
Consistency and
Replication

Thomas Schwarz, SJ

Reasons for Replication
• Reasons for Replication

• Fault Tolerance
• Server Failure
• Loss of Communication

• Performance:
• Scaling

• Bring objects neared to user (Akamai)
• Avoid congested objects

Reasons Against
Replication

• Storage costs
• Transparency

• Updates to replicated objects are difficult to order
• Users can get stale data
• Users can get inconsistent data

Reasons Against
Replication

• Replicas need to be consistent
• Strict (Tight) Consistency — costly
• Eventual Consistency — deal with stale data

Replica Management
• Concurrent access to objects

• Simple solution: No protection at the object
• Application using an object needs to manage concurrency

• Simple solution: Protection at the object
• Object has mechanism for mutual exclusion
• Example: Java

• Declare object’s methods synchronized
• Only one thread is allowed to proceed with a

synchronized method
• Other threads are blocked

Replica Management
• Concurrent access to replicated objects
• Consistency handled

• At object (Replication Awareness):
• Object aware that it is replicated
• Handles updates at replica by itself

• By the distributed system (more common)
• Example: Corba

Replica Management
• Replication and Scaling

• Replication and caching are scaling techniques
• Trade-off between:

• Keeping objects up to date
• More network traffic

• Keeping load at objects low
• Less long-haul network traffic

Consistency Models
• Model a Distributed Data Store

Consistency Models
• To keep replicas consistent, we generally need to ensure that all

conflicting operations are done in the the same order everywhere
• Conflicting operations: From the world of transactions

• Read–write conflict: a read operation and a write operation
act concurrently

• Write–write conflict: two concurrent write operations
• Issue

• Guaranteeing global ordering on conflicting operations may be
a costly operation, downgrading scalability.

• Solution: weaken consistency requirements so that hopefully
global synchronization can be avoided

Consistency Models
• Consistency model

• A contract between a (distributed) data store and
processes
• Data store specifies precisely what the results

of read and write operations are in the
presence of concurrency.

Consistency Models
• Tight consistency is not scalable
• Brewer’s Theorem:

• Can only achieve two of the three goals
• Consistency
• Availability
• Partition tolerance

Consistency Models
• Read and write operations

• : Process writes value to

• : Process reads value from

• All data items initially have value NIL
• We omit the index when possible and draw according to

time (x-axis):

Wi(x)a Pi a x
Ri(x)b Pi b x

W(x)a

R(x)None R(x)a

P1

P2

Consistency Models
• Strict consistency

• Any read on a data item x returns a value
corresponding to the result of the most recent write on
x

• Assumes notion of global time
• Relax global-time-assumption by

• Dividing time into consecutive, non-overlapping
intervals

• Each operation takes place during a single interval
• Each interval has a global timestamp

Consistency Models
• Examples for strict consistency

P1:

P2:

W(x)a

R(x)a

P1:

P2:

W(x)a

R(x)aR(x)Nil

Consistent

Not Consistent

Consistency Models
• Sequential Consistency (Lamport)

• The results of any execution is the same as if the
operations by all processes on the data store
were executed in some sequential order and the
operations of each individual process appear in
this sequence in the order specified by its
program

• All processes see the same order of interleaving

Consistency Models
sequentially
consistent

sequentially
inconsistent

Consistency Models
• Linearizable (Herlihy and Wing, 1991)

• Weaker than strict consistency, but stronger than
sequential consistency

• Assumes a globally available clock
• with finite precision

• Assigns timestamp to all operations

Consistency Models
• Data store is linearizable
• The result of any execution is the same as if the

operations by all processes on the data store were
executed in some sequential order and the
operations of each individual process appear in the
sequence specified by their time stamps. In
addition, if the time stamp of one operation
precedes the time stamp of the other operation for
sure, then the first operation happens before the
last operation.

