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Reasons for Replication
• Reasons for Replication

• Fault Tolerance
• Server Failure
• Loss of Communication

• Performance: 
• Scaling

• Bring objects neared to user (Akamai)
• Avoid congested objects



Reasons Against 
Replication

• Storage costs 
• Transparency

• Updates to replicated objects are difficult to order
• Users can get stale data
• Users can get inconsistent data



Reasons Against 
Replication

• Replicas need to be consistent
• Strict (Tight) Consistency — costly
• Eventual Consistency — deal with stale data



Replica Management
• Concurrent access to objects

• Simple solution: No protection at the object
• Application using an object needs to manage concurrency

• Simple solution: Protection at the object
• Object has mechanism for mutual exclusion
• Example: Java

• Declare object’s methods synchronized
• Only one thread is allowed to proceed with a 

synchronized method
• Other threads are blocked



Replica Management
• Concurrent access to replicated objects
• Consistency handled

• At object (Replication Awareness):
• Object aware that it is replicated
• Handles updates at replica by itself

• By the distributed system (more common)
• Example: Corba



Replica Management
• Replication and Scaling

• Replication and caching are scaling techniques
• Trade-off between:

• Keeping objects up to date
• More network traffic

• Keeping load at objects low
• Less long-haul network traffic



Consistency Models
• Model a Distributed Data Store



Consistency Models
• To keep replicas consistent, we generally need to ensure that all 

conflicting operations are done in the the same order everywhere
• Conflicting operations: From the world of transactions

• Read–write conflict: a read operation and a write operation 
act concurrently

• Write–write conflict: two concurrent write operations
• Issue

• Guaranteeing global ordering on conflicting operations may be 
a costly operation, downgrading scalability. 

• Solution: weaken consistency requirements so that hopefully 
global synchronization can be avoided



Consistency Models
• Consistency model

• A contract between a (distributed) data store and 
processes
• Data store specifies precisely what the results 

of read and write operations are in the 
presence of concurrency. 



Consistency Models
• Tight consistency is not scalable
• Brewer’s Theorem:

• Can only achieve two of the three goals
• Consistency
• Availability
• Partition tolerance



Consistency Models
• Read and write operations

• : Process  writes value  to 

• : Process  reads value  from 

• All data items initially have value NIL
• We omit the index when possible and draw according to 

time (x-axis):

Wi(x)a Pi a x
Ri(x)b Pi b x

W(x)a

R(x)None R(x)a

P1

P2



Consistency Models
• Strict consistency

• Any read on a data item x returns a value 
corresponding to the result of the most recent write on 
x

• Assumes notion of global time
• Relax global-time-assumption by

• Dividing time into consecutive, non-overlapping 
intervals

• Each operation takes place during a single interval
• Each interval has a global timestamp



Consistency Models
• Examples for strict consistency

P1:

P2:

W(x)a

R(x)a

P1:

P2:

W(x)a

R(x)aR(x)Nil

Consistent

Not Consistent



Consistency Models
• Sequential Consistency (Lamport)

• The results of any execution is the same as if the 
operations by all processes on the data store 
were executed in some sequential order and the 
operations of each individual process appear in 
this sequence in the order specified by its 
program

• All processes see the same order of interleaving



Consistency Models
sequentially  
consistent

sequentially  
inconsistent



Consistency Models
• Linearizable (Herlihy and Wing, 1991)

• Weaker than strict consistency, but stronger than 
sequential consistency

• Assumes a globally available clock
• with finite precision

• Assigns timestamp to all operations



Consistency Models
• Data store is linearizable
• The result of any execution is the same as if the 

operations by all processes on the data store were 
executed in some sequential order and the 
operations of each individual process appear in the 
sequence specified by their time stamps. In 
addition, if the time stamp of one operation 
precedes the time stamp of the other operation for 
sure, then the first operation happens before the 
last operation. 



