
Security
Thomas Schwarz, SJ

Basics
• A dependable system provides availability, reliability,

safety, maintainability, confidentiality, and integrity.

• Confidentiality: refers to the property that information is
disclosed only to authorized parties.

• Integrity: alterations to a system’s assets can be made
only in an authorized way, ensuring accuracy and
completeness.

Basics
• We attempt to protect against security threats:

1. Unauthorized information disclosure (confidentiality)

2. Unauthorized information modification (integrity)

3. Unauthorized denial of use (availability)

Basics
• Mechanisms:

• Encryption: transform data to something an attacker
cannot understand, or that can be checked for
modifications.

• Authentication: verify a claimed identity.

• Authorization: check an authenticated entity whether it
has the proper rights to access resources.

• Monitoring and auditing: (continuously) trace access
to resources

Basics
• Security principles:

• Fail-safe defaults: defaults should already provide good protection.
Infamous example: the default “admin.admin” for edge devices.

• Open design: do not apply security by obscurity: every aspect of a
distributed system is open for review.

• Separation of privilege: ensure that critical aspects of a system can
never be fully controlled by just a single entity.

• Least privilege: a process should operate with the fewest possible
privileges.

• Least common mechanism: if multiple components require the
same mechanism, then they should all be offered the same
implementation of that mechanism.

Basics
• Where to implement?

Basics
• We are increasingly seeing end-to-end security, meaning

that mechanisms are implemented at the level of
applications.

• Trusted Computing Base: The set of all security
mechanisms in a (distributed) computer system that are
necessary and sufficient to enforce a security policy.

Privacy
• Privacy and confidentiality are closely related, yet are

different. Privacy can be invaded, whereas confidentiality
can be breached

• ensuring confidentiality is not enough to guarantee
privacy.

Privacy
• Right to privacy

• The right to privacy is about “a right to appropriate flow of
personal information.”

• Control who gets to see what, when, and how

• a person should be able to stop and revoke a flow of
personal information.

Privacy
• General Data Protection Regulation (GDPR)

• European Union regulation

• The GDPR is a comprehensive set of regulations aiming
to protect personal data.

Privacy

Cryptography

• Traditional use / symmetric encryption:

• Confidentiality of information in transit or at rest

• Encryption uses a key (or another secret)

• Decryption (up till lately) uses the same key

Plaintext Ciphertext Plaintext

Encryption Decryption

Cryptography
• Rail Fence Scheme (used by Spartans)

• A transposition scheme

• Symbols stay but position is scrambled

• Secret is the pattern

T
H

E
B

L
A

C
K

O
P P

E
O

F
T

H
E

TCO
HAKEF
ELPPTE
BOH

TCOHAKEFELPPTEBOH

Cryptography
• Caesar’s Cipher

• Substitution Code

• Key: A shift amount x, often represented by a letter

• Encryption:

• Each letter is replaced by a letter moved by x
positions down in the alphabet

• Decryption:

• Each letter is replaced by a letter moved by x
positions upwards in the alphabet

• Example

GALLIAOMNIAESTDIVISAINPARTESTRES
PITTRIYVXRINCDMRERCIRXZIBDNCDBNC

A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
V
X
Y
Z

I
K
L
M
N
O
P
Q
R
S
T
V
X
Y
Z
A
B
C
D
E
F
G
H

Cryptography
• General Substitution Cipher

• Key: Uses a fixed permutation of letters

• Example: Generate a permutation of letters using a random
number generator, the key is the seed of the generator

• Encryption:

• Replaces a letter by the image of the letter under the
permutation

• Decryption:

• Replaces a letter by the image of the letter under the
inverse permutation

Vigenère Cipher
• A.k.a: The unbreakable code

• Idea: Use a Caesar cipher, but vary the shift amount
with each letter

• Key is a long phrase

• CSA used cipher disks and phrases

• “Manchester Bluff”

• “Complete Victory”

• “Come Retribution”

• To encode a letter:

• Move the inner disk’s A under the current letter of
the key phrase

• Take the letter of the plain text

• Read the inner disk’s letter under that letter in the
outer disk.