Consistency Models
• Example

• Variables initialized to 0

P1 P2 P3

x=1;
print(y,z)

y=1;
print(x,z)

z=1;
print(x,y)

Consistency Models
• Signature: output of P1 concatenated with output of

P2 concatenated with output of P3

x=1;
print(y,z);
y=1
print(x,z);
z=1
print(x,y)

//prints 001011
//signature 001011

P1 P2 P3

x=1;
print(y,z)

y=1;
print(x,z)

z=1;
print(x,y)

Consistency Models
x=1;
y=1;
print(x,z);
print(y,z);
z=1;
print(x,y)

//prints 101011
//signature 101011

P1 P2 P3

x=1;
print(y,z)

y=1;
print(x,z)

z=1;
print(x,y)

Consistency Models
y=1;
z=1;
print(x,y);
print(x,z);
x=1;
print(y,z);

//prints 010111
//signature 110101

P1 P2 P3

x=1;
print(y,z)

y=1;
print(x,z)

z=1;
print(x,y)

Consistency Models
y=1;
x=1;
z=1;
print(x,z);
print(x,z);
print(y,z);

//prints 111111
//signature 111111

Consistency Models
• Not all possible 64 signature patterns are valid

• 000000 needs processes to print before incrementing
• 001001 is also impossible

• 00 means that y = z = 0 and x=1 when P1 prints
• So P1 finishes before P2 and P3 start

• Next 10 means that P2 starts before P3 starts
• Next 01 means that P3 must finish before P1 starts
• Contradiction

Consistency Models
• There are 6! = 720 ways of ordering the

statements, but many violate execution order
• Remaining 90 produce various write sequences

and signatures while maintaining sequential
consistency

• Any process interacting with the data store needs to
function with the < 64 valid signatures

Consistency Models

Outcomes of sequentially consistent orderings

Consistency Models
• Sequential consistency is difficult to understand

Sequential consistent for x, sequential consistent for y,
but not sequential consistent for both x and y

Consistency Models

Sequential consistency for x:
R(x)a happens before W(x)b

Sequential consistency for y:
R(y)b happens before W(y)a

But:
W(y)a < R(x)a < W(x)b < R(y)b < W(y)a
Contradiction!

Consistency Models

Consistency Models
• Conclusion:

• Sequential consistency is not composable

Consistency Models
• Linearizable sequential consistency:

• Effects of operations take place between
beginning and end of an operation

Results of writes take place within the time limits indicated in gray

Consistency Models
• Now we have less possible orderings

Consistency Models
• Sequential consistency

can be investigated in
terms of histories

• Quiz: Find a history for
the first result that
• Maintains program

order
• Respects data

coherence

P1:

P2:

W(x)a

R(x)bP3:

P4:

W(x)b

R(x)b R(x)a

R(x)a

P1:

P2:

W(x)a

R(x)aP3:

P4:

W(x)b

R(x)b R(x)a

R(x)b

Consistency Models
• Sequential consistency is programmer friendly
• But difficult to implement efficiently

• Lipton and Sandberg (1988)
• Sequential consistent store with

• r read time
• w write time
• t packet transfer time between nodes

• has r+w>t
• Impossible to have both effective reads and writes

Consistency Models
• Causal consistency:

• Weakening of sequential consistency
• Definition:

• Writes that are potentially causally related must
be seen by all processes in the same order.
Concurrent writes may be seen in a different
order by different processes.

Consistency Models

Consistency Models

Consistency Models
• Implementing causal consistency

• Keep track which processes have seen which
write

• Subtle Issues: Example

Consistency Models

• P3 reads b from y

• Thus, have happened before.
There are no other writes to x, so we need to read

 from

R2(x)a W2(y)b

a x

Consistency Models

• reads from

• So, has to come first

• But there is no ordering with regards to , so
both and are possible

P4 a x
W1(x)a

W2(y)b
R4(y)None R4(y)b

Consistency Models
• Grouping

• Developed for shared-memory multiprocessor
systems

• Use critical sections e.g. locks
• Coarse-grained critical sections:

• All shared items have a single lock
• Fine-grained critical sections

• Items have individual locks

Consistency Models
• Locks:

• Acquiring a lock
• Exclusive and non-exclusive access to a lock

Consistency Models
• Entry consistency:

• Each data item has a lock
• Example:
•

P2 does not lock , so it can read either NIL or y b

Consistency Models
• Entry consistency

• Accesses to locks are sequentially consistent.
• No access to a lock is allowed to be performed

until all previous writes have completed
everywhere.

• No data access is allowed to be performed until
all previous accesses to locks have been
performed.