Consistency Models
• Example

• Variables initialized to 0

P1 P2 P3

x=1;
print(y,z)

y=1;
print(x,z)

z=1;
print(x,y)



Consistency Models
• Signature: output of P1 concatenated with output of 

P2 concatenated with output of P3

x=1;
print(y,z);
y=1
print(x,z);
z=1
print(x,y)

//prints 001011
//signature 001011

P1 P2 P3

x=1;
print(y,z)

y=1;
print(x,z)

z=1;
print(x,y)



Consistency Models
x=1; 
y=1; 
print(x,z); 
print(y,z); 
z=1; 
print(x,y) 

//prints 101011 
//signature 101011 

P1 P2 P3

x=1;
print(y,z)

y=1;
print(x,z)

z=1;
print(x,y)



Consistency Models
y=1; 
z=1; 
print(x,y); 
print(x,z); 
x=1; 
print(y,z); 

//prints 010111 
//signature 110101 

P1 P2 P3

x=1;
print(y,z)

y=1;
print(x,z)

z=1;
print(x,y)



Consistency Models
y=1; 
x=1; 
z=1; 
print(x,z); 
print(x,z); 
print(y,z); 

//prints 111111 
//signature 111111 



Consistency Models
• Not all possible 64 signature patterns are valid

• 000000 needs processes to print before incrementing
• 001001 is also impossible

• 00 means that y = z = 0 and x=1 when P1 prints
• So P1 finishes before P2 and P3 start

• Next 10 means that P2 starts before P3 starts
• Next 01 means that P3 must finish before P1 starts
• Contradiction



Consistency Models
• There are 6! = 720 ways of ordering the 

statements, but many violate execution order
• Remaining 90 produce various write sequences 

and signatures while maintaining sequential 
consistency

• Any process interacting with the data store needs to 
function with the < 64 valid signatures



Consistency Models

Outcomes of sequentially consistent orderings



Consistency Models
• Sequential consistency is difficult to understand

Sequential consistent for x, sequential consistent for y, 
but not sequential consistent for both x and y



Consistency Models

Sequential consistency for x: 
R(x)a happens before W(x)b 

Sequential consistency for y: 
R(y)b happens before W(y)a 

But:  
W(y)a < R(x)a < W(x)b < R(y)b < W(y)a 
Contradiction!



Consistency Models



Consistency Models
• Conclusion:

• Sequential consistency is not composable



Consistency Models
• Linearizable sequential consistency:

• Effects of operations take place between 
beginning and end of an operation

Results of writes take place within the time limits indicated in gray



Consistency Models
• Now we have less possible orderings



Consistency Models
• Sequential consistency 

can be investigated in 
terms of histories

• Quiz: Find a history for 
the first result that
• Maintains program 

order
• Respects data 

coherence

P1:

P2:

W(x)a

R(x)bP3:

P4:

W(x)b

R(x)b R(x)a

R(x)a

P1:

P2:

W(x)a

R(x)aP3:

P4:

W(x)b

R(x)b R(x)a

R(x)b



Consistency Models
• Sequential consistency is programmer friendly
• But difficult to implement efficiently

• Lipton and Sandberg (1988)
• Sequential consistent store with

• r read time
• w write time
• t packet transfer time between nodes

• has r+w>t
• Impossible to have both effective reads and writes



Consistency Models
• Causal consistency:

• Weakening of sequential consistency
• Definition:

• Writes that are potentially causally related must 
be seen by all processes in the same order. 
Concurrent writes may be seen in a different 
order by different processes.



Consistency Models



Consistency Models



Consistency Models
• Implementing causal consistency

• Keep track which processes have seen which 
write

• Subtle Issues: Example



Consistency Models

• P3 reads b from y

• Thus,   have happened before. 
There are no other writes to x, so we need to read 

 from 

R2(x)a W2(y)b

a x



Consistency Models

•  reads  from 

• So,  has to come first

• But there is no ordering with regards to , so 
both  and  are possible

P4 a x
W1(x)a

W2(y)b
R4(y)None R4(y)b



Consistency Models
• Grouping

• Developed for shared-memory multiprocessor 
systems

• Use critical sections e.g. locks
• Coarse-grained critical sections:

• All shared items have a single lock
• Fine-grained critical sections

• Items have individual locks



Consistency Models
• Locks:

• Acquiring a lock
• Exclusive and non-exclusive access to a lock



Consistency Models
• Entry consistency:

• Each data item has a lock 
• Example:
•

P2 does not lock , so it can read either NIL or y b



Consistency Models
• Entry consistency

• Accesses to locks are sequentially consistent.
• No access to a lock is allowed to be performed 

until all previous writes have completed 
everywhere.

• No data access is allowed to be performed until 
all previous accesses to locks have been 
performed.



Consistency vs Coherence
• Consistency models describe what can be 

expected if multiple processes operate concurrently 
on data

• Coherence models describe what can be expected 
to hold for a single data item. 



