is more than just user interfaces


• Processing and Data Level  are also executed on the 
client side


• E.g.: Embedded Client Software:


• ATM, cash register, barcode reader, TV set-top 
box


• User interface is a small part compared to local 
processing and communicaton



Client-Side Software for 
Distribution Transparency

• Client software has components to achieve distribution 
transparency 

• Access Transparency:


• Generate a client stub from an interface definition of 
what the server has to offer


• Location, Migration, and Relocation Transparency: 

• Multitude of architectures


• Naming and cooperation with client-side software 



• Replication Transparency

Client-Side Software for 
Distribution Transparency

Transparent replication of a server using a client-side solution



Client-Side Software for 
Distribution Transparency

• Failure Transparency 


• client middleware 


• Concurrency Transparency


• Special intermediate servers


• transaction monitors



Servers
• A process implementing a specific service on behalf of a 

collection of clients. It waits for an incoming request from 
a client and subsequently ensures that the request is 
taken care of, after which it waits for the next incoming 
request.



Servers
• Concurrent versus iterative servers


• Iterative server: Server handles the request before 
attending a next request.


• Concurrent server: Uses a dispatcher, which picks up 
an incoming request that is then passed on to a 
separate thread/process.


• multi-threading


• forking a new process



Servers
• Contacting a server: End Points / Ports


• Each server listens to a specific end point


• How to find it?


• Most services tied to a specific port


• ftp-data  20


• ftp           21


• telent      23


• smtp       25


• www       80



Servers
• Dynamically assigning an end point



Servers
• inetd (internet service daemon) is a super-server 

daemon


• Listens on designated ports


• Requests are (usually) served by spawning a process


• Configured in /etc/inetd.conf


• Replaced by xinetd, …



Servers
• Issue


• Is it possible to interrupt a server once it has accepted (or 
is in the process of accepting) a service request?


• Solution 1: Use a separate port for urgent data


• Server has a separate thread/process for urgent messages


• Urgent message comes in ⇒ associated request is put on 
hold


• Note: we require OS supports priority-based scheduling



Servers
• Issue


• Is it possible to interrupt a server once it has accepted 
(or is in the process of accepting) a service request?


• Solution 2: Use facilities of the transport layer


• Example: TCP allows for urgent messages in same 
connection


• Urgent messages can be caught using OS signaling 
techniques



Servers
• Issue


• Stateless versus stateful servers


• Stateless servers


• Never keep accurate information about the status of a client 
after having handled a request:


• Don’t record whether a file has been opened (simply close it 
again after access)


• Don’t promise to invalidate a client’s cache


• Don’t keep track of your clients



Servers
• Stateless servers


• Never keep accurate information about the status of a client 
after having handled a request:


• Consequences


• Clients and servers are completely independent


• State inconsistencies due to client or server crashes are 
reduced


• Possible loss of performance because, e.g., a server cannot 
anticipate client behavior (think of prefetching file blocks)



Servers
• Soft State 

• Server promises to maintain state for a limited time


• Afterwards server falls back on default behavior



Servers
• Stateful servers


• Keeps track of the status of its clients:


• Record that a file has been opened, so that prefetching 
can be done


• Knows which data a client has cached, and allows 
clients to keep local copies of shared data



Servers
• Stateful Servers


• Observation


• The performance of stateful servers can be extremely 
high, provided clients are allowed to keep local copies. 
As it turns out, reliability is often not a major problem.


• Problem:


• If a server crashes 


• Needs to recover its entire state



Object Servers
• Distributed objects need object servers


• Object servers are a place where objects live


• Object server does not offer service, only allows 
objects to offer them


• Objects are made up of data (its state) and code


• Object servers can be multi-threaded and each object 
can be assigned a different thread or a separate thread 
may be used for each invocation request



Object Servers
• Activation policy: which 

actions to take when an 
invocation request comes in:


• Where are code and data of 
the object?


• Which threading model to 
use?


• Keep modified state of 
object, if any?


• Object adapter: implements a 
specific activation policy



Object Servers
• Invocation


• Simple approach:


• All objects look alike and there is only one way to invoke an 
object


• A better approach: a transient object:


• Object exists only as long as the server exists or even shorter


• Advantage: Only active objects consume resources


• A better approach: Each object is places in a memory segment of 
its own


• Objects do not share data or code


• Objects share their code



Object Servers
• Threading policies


• Simplest: Server has only a single thread


• Server has different thread for each object


• Use thread for each invocation request



Object Servers
• Activation policies


• Often the object itself must be brought into the server’s 
address space (activation)


• Need to group objects per policy:


• Object adapter (wrapper) 

• Software implementing a specific activation policy


• Object adapter are unaware of the specific interfaces of 
the objects they control


• When an invocation arrives, request is dispatched to the 
appropriate object adapter



Object Servers

An object server 
supporting three 
different activation  
policies



Object Servers
• Object adapter can support different activation policies by 

simply configuring it at runtime


• In Corba, can decide:


• should object continue to exist after its associated 
adapter has stopped?