Consistency vs Coherence
• Consistency models describe what can be

expected if multiple processes operate concurrently
on data

• Coherence models describe what can be expected
to hold for a single data item.

Eventual Consistency
• A typical case:

• In a database, most transactions perform only
reads

• Updates are rare
• Question: How fast should the updates

propagate?

Eventual Consistency
• Example: Web sites

• Web sites are under the authority of a singly user
(webmaster)

• Browsers and Web proxies keep copies
• Do not check for updates immediately

Eventual Consistency
• In these scenarios:

• Never have write-write conflicts
• Only have read-write conflicts
• Can then propagate updates in a lazy fashion

• Eventual Consistency

Eventual Consistency
• Strong eventual consistency
• Basic idea:

• If there are conflicting updates, have a globally
determined resolution mechanism (for example,
using NTP, simply let the “most recent” update
win).

Program Consistency
• P is a monotonic problem if

• for any input sets S and T , P(S) ⊆ P(T).

• Observation: A program solving a monotonic
problem can start with incomplete information, but
is guaranteed not to have to roll back when missing
information becomes available.

Program Consistency
• Example: Filling a shopping cart

• As long as we only add items, eventual
consistency is easy

• If we allow removing items, it becomes difficult
• Solution:

• Keep the add and the remove operations
separate

• Reconcile at the end

Continuous Consistency
• Defining Inconsistencies

• Replicas can have different numerical values
• Replicas can differ in staleness
• Replicas can have different update histories

Continuous Consistency
• Replicas can have different numerical values

• E.g. Currency rates cannot differ by more than
0.1%

• Replicas can differ in staleness
• Last time data was updated

• E.g. Weather reports are updated every few
hours

• Primary site can push updates lazily

Continuous Consistency
• Replicas can have different update histories

• Updates could be applied to local copies
tentatively

• After reaching agreement, replicas can roll-back
some local updates, …

Consistency Units
• Consistency Unit — Conit

• Unit over which consistency is to be measured
• Examples:

• Record representing an exchange rate
• Record representing a stock price
• Current weather report

Consistency Units
• Example: Data on a fleet of cars with attention to

gas prices

Consistency Units
• Example:

• Driver reports:

• amount of gasoline

• price paid

• total distance

• Conit is

• Conit is distributed over two servers

g
p

d
(g, p, d)

Consistency Units
• Example:

• Replicas maintain a two-dimensional vector clock

• operation carried out by replica at
time
< T, R > R

T

Consistency Units
• Replica A just received an update from B and committed it
• It has three tentative updates

Consistency Units
• B has committed two updates

Consistency Units
• Order deviation:

• Number of tentative updates
• A has 3, B has 1

• Numerical deviation:
• Number of operations at other replicas not yet

seen
• Sum of corresponding values
• A has (2, 482), B has(3,686)

Consistency Units
• Possible to specify consistency

• Bounds on numerical deviation or order deviation
• This implies communication between replicas
• Assumption is that this communication is less

costly than communication to keep replicas
synchronized

Consistency Units
• Granularity of Conits

Coarse Granularity
with possibility of false sharing

Consistency Units
• Granularity of Conits

Fine-grained Conits

Consistency Units
• Coarse granularity:

• Second data item needs to be updates as well

Consistency Units
• Fine granularity:

• Need to manage more conits

Consistency Units
• For the near future:

• Protocols for continuous consistency
• Continuous consistency needs to be supported for

programming

Client-Centric
Consistency Models

• Data-centric consistency models:
• Systemwide consistent view on a data store

• For data stores with mainly read load, can assume
eventual consistency

• Client-centric consistency models:
• Allow to hide inconsistencies in a cheap way

Client-Centric
Consistency Models

Client-Centric
Consistency Models

• Users do not see inconsistencies if they always
access the same replica

• But mobile users can access different replicas
• Client-centric consistency models:

• Specify what can happen to the mobile user

Client-Centric
Consistency Models

• Description

• is a version of data item

• is the result of write operations since
initialization: Write set

• follows from if we add operations to

• means follows from

• means and are unrelated

xi x
xi

WS(si)
xj xi WS(xi)

W(xi; xj) xj xi

W(xi |xj) xi xj

Client-Centric
Consistency Models

• Monotonic-read consistency
• If a process reads the value of a data item x, any

successive read operation on x by that process
will always return that same value or a more
recent value.