Eventual Consistency
• A typical case:

• In a database, most transactions perform only 
reads

• Updates are rare
• Question: How fast should the updates 

propagate?



Eventual Consistency
• Example: Web sites

• Web sites are under the authority of a singly user 
(webmaster)

• Browsers and Web proxies keep copies
• Do not check for updates immediately



Eventual Consistency
• In these scenarios:

• Never have write-write conflicts
• Only have read-write conflicts
• Can then propagate updates in a lazy fashion

• Eventual Consistency



Eventual Consistency
• Strong eventual consistency
• Basic idea: 

• If there are conflicting updates, have a globally 
determined resolution mechanism (for example, 
using NTP, simply let the “most recent” update 
win). 



Program Consistency
• P is a monotonic problem if 

• for any input sets S and T , P(S) ⊆ P(T ). 

• Observation: A program solving a monotonic 
problem can start with incomplete information, but 
is guaranteed not to have to roll back when missing 
information becomes available. 



Program Consistency
• Example: Filling a shopping cart 

• As long as we only add items, eventual 
consistency is easy

• If we allow removing items, it becomes difficult
• Solution: 

• Keep the add and the remove operations 
separate

• Reconcile at the end



Continuous Consistency
• Defining Inconsistencies

• Replicas can have different numerical values
• Replicas can differ in staleness
• Replicas can have different update histories



Continuous Consistency
• Replicas can have different numerical values

• E.g. Currency rates cannot differ by more than 
0.1%

• Replicas can differ in staleness
• Last time data was updated

• E.g. Weather reports are updated every few 
hours

• Primary site can push updates lazily



Continuous Consistency
• Replicas can have different update histories

• Updates could be applied to local copies 
tentatively

• After reaching agreement, replicas can roll-back 
some local updates, …



Consistency Units
• Consistency Unit — Conit

• Unit over which consistency is to be measured
• Examples:

• Record representing an exchange rate
• Record representing a stock price
• Current weather report 



Consistency Units
• Example: Data on a fleet of cars with attention to 

gas prices



Consistency Units
• Example:

• Driver reports:

• amount of gasoline 

• price paid 

• total distance 

• Conit is 

• Conit is distributed over two servers 

g
p

d
(g, p, d)



Consistency Units
• Example:

• Replicas maintain a two-dimensional vector clock

• operation carried out by replica  at 
time 
< T, R > R

T



Consistency Units
• Replica A just received an update from B and committed it
• It has three tentative updates 



Consistency Units
• B has committed two updates



Consistency Units
• Order deviation:

• Number of tentative updates 
• A has 3, B has 1

• Numerical deviation:
• Number of operations at other replicas not yet 

seen
• Sum of corresponding values
• A has (2, 482), B has(3,686)



Consistency Units
• Possible to specify consistency

• Bounds on numerical deviation or order deviation
• This implies communication between replicas
• Assumption is that this communication is less 

costly than communication to keep replicas 
synchronized



Consistency Units
• Granularity of Conits

Coarse Granularity  
with possibility of false sharing



Consistency Units
• Granularity of Conits

Fine-grained Conits



Consistency Units
• Coarse granularity:

• Second data item needs to be updates as well



Consistency Units
• Fine granularity:

• Need to manage more conits 



Consistency Units
• For the near future:

• Protocols for continuous consistency
• Continuous consistency needs to be supported for 

programming



Client-Centric  
Consistency Models

• Data-centric consistency models:
• Systemwide consistent view on a data store

• For data stores with mainly read load, can assume 
eventual consistency

• Client-centric consistency models:
• Allow to hide inconsistencies in a cheap way



Client-Centric  
Consistency Models



Client-Centric  
Consistency Models

• Users do not see inconsistencies if they always 
access the same replica

• But mobile users can access different replicas
• Client-centric consistency models:

• Specify what can happen to the mobile user



Client-Centric  
Consistency Models

• Description 

•  is a version of data item 

•  is the result of write operations since 
initialization: Write set 

•  follows from  if we add operations to 

•  means  follows from  

•  means  and  are unrelated

xi x
xi

WS(si)
xj xi WS(xi)

W(xi; xj) xj xi

W(xi |xj) xi xj



Client-Centric  
Consistency Models

• Monotonic-read consistency
• If a process reads the value of a data item x, any 

successive read operation on x by that process 
will always return that same value or a more 
recent value.