• This is your cipher letter

CSA cipher disk: Luckily,
 CSA SIGSEC was atrocious

Vigenère Cipher
• Example

• “Divisions (commanded by) Maj. Gen. Picket, Brig.
General Pettigrew and Maj. Gen. Trimble will charge
cemetery hill after a preliminary bombardment”

• “DIVISIONSPICKETPETTIGREWTRIMBLEWILLCHAR”

• key: “FINALVICTORY”

• cipher: D^F, I^I,V^N,I^A,S^L, …

• Result:

• IQIIDDWPLDZAPMGPPOBKZFVUYZVMMGMYBZCAMIE

Secret Key Cryptography

Ciphertext Plaintext
Decryptio

n

Plaintext CiphertextEncryptio

Key

Public Key Cryptography

Cipher text Plaintext

Decryption

Plaintext Cipher text

Encryption

Private Key

Public Key

Using Public Keys
• Alice has public - private key pair and

• Bob has public - private key pair and

• Alice wants to send Bob a private message

• Invents a symmetric key

• Sends to Bob

• Only Bob can decrypt as and
therefore decrypt

PA RA

PB RA

K

mK, PB(K)

PB(K) K = RB(PB(K))
mK

Using Public Keys
• Alice has public - private key pair and

• Bob has public - private key pair and

• Alice wants to sign a message

• Sends

• Anyone knowing can decrypt:

PA RA

PB RA

(RA(m), m)
PA m = PA(RA(m))

Homomorphic Encryption
• Can use operations directly on encrypted data

• mK × nK = (m ⊕ n)K

Attacks on
Communication Channel

Examples
• Pedestrian behavior

• Detect device information of people walking with a cell-
phone or similar device

• Cellphone signals

• Wifi enabled cell-phones: MAC address

• Traffic planning does not know about the identity

• Find a way to anonymize identities

Hashes and message
Digests

Hashes

• Hashes are one-way functions

• Space of BLOB (Binary Large OBjects) to space of
small fixed-length string

• Blob changes a little bit induces big changes in hash

Hashes
• Various notions of security

• Pre-image resistance

• Given hash h it should be hard to find a blob m such
that hash(m) = h

• Second pre-image resistance

• Given blob m it should be hard to find a blob n such
that hash(m) = hash(n)

• Collision resistance

• It should be hard to find two different blobs m and n
such that hash(m) = hash(n)

Hashes

• “Provably” secure hashes:

• If there is an algorithm that finds a pre-image

• Then we can solve an NP difficult problem /
probabilistic NP difficult problem in polynomial time

• Tend to be too slow

Hashes
• Can be used to ID documents.

• Computer Forensics:

• Use hashes of known good functions (OS, standard
software) to exclude artifacts from examination

• Public signatures of documents

• Instead of encrypting objects with private key

• Encrypt secure hash of object with private key

• Because public key encryption takes time

• vs Ep(O) Ep(h(O))

Hashes
• Large number of proposed hashes

• Selection process by NIST

• Validation of implementation through CMVP

Hashes
for signing

• Public encryption is expensive

• Alice has public - private key pair and

• Alice wants to sign a message

• Sends

• Only she knows

• Anyone knowing can decrypt:

UA RA

(RA(h(m)), m)
RA

UA(RA(h(m))) ?= h(m)

Hashes
Name Size Speed Status

MD5 128b 335MB/sec completely broken

SHA 0 160b broken

SHA-1 160b 192 MB/sec no practical attacks yet but
theoretically broken

SHA-2 224b / 256b /
384b / 512 b

139 - 154
MB/sec secure but not recommended

SHA-3 224b - 512b recommended

Key Management
Thomas Schwarz, SJ

Key-Management
• Keys are generated by programs

• Hashes of user-provided passwords

• Random strings

• Public-private key programs

• Problem is key-distribution

Session Keys
• Common practice to use a ephemeral key used during a

single session

• Can be generated by Diffie-Hellman

• Invented by one of the parties and distributed with a
master key

• Provides “forward security”:

• If an adversary stores encrypted communication and
later obtains the key information of one of sender and
recipient, then the adversary can still not decrypt the
communication