Client-Centric
Consistency Models

Monotonic Read Consistent

Client-Centric
Consistency Models

Monotonic read is violated:
 has read at local data store and then read at
 has a write operation that does not follow from
’s second read does not include the effect of its write operation!

P1 x1 L1 R1(x2) L2
P2 x1
P1

Client-Centric
Consistency Models

• Monotonic write
• A write operation by a process (user) on a data

item x is completed before any successive write
operation on x by the same process (user)

Client-Centric
Consistency Models

Monotonic-write consistent store

P1 performs a write on L1. This write is not propagated to L2 yet. Later,
it writes to L2, reading a value that depends on its previous write and then
writing a new value.

Client-Centric
Consistency Models

Monotonic write consistency is violated

Violation as the first write has no effect on the second write of .P1

Client-Centric
Consistency Models

No monotonic write consistency

Violation since the second write of does not depend on .P1 x1

Client-Centric
Consistency Models

Monotonic write consistent, even though has overwritten P1 x2

Client-Centric
Consistency Models

• Read your writes consistency
• The effect of a write operation by a process on

data item will always be seen by a successive
read operation on by the same process.

x
x

Client-Centric
Consistency Models

Read-your-writes consistency is provided

Read your writes does not mean that other processes cannot change
your write. The other processes need to depend on your write, though.

Client-Centric
Consistency Models

No read-your-writes consistency

Here the effect of the write has been destroyed by another process.

Client-Centric
Consistency Models

• Read your writes
• The effect of a write operation by a process on

data item x will always be seen by a successive
read operation on x by the same process

• A write operation is always propagated before the
next read operation

• Counterexample: I update my web-page, but
when I read it, I still see the old value

Client-Centric
Consistency Models

• Write follows reads
• A write operation by a process on a data item x

following a previous read operation on x by the
same process is guaranteed to take place on the
same or a more recent value of x that was read.

• Any successive write operation by a process on a
data item x will be performed on a copy of x that
was shown in the latest read or on a more recent
copy

Client-Centric
Consistency Models

• Write follows reads

• A write operation by a process on a data item
following a previous read operation on by the
same process is guaranteed to take place on the
same or a more recent value of that was read.

x
x

x

Client-Centric
Consistency Models

Writes-follows-reads consistent data store

Process writes an item. the write is propagated to and Process
updates the value that wrote. Process reads the item, and gets
the previous value. Later writes to the item, with a value known to have
depended on .

P1 L2 P3
P1 P2

P2
x1

Client-Centric
Consistency Models

Writes-follow-reads is violated

In this scenario, and concurrently update . reads ’s version of
, but then updates based on ’s version.

P1 P3 x P2 P1
x P3

Example: Zookeeper
• Zookeeper updates are serializable

• Monotonic writes is obtained by guaranteeing
that the seeming linear ordering of events is
consistent with the ordering of events in the
program

Example: Zookeeper
• Guarantees monotonic reads
• Does not guarantee read-your-writes or writes-

follow-read consistency

Example: Zookeeper

Example: Zookeeper
• Zookeeper clients read from one of the replicas
• They send updates to their replica.
• This replica then sends updates to a primary copy
• The primary copy updates all replica lazily

Example: Zookeeper
• Zookeeper combines elements of data- and client-

centric consistency

Replica Placement
• Figure out the best places out of possible

locations
• Objective:

• Network related criteria
• Latency, Bandwidth, Hop count, Logical

distance
• Cost related criteria

k N

Replica Placement
• Figure out the best places out of possible

locations
• Objective: Minimize average distance of all clients to

the nearest replica
• Possibility 1: Global optimization
• Possibility 2: Greedy: Select the best place for one

replica. Then choose the next best server.

• Possibility 3: Determine clusters.

• Possibility 4: Map into a -dimensional space
modeling objective criteria

k N

k
d

Replica Placement

Content Replication
and Placement

• Distinguish different processes

• A process is capable of hosting a replica of an object
or data:

• Permanent replicas: Process/machine always
having a replica

• Server-initiated replica: Process that can
dynamically host a replica on request of another
server in the data store

• Client-initiated replica: Process that can dynamically
host a replica on request of a client (client cache)

Content Replication
and Placement

Content Replication
and Placement

• Permanent replicas
• Example 1:

• Several replicas across servers at the same
location.