Client-Centric  
Consistency Models

Monotonic Read Consistent



Client-Centric  
Consistency Models

Monotonic read is violated:  
 has read  at local data store  and then read  at  
 has a write operation that does not follow from  
’s second read does not include the effect of its write operation!

P1 x1 L1 R1(x2) L2
P2 x1
P1



Client-Centric  
Consistency Models

• Monotonic write
• A write operation by a process (user) on a data 

item x is completed before any successive write 
operation on x by the same process (user)



Client-Centric  
Consistency Models

Monotonic-write consistent store

P1 performs a write on L1. This write is not propagated to L2 yet. Later,  
it writes to L2, reading a value that depends on its previous write and then  
writing a new value. 



Client-Centric  
Consistency Models

Monotonic write consistency is violated

Violation as the first write has no effect on the second write of .P1



Client-Centric  
Consistency Models

No monotonic write consistency

Violation since the second write of  does not depend on .P1 x1



Client-Centric  
Consistency Models

Monotonic write consistent, even though  has overwritten P1 x2



Client-Centric  
Consistency Models

• Read your writes consistency
• The effect of a write operation by a process on 

data item  will always be seen by a successive 
read operation on  by the same process.

x
x



Client-Centric  
Consistency Models

Read-your-writes consistency is provided

Read your writes does not mean that other processes cannot change  
your write. The other processes need to depend on your write, though.



Client-Centric  
Consistency Models

No read-your-writes consistency

Here the effect of the write has been destroyed by another process.



Client-Centric  
Consistency Models

• Read your writes
• The effect of a write operation by a process on 

data item x will always be seen by a successive 
read operation on x by the same process

• A write operation is always propagated before the 
next read operation 

• Counterexample: I update my web-page, but 
when I read it, I still see the old value



Client-Centric  
Consistency Models

• Write follows reads
• A write operation by a process on a data item x 

following a previous read operation on x by the 
same process is guaranteed to take place on the 
same or a more recent value of x that was read.

• Any successive write operation by a process on a 
data item x will be performed on a copy of x that 
was shown in the latest read or on a more recent 
copy 



Client-Centric  
Consistency Models

• Write follows reads

• A write operation by a process on a data item  
following a previous read operation on  by the 
same process is guaranteed to take place on the 
same or a more recent value of  that was read.

x
x

x



Client-Centric  
Consistency Models

Writes-follows-reads consistent data store

Process  writes an item. the write is propagated to  and Process  
updates the value that  wrote. Process  reads the item, and gets  
the previous value. Later  writes to the item, with a value known to have  
depended on . 

P1 L2 P3
P1 P2

P2
x1



Client-Centric  
Consistency Models

Writes-follow-reads is violated

In this scenario,  and  concurrently update .  reads ’s version of  
, but then updates based on ’s version.

P1 P3 x P2 P1
x P3



Example: Zookeeper
• Zookeeper updates are serializable

• Monotonic writes is obtained by guaranteeing 
that the seeming linear ordering of events is 
consistent with the ordering of events in the 
program



Example: Zookeeper
• Guarantees monotonic reads
• Does not guarantee read-your-writes or writes-

follow-read consistency



Example: Zookeeper



Example: Zookeeper
• Zookeeper clients read from one of the replicas
• They send updates to their replica.
• This replica then sends updates to a primary copy
• The primary copy updates all replica lazily



Example: Zookeeper
• Zookeeper combines elements of data- and client-

centric consistency



Replica Placement
• Figure out the best  places out of  possible 

locations
• Objective: 

• Network related criteria
• Latency, Bandwidth, Hop count, Logical 

distance
• Cost related criteria

k N



Replica Placement
• Figure out the best  places out of  possible 

locations
• Objective: Minimize average distance of all clients to 

the nearest replica
• Possibility 1: Global optimization
• Possibility 2: Greedy: Select the best place for one 

replica. Then choose the next best server.

• Possibility 3: Determine  clusters. 

• Possibility 4: Map into a -dimensional space 
modeling objective criteria

k N

k
d



Replica Placement



Content Replication  
and Placement

• Distinguish different processes

• A process is capable of hosting a replica of an object 
or data:

• Permanent replicas: Process/machine always 
having a replica

• Server-initiated replica: Process that can 
dynamically host a replica on request of another 
server in the data store

• Client-initiated replica: Process that can dynamically 
host a replica on request of a client (client cache)



Content Replication  
and Placement



Content Replication  
and Placement

• Permanent replicas
• Example 1: 

• Several replicas across servers at the same 
location.