• adapter or application generate object identifiers?


• operate as a single thread or with multiple threads



CORBA
• Common Object Request Broker Architecture (CORBA) (1991)


• Enable communication between software written in different 
languages and running on different hardware platform


• Uses an Interface Definition Language (IDL) and Object Request 
Brokers (ORB)



ICE runtime system
• Internet Communications Engine (ICE) implements object 

servers (2004)


• ICE uses communicators:


• Communicator manages basic resources:


• Pool of threads, allocated DRAM, …


• Configures environment


• Use the communicator to create an object adapter



Ice runtime system
Create and initialize runtime 
Returns communicator 
Returns Object Adapter

Object Adapter listens on 11000 

Can now create objects 
Object Adapter will guide  
communication to the correct object



Client code

Server code



Ice runtime system
• Adapters can support many objects


• Can dynamically load objects in memory when needed


• This uses a servant, acting as a locator



Example: Apache Web 
Server

• Popular (21% market and going down)


• Example of balancing separation of policies and 
mechanisms


• Platform independent by building its own basic runtime 
environment


• Which is then ported to the OS


• Apache Portable Runtime (APR)


• Library that provides


• platform- independent interface for file handling, 
networking, locking, threads,  …



Example: Apache Web 
Server

• AWS is a general server tailored for dealing with HTTP 
requests over TCP


• Organized in modules with several functions each:


1. How do we ensure that a function is called in the first 
place?


2. How do we ensure that a function is called at the 
right moment?


3. How do we prevent that a function is called for a 
request it was not supposed to handle?



Example: Apache Web 
Server

• 3. Functions can return a value DECLINED if the request was 
not meant for it


• 1. Uses hooks, placeholders for functions


• Each module provides the core with a list of hooks


• We statically or dynamically link modules to the Apache 
core


• 2. Because functions can sometimes depend on each other:


• Can specify whether function should be called in the 
beginning, middle, or end phase


• Can specify before and after of function calls





Server Clusters
• Local Area Cluster


• with high bandwidth and low latency


• First Tier:


• Consists of a switch to send requests to the second tier


• E.g.:


• Transport layer switch accepts TCP connections and 
passes requests to one of the servers


• Web servers accepts HTTP requests, but passes 
partial requests to application servers, and later 
collect results in order to generate an HTTP response



Server Clusters



Server Clusters
• Architectures vary


• E.g. streaming media use a two-tiered system


• Each machine in second tier acts as a dedicated 
media server


• E.g. Hardware can be tailored to types of requests



Server Clusters
• Request dispatching (at the front end)


• Transport Layer Switches 

• Accept TCP connection requests and hands them off 
to one of the servers


• Server then stays in the middle of the TCP 
connection


• Works like Network-Address Translation



Server Clusters
• Request dispatching (at the front end)


• Application Layer Switches 

• E.g. Webserver inspects URL


• Depending on URL, gates request to a specialized 
server


• nginx servers can handle thousands of simultaneous 
connections


• Works as a reverse proxy



Server Clusters
• TCP Handoff

Server inserts switch’s IP in the source field of the acknowledgment 
Client sees communication only with switch



Server Clusters
• Wide area clusters


• Content Delivery Networks (CDN)


• Let clients choose close servers 


• Use DNS



Example: Apache Web 
Server

• Akamei:



Example: Apache Web 
Server

• Akamai CDN:


• There is an origin server accessible by the domain 
name


• Domain name needs to be resolved via DNS



Example: Apache Web 
Server

• Request dispatching


• Redirection techniques


• TCP handoff


• DNS redirection 


• HTTP redirection:


• Client is given an alternative URL in the HTTP 
response message



Code Migration
• Code migration:


• Process migration: Entire process is moved from one machine to 
another


• Very costly


• Why do it?


• Performance


• Offload and sufficiently load machines


• Move code close to the data


• Move code to the client


• Use a mobile agent



Code Migration
• Code migration:


• Privacy and security


• E.g. Federated Learning needs to move code to the 
data



Code Migration
• Code migration


• Flexibility by dynamically configuring distributed 
systems



Models for code migration



Code Migration
• Strong Mobility


• The execution segment can be transferred as well


• Process Migration


• Remote cloning: create an exact copy of the original 
process 



Code Migration
• Heterogeneous systems:


• Pascal intermediate code


• Java and Python Virtual Machines



Code Migration
• Virtual Machine Migration


• Migrating entire memory image


1. Pushing memory pages to the new machine and 
resending the ones that are later modified during 
the migration process. 


2. Stopping the current virtual machine; migrate 
memory, and start the new virtual machine. 


3. Letting the new virtual machine pull in new pages 
as needed, that is, let processes start on the new 
virtual machine immediately and copy memory 
pages on demand. 


• Pre-copy: Combine 1 with 2


• Migrating bindings to local resources



Code Migration
• Migrating bindings


• Relatively easy when migrating locally



Code Migration