• Incoming request is routed to one of the
servers

Content Replication
and Placement

• Permanent replicas
• Example 2:

• Mirroring websites
• Client decide which mirror to access

Content Replication
and Placement

• Permanent replicas
• Example 3:

• Distributed Databases

Content Replication
and Placement

• Server-initiated replicas
• Copies of a data store generated for performance
• Created at the initiative of the data store
• Example: Content Delivery Networks (CDN)

Content Replication
and Placement

• Example: Dynamic replication of files for Web
Hosting Service
• Counting access requests from different clients:

Content Replication
and Placement

• Keep track of access counts per file, aggregated by considering server closest
to requesting clients

• Number of accesses drops below threshold D
• drop file

• Number of accesses exceeds threshold R
• replicate file

• Number of access between D and R
• migrate file

Content Replication
and Placement

• Client-initiated replica placement — Client caches
• If a client reads frequently data

• Move data closer to client by caching it

Content Distribution
• Propagate updates

• Propagate only a notification of an update.
• Transfer data from one copy to another.
• Propagate the update operation to other copies.

Content Distribution
• Propagation a notification:

• Invalidation protocols
• Use little network bandwidth
• Best if read-to-write ratio is small

Content Distribution
• Transfer data among replicas

• Best if read-to-write ratio is high
• Alternative:

• log the changes and transfer only those logs to
save bandwidth

Content Distribution
• Let the replica perform the updates themselves

• Active replication
• Main advantage: Updates often use less

bandwidth

Content Distribution
• Pull versus Push Protocols:

Content Distribution
• Third choice: Leases

• Promise by the server that it will push updates to the client for a
specified time

• Age-based leases:
• An object that hasn’t changed for a long time, will not change

in the near future, so provide a long-lasting lease
• Renewal-frequency based leases:

• The more often a client requests a specific object, the longer
the expiration time for that client (for that object) will be

• State-based leases:
• The more loaded a server is, the shorter the expiration times

become

Content Distribution
• Unicasting versus Multicasting

Managing Replicating
Objects

• Data-centric consistency usually uses entry
consistency
• Use locks or similar synchronization variables

• Entry consistency is difficult when objects are
replicated
• Serializable: Only one method access an object

at a time
• Need to insure that all changes to the replicated

object are the same

Managing Replicating
Objects

• Who is responsible for managing replication
• Rarely, the replicas themselves
• Usually, middleware

Managing Replicating
Objects

• Method invocation at replicas needs to be serialized
• But the threads used for accessing replicas also

need to be deterministic.

Managing Replicating
Objects

Managing Replicating
Objects

• Possibilities:
1. Threads sharing the same lock are scheduled

in the same order on every replica
• Deterministic Thread Scheduling
• Scheduling of threads done at a primary copy

2. Identify application level information in order to
identify locks used for serialization

Managing Replicating
Objects

• Replicad Invocations
•

Managing Replicating
Objects

• Replicated Invocations:
1. Forbid it
2. Replication-aware communication:

Managing Replicating
Objects

• Replicated Invocations:
1. Forbid it
2. Replication-aware communication:

Consistency Protocols
Sequential Consistency

• Sequential Consistency: Primary based protocols
• Each data item x in the data store has an

associated primary, which is responsible for
coordinating write operations on x

Consistency Protocols
Sequential Consistency

• Primary backup protocols
• All write operations are done at the primary

server for x
• All reads are done locally
• Traditionally applied in distributed databases and

file systems that require a high degree of fault
tolerance. Replicas are often placed on the same
LAN.