• Incoming request is routed to one of the 
servers



Content Replication  
and Placement

• Permanent replicas
• Example 2:

• Mirroring websites
• Client decide which mirror to access



Content Replication  
and Placement

• Permanent replicas
• Example 3:

• Distributed Databases



Content Replication  
and Placement

• Server-initiated replicas
• Copies of a data store generated for performance 
• Created at the initiative of the data store
• Example: Content Delivery Networks (CDN)



Content Replication  
and Placement

• Example: Dynamic replication of files for Web 
Hosting Service
• Counting access requests from different clients:



Content Replication  
and Placement

• Keep track of access counts per file, aggregated by considering server closest 
to requesting clients

• Number of accesses drops below threshold D 
• drop file

• Number of accesses exceeds threshold R 
• replicate file

• Number of access between D and R 
• migrate file



Content Replication  
and Placement

• Client-initiated replica placement — Client caches
• If a client reads frequently data

• Move data closer to client by caching it



Content Distribution
• Propagate updates

• Propagate only a notification of an update.
• Transfer data from one copy to another.
• Propagate the update operation to other copies.



Content Distribution
• Propagation a notification:

• Invalidation protocols
• Use little network bandwidth
• Best if read-to-write ratio is small



Content Distribution
• Transfer data among replicas

• Best if read-to-write ratio is high
• Alternative:

• log the changes and transfer only those logs to 
save bandwidth



Content Distribution
• Let the replica perform the updates themselves

• Active replication
• Main advantage: Updates often use less 

bandwidth



Content Distribution
• Pull versus Push Protocols:



Content Distribution
• Third choice: Leases

• Promise by the server that it will push updates to the client for a 
specified time

• Age-based leases: 
• An object that hasn’t changed for a long time, will not change 

in the near future, so provide a long-lasting lease
• Renewal-frequency based leases: 

• The more often a client requests a specific object, the longer 
the expiration time for that client (for that object) will be

• State-based leases: 
• The more loaded a server is, the shorter the expiration times 

become



Content Distribution
• Unicasting versus Multicasting



Managing Replicating 
Objects

• Data-centric consistency usually uses entry 
consistency
• Use locks or similar synchronization variables 

• Entry consistency is difficult when objects are 
replicated
• Serializable: Only one method access an object 

at a time
• Need to insure that all changes to the replicated 

object are the same



Managing Replicating 
Objects

• Who is responsible for managing replication
• Rarely, the replicas themselves
• Usually, middleware



Managing Replicating 
Objects

• Method invocation at replicas needs to be serialized
• But the threads used for accessing replicas also 

need to be deterministic.



Managing Replicating 
Objects



Managing Replicating 
Objects

• Possibilities:
1. Threads sharing the same lock are scheduled 

in the same order on every replica
• Deterministic Thread Scheduling
• Scheduling of threads done at a primary copy

2. Identify application level information in order to 
identify locks used for serialization



Managing Replicating 
Objects

• Replicad Invocations
•



Managing Replicating 
Objects

• Replicated Invocations:
1. Forbid it
2. Replication-aware communication:



Managing Replicating 
Objects

• Replicated Invocations:
1. Forbid it
2. Replication-aware communication:



Consistency Protocols 
Sequential Consistency

• Sequential Consistency: Primary based protocols
• Each data item x in the data store has an 

associated primary, which is responsible for 
coordinating write operations on x



Consistency Protocols 
Sequential Consistency

• Primary backup protocols
• All write operations are done at the primary 

server for x
• All reads are done locally
• Traditionally applied in distributed databases and 

file systems that require a high degree of fault 
tolerance. Replicas are often placed on the same 
LAN.