Consistency Protocols
Sequential Consistency

Consistency Protocols
Sequential Consistency

• Primary-backup protocol with local writes
• Primary copy migrates between processes that

wish to perform a write operation
• Multiple successive write operations can be

carried out locally
• Read operations can be carried out locally
• Updates need to be propagated in a non-

blocking manner

Consistency Protocols
Sequential Consistency

• Primary-backup protocol with local writes
• Example:

• Mobile computer becomes the primary copy of
all data item it wants to change

• Mobile computer is disconnected
• Others do not see the updates until after the

computer returns

Consistency Protocols
Sequential Consistency

Consistency Protocols
Sequential Consistency

• Non-blocking local-write primary-based protocols:
• Used for distributed file systems
• A fixed central server through which all write

operations take place (remote-write primary
backup)

• But: Server temporarily allows one of the servers
to perform a series of local updates

• Afterwards, the updates are propagated to the
central server

Consistency Protocols
Sequential Consistency

• Replicated write protocols
• Write operations are carried out at multiple

replicas
• Schemes where an operation is forwarded to

all the replicas
• Schemes using voting

Consistency Protocols
Sequential Consistency

• Active replication can use a sequencer
• a central coordinator
• assigns unique sequence numbers and forwards

operations to all replica
• operations are carried out in the order of their

sequence number

Consistency Protocols
Sequential Consistency

• Sequencer
• Use a group of sequencers

• Use multicast update operations between
sequencers

• Order updates using Lamport’s total-ordering
mechanism

Consistency Protocols
Sequential Consistency

• Using Quora
• Clients need to gather permission from other

servers in order to either read or write

• Assume servers that can vote

• Usually, but not always the servers where the
replica reside

• votes needed to read, votes needed to
read

N

NR NW

Consistency Protocols
Sequential Consistency

• Using quora
• Prevent read-write conflicts

•
• Prevent write-write conflicts

•

NR + NW > N

NW + NW > N

Consistency Protocols
Sequential Consistency

• Example
• Read goes

through

Consistency Protocols
Sequential Consistency

• Example
• Bad choice of

parameters
• Can read a stale

value

Consistency Protocols
Sequential Consistency

• ROWA
• Read one,

write all

Consistency Protocols
Sequential Consistency

• Quora protocols have developed:
• Witnesses: sites that do not have a replica
• Adjustments in case of failures

Consistency Protocols
Cache Consistency

• Cache-coherence protocols
• Solutions can be based on hardware

• Example: Snooping in multiprocessor systems
• Example: Broadcasting

Consistency Protocols
Cache Consistency

• Caching solutions differ by coherence detection
strategy
• E.g. a compiler performs an analysis to detect

access to data that can lead to inconsistencies
and then puts in additional code to prevent them

• E.g. in a distributed system check contents with
server

Consistency Protocols
Cache Consistency

• Caching solutions differ by coherence
enforcement strategy
• Invalidation vs. propagation of updates

Implementing
Client Centric Consistency

• Naïve Implementation
• Each write operation W is assigned a globally

unique identifier by its origin server.
• For each client, we keep track of two sets:

• Read set: the (identifiers of the) writes relevant
for that client’s read operations

• Write set: the (identifiers of the) client’s write
operations.

Implementing
Client Centric Consistency

• Naïve Implementation
• Monotonic Read

• When client C wants to read at server S, C
passes its read set. S can pull in any updates
before executing the read operation, after
which the read set is updated.

• Notice: Servers will need to log write
information

Implementing
Client Centric Consistency

• Naïve Implementation
• Monotonic Write

• When client C wants to write at server S, C
passes its write set. S can pull in any updates,
executes them in the correct order, and then
executes the write operation, after which the
write set is updated.

Implementing
Client Centric Consistency

• Naïve Implementation
• Read-your-writes

• When client C wants to read at server S, C
passes its write set. S can pull in any updates
before executing the read operation, after
which the read set is updated.

Implementing
Client Centric Consistency

• Naïve Implementation
• Writes-follow-reads

• bring the selected server up to date with the
write operations in the client’s read set

• add the identifier of the write operation to the
write set along with the identifiers in the read
set

Implementing
Client Centric Consistency

• Better Solution needed:
• Read and write sets can be very large
• First, break behavior into session

• Sessions are started and terminated by an
application e.g. by the app starting and
finishing itself

Implementing
Client Centric Consistency
• Improve the presentation of read and write set

data
• Use vector clocks

• Writes of a process at a site are always
executed in the order by the process

• Whenever a server accepts a new write
operation , it assigns it a globally unique
identifier along with a time-stamp .

• Time stamps increase with operations

W
τ(W)

Implementing
Client Centric Consistency

• Using two vector clocks

• time-stamp of the most recent write
operation originating from that has been
processed by

• Read and write sets are represented by vector
time-stamps

•
• represents the latest write operations that have

been seen by the applications

WVCi[j]
Sj

Si

SVC[j] = max(τ(W) | origin(W) = Sj)

Implementing
Client Centric Consistency

• Using two vector clocks

• Assume a client logs into Server

• It passes to

• If :

• Then has not seen all the writes from that
the client has seen

• Depending on the consistency model, may
now have to fetch these writes

• Once these are performed:

•

Sj

SVC Sj

SVCj > WVCi[j]
Si Sj

Si

SVC[j] ← max(SVC[j], WVCi[j])

Implementing
Client Centric Consistency

• Resumé
• Vector clocks can be used to compress

information on complex operations at different
sizes

Caching and Replication
in the Web

• Client-side caching in the Web
• Browsers have a simple caching facility
• Client’s site can run a Web proxy

• The Web proxy acts as a shared cache

Internet

User

User

User

User

Laptops

Laptops

Laptops

Shared Linux
Desktop

User Personal Linux
Desktop

Client side
 proxy

Web Server

Web Server

Web Server

Web Server

Web Server

Web Server

Web Server

Caching and Replication
in the Web

• In addition, many websites have forward proxies

Caching and Replication
in the Web

• Cooperative Caching

Caching and Replication
in the Web

• Cooperative caching:
• Idea: Use high-bandwidth / low-latency links to

ask neighboring proxy caches for content instead
of going to the web-site

• Traditional caching is called hierarchical
• Trade-offs are very dependent on the setting

Caching and Replication
in the Web

• Cache consistency models:
• Strong consistency: Client Side Proxy always

contacts the web-server with a If-Modified-Since
HTTP header

• Weaker consistency: Squid Web proxy has an
expiration time that is adjusted based on recency
of updates:

• from experience

• Also uses max and min expiration times

Texpire = α(Tcached − Tlast-modified) + Tcached
α = 0.2

Caching and Replication
in the Web

• Alternative to pull-based schemes:
• Push-based schemes with invalidation
• Leases

Caching and Replication
in the Web

• Many different schemes to manage contents of a
cache:
• If a cache is full, which item to evict?
• Simple schemes seem to work well:

• LRU, Oldest, …
• Could use shadow caches to adjust to the

optimal replacement policy

Caching and Replication
in the Web

• Content Delivery Networks (CDN)
• Availability of web sites is of prime importance
• CDNs become big: Akamei has 365,000 servers

in 2022
• CDN needs to deal with:

• replica placement, consistency, client-request
routing

Caching and Replication
in the Web

Caching and Replication
in the Web

• Can measure:
• Latency
• Available bandwidth (for large documents,

streams)
• Number of hops between nodes

• Difficult because of things such as Multi-
Protocol Label Switching (MPLS)

• MPLS circumvents network-level routing by
using virtual circuit techniques

Caching and Replication
in the Web

• Can measure:
• Network usage metrics
• Consistency metrics
• Financial metrics

Caching and Replication
in the Web

• Dealing with dynamic content
• Example: Edge-server: Push data to the edge

Caching and Replication
in the Web

• Dealing with dynamic content
• Partial replication: Only a subset of data is

replicated
• Content-aware caches:

• Edge server stores only data needed for its
typical load
• Edge server makes a query-containment

check to decide whether it or the website
should handle a request

Caching and Replication
in the Web

• To avoid the complications of content-aware
caches, use content-blind caching
• E.g. queries are hashed
• An edge server checks the query hashes to find

out whether it has dealt with the query recently
• In this case it uses the content-blind cache
• Otherwise, it fetches the result from the web-

server and updates the cache

Summary
• Replication is done for

• Reliability
• Performance

• Replication causes a consistency problem
• Strict serializability (databases) is costly
• Relax consistency

• Continuous consistency: Set bounds for
divergence

• Weaker consistency models

Summary
• Weaker consistency models

• A consistency model is a contract between the
distributed system and the application developer

• Data-centric models
• Client-centric models

Summary
• Caching is a form of replication

• Widely used in very different environments
• Techniques depend on the environment:

• E.g. multi-processors can do snooping