Consistency Protocols 
Sequential Consistency



Consistency Protocols 
Sequential Consistency

• Primary-backup protocol with local writes
• Primary copy migrates between processes that 

wish to perform a write operation
• Multiple successive write operations can be 

carried out locally
• Read operations can be carried out locally
• Updates need to be propagated in a non-

blocking manner



Consistency Protocols 
Sequential Consistency

• Primary-backup protocol with local writes
• Example:

• Mobile computer becomes the primary copy of 
all data item it wants to change

• Mobile computer is disconnected
• Others do not see the updates until after the 

computer returns



Consistency Protocols 
Sequential Consistency



Consistency Protocols 
Sequential Consistency

• Non-blocking local-write primary-based protocols:
• Used for distributed file systems
• A fixed central server through which all write 

operations take place (remote-write primary 
backup)

• But: Server temporarily allows one of the servers 
to perform a series of local updates

• Afterwards, the updates are propagated to the 
central server



Consistency Protocols 
Sequential Consistency

• Replicated write protocols
• Write operations are carried out at multiple 

replicas
• Schemes where an operation is forwarded to 

all the replicas
• Schemes using voting



Consistency Protocols 
Sequential Consistency

• Active replication can use a sequencer
• a central coordinator
• assigns unique sequence numbers and forwards 

operations to all replica
• operations are carried out in the order of their 

sequence number



Consistency Protocols 
Sequential Consistency

• Sequencer
• Use a group of sequencers

• Use multicast update operations between 
sequencers

• Order updates using Lamport’s total-ordering 
mechanism



Consistency Protocols 
Sequential Consistency

• Using Quora
• Clients need to gather permission from other 

servers in order to either read or write

• Assume  servers that can vote

• Usually, but not always the servers where the 
replica reside

•  votes needed to read,  votes needed to 
read

N

NR NW



Consistency Protocols 
Sequential Consistency

• Using quora
• Prevent read-write conflicts

•
• Prevent write-write conflicts

•

NR + NW > N

NW + NW > N



Consistency Protocols 
Sequential Consistency

• Example
• Read goes 

through



Consistency Protocols 
Sequential Consistency

• Example
• Bad choice of 

parameters
• Can read a stale 

value



Consistency Protocols 
Sequential Consistency

• ROWA
• Read one, 

write all



Consistency Protocols 
Sequential Consistency

• Quora protocols have developed:
• Witnesses: sites that do not have a replica
• Adjustments in case of failures



Consistency Protocols 
Cache Consistency

• Cache-coherence protocols
• Solutions can be based on hardware

• Example: Snooping in multiprocessor systems
• Example: Broadcasting



Consistency Protocols 
Cache Consistency

• Caching solutions differ by coherence detection 
strategy
• E.g. a compiler performs an analysis to detect 

access to data that can lead to inconsistencies 
and then puts in additional code to prevent them

• E.g. in a distributed system check contents with 
server



Consistency Protocols 
Cache Consistency

• Caching solutions differ by coherence 
enforcement strategy
• Invalidation vs. propagation of updates



Implementing  
Client Centric Consistency

• Naïve Implementation
• Each write operation W is assigned a globally 

unique identifier by its origin server. 
• For each client, we keep track of two sets:

• Read set: the (identifiers of the) writes relevant 
for that client’s read operations

• Write set: the (identifiers of the) client’s write 
operations.



Implementing  
Client Centric Consistency

• Naïve Implementation
• Monotonic Read

• When client C wants to read at server S, C 
passes its read set. S can pull in any updates 
before executing the read operation, after 
which the read set is updated.

• Notice: Servers will need to log write 
information



Implementing  
Client Centric Consistency

• Naïve Implementation
• Monotonic Write

• When client C wants to write at server S, C 
passes its write set. S can pull in any updates, 
executes them in the correct order, and then 
executes the write operation, after which the 
write set is updated.



Implementing  
Client Centric Consistency

• Naïve Implementation
• Read-your-writes

• When client C wants to read at server S, C 
passes its write set. S can pull in any updates 
before executing the read operation, after 
which the read set is updated.



Implementing  
Client Centric Consistency

• Naïve Implementation
• Writes-follow-reads

• bring the selected server up to date with the 
write operations in the client’s read set

• add the identifier of the write operation to the 
write set along with the identifiers in the read 
set



Implementing  
Client Centric Consistency

• Better Solution needed:
• Read and write sets can be very large
• First, break behavior into session

• Sessions are started and terminated by an 
application e.g. by the app starting and 
finishing itself



Implementing  
Client Centric Consistency
• Improve the presentation of read and write set 

data
• Use vector clocks

• Writes of a process at a site are always 
executed in the order by the process

• Whenever a server accepts a new write 
operation , it assigns it a globally unique 
identifier along with a time-stamp .

• Time stamps increase with operations

W
τ(W)



Implementing  
Client Centric Consistency

• Using two vector clocks

•  time-stamp of the most recent write 
operation originating from  that has been 
processed by 

• Read and write sets are represented by vector 
time-stamps

•
• represents the latest write operations that have 

been seen by the applications 

WVCi[ j]
Sj

Si

SVC[ j] = max(τ(W) |  origin(W) = Sj)



Implementing  
Client Centric Consistency

• Using two vector clocks

• Assume a client logs into Server 

• It passes  to 

• If :

• Then  has not seen all the writes from  that 
the client has seen

• Depending on the consistency model,  may 
now have to fetch these writes

• Once these are performed: 

•

Sj

SVC Sj

SVCj > WVCi[ j]
Si Sj

Si

SVC[ j] ← max(SVC[ j], WVCi[ j])



Implementing  
Client Centric Consistency

• Resumé
• Vector clocks can be used to compress 

information on complex operations at different 
sizes



Caching and Replication  
in the Web

• Client-side caching in the Web
• Browsers have a simple caching facility
• Client’s site can run a Web proxy

• The Web proxy acts as a shared cache

Internet

User

User

User

User

Laptops

Laptops

Laptops

Shared Linux 
Desktop

User Personal Linux 
Desktop

Client side
    proxy

Web Server

Web Server

Web Server

Web Server

Web Server

Web Server

Web Server



Caching and Replication  
in the Web

• In addition, many websites have forward proxies



Caching and Replication  
in the Web

• Cooperative Caching



Caching and Replication  
in the Web

• Cooperative caching:
• Idea: Use high-bandwidth / low-latency links to 

ask neighboring proxy caches for content instead 
of going to the web-site

• Traditional caching is called hierarchical
• Trade-offs are very dependent on the setting



Caching and Replication  
in the Web

• Cache consistency models:
• Strong consistency: Client Side Proxy always 

contacts the web-server with a If-Modified-Since 
HTTP header

• Weaker consistency: Squid Web proxy has an 
expiration time that is adjusted based on recency 
of updates:

•  from experience

• Also uses max and min expiration times

Texpire = α(Tcached − Tlast-modified) + Tcached
α = 0.2



Caching and Replication  
in the Web

• Alternative to pull-based schemes:
• Push-based schemes with invalidation
• Leases



Caching and Replication  
in the Web

• Many different schemes to manage contents of a 
cache:
• If a cache is full, which item to evict?
• Simple schemes seem to work well:

• LRU, Oldest, …
• Could use shadow caches to adjust to the 

optimal replacement policy



Caching and Replication  
in the Web

• Content Delivery Networks (CDN)
• Availability of web sites is of prime importance
• CDNs become big: Akamei has 365,000 servers 

in 2022
• CDN needs to deal with:

• replica placement, consistency, client-request 
routing



Caching and Replication  
in the Web



Caching and Replication  
in the Web

• Can measure:
• Latency
• Available bandwidth (for large documents, 

streams)
• Number of hops between nodes

• Difficult because of things such as Multi-
Protocol Label Switching (MPLS)

• MPLS circumvents network-level routing by 
using virtual circuit techniques



Caching and Replication  
in the Web

• Can measure:
• Network usage metrics
• Consistency metrics 
• Financial metrics



Caching and Replication  
in the Web

• Dealing with dynamic content
• Example: Edge-server: Push data to the edge



Caching and Replication  
in the Web

• Dealing with dynamic content
• Partial replication: Only a subset of data is 

replicated
• Content-aware caches:

• Edge server stores only data needed for its 
typical load
• Edge server makes a query-containment 

check to decide whether it or the website 
should handle a request



Caching and Replication  
in the Web

• To avoid the complications of content-aware 
caches, use content-blind caching
• E.g. queries are hashed
• An edge server checks the query hashes to find 

out whether it has dealt with the query recently
• In this case it uses the content-blind cache
• Otherwise, it fetches the result from the web-

server and updates the cache



Summary
• Replication is done for

• Reliability
• Performance

• Replication causes a consistency problem
• Strict serializability (databases) is costly 
• Relax consistency

• Continuous consistency: Set bounds for 
divergence

• Weaker consistency models



Summary
• Weaker consistency models

• A consistency model is a contract between the 
distributed system and the application developer

• Data-centric models
• Client-centric models



Summary
• Caching is a form of replication 

• Widely used in very different environments
• Techniques depend on the environment:

• E.g. multi-processors can do snooping