Key Management
• Session keys

• Use Diffie-Hellman

• Based on the hardness of the discrete logarithm problem

• Share prime and multiplicative generator

•

• Alice invents and sends to Bob

• Bob invents and sends to Alice

• Both use

• Only they can do this calculation

p g

{gi % p | i ∈ {0,1,…, p − 1}}

a ga

b gb

gab = (ga)b = (gb)a

Key Management
• Distributed Diffie-Hellman:

• All servers agree on a generator and

• Each server invents a secret

• Servers and communicate via the secret key

g p

Si ai

Si Sj gaiaj

Key Management
• Key distribution

• For secret keys:

Key Management
• Key distribution

• For public-private keys:

Kerberos

http://images.google.com/imgres?imgurl=www.aksityayincilik.com/images3/mitoloji/herakles-kerberos.jpg&imgrefurl=http://www.aksityayincilik.com/mitolojigaleri.htm&h=430&w=389&sz=28&tbnid=_0lKfTTIessJ:&tbnh=122&tbnw=110&prev=/images?q=kerberos&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&sa=N

Kerberos
● Simplifies administration of authentication
● User signs in on her/his workstation
● Using password, …

● User is automatically authenticated to all services
● Network is not considered safe

● Uses the concepts of
● KDC – Mediated authentication
● Trusted intermediary

● Implements Single Sign-On SSO

Kerberos
● Kerberos: Developed at MIT based on the work by

Needham Schroeder
● Uses symmetric encryption (for patent reasons)
● Available in versions 4 and 5
● Version 4 has better performance, but needs TCP/IP
● Version 5 has more functionality
● Part of Windows OS
● Available in Linux as Heimdal
● Available in variants for commercial UNIX and Apple

OS X
● PKINIT is a version using public keys

Kerberos
● Tickets and Ticket Granting Tickets (TGT)
● All principals have a shared, secret key with the KDC:

master key / principal key
● If Alice needs a service from Bob, she goes to the KDC to

obtain a session key KAB and a ticket for B
● Alice’s Credential: KAB and the ticket for Bob
● Alice cannot read what is in the ticket

Kerberos
● Original Authentication
● Alice authenticates with her workstation
● Her master key is derived from her password
● Her workstation asks the KDC for a session key: SAlice
● Session key is valid for some hours
● Protects Alice’s master key

● She also obtains a TGT (Ticket Granting Ticket)
● [SAlice , Information on Alice’s identity, expiration time] encrypted by

the master key of the KDC
● Her workstation only maintains the TGT and SAlice

Kerberos

M
a
c
h
i
n
e

K
D
C

Alice
password KRB_AS_REQ

“Alice needs TGT”

KRB_AS_REP
KAlice {SAlice , TGT}

TGT = KKDC{“Alice”,
SAlice }

Kerberos
● Alice’s credentials are encrypted with KAlice but the TGT is

already encrypted
● Why do we need a TGT?
● If Alice needs a service, her machine sends the TGT

with the request to the KDC
● The KDC decrypts the request and has all the

information needed on Alice
● KDC does not need to maintain state such as

information send previously to Alice.

Kerberos
● In order to obtain service from Bob, Alice uses a program
● The program needs to interact with Kerberos

● Her workstation generates a request to the KDC for a ticket
● The request contains an authenticator

● KDC uses the information in the TGT to authenticate
Alice and returns a ticket.

● Her workstation sends ticket and authenticator to Bob
● Bob deciphers the ticket to obtain the session key and uses

the authenticator in order to authenticate Alice
● Bob then sends his authenticator to Alice who now can

authenticate Bob

Kerberos
● Wants service from Bob.

Alice
rlogin
Bob

KRB_TGS_REQ
“Alice needs Bob”
TGT = KKDC{“Alice”, SAlice }
authenticator = SAlice {time}

KRB_TGS_REP
SAlice {“Bob”, KAB, Ticket}
Ticket = KBob {“Alice”, KAB}

M
a
c
h
i
n
e

K
D
C

Kerberos

KRB_AP_REQ
Ticket = KBob {“Alice”, KAB}
authenticator = KAB {time}

KRB_AP_REP
KAB {time +1}

M
a
c
h
i
n
e

B
o
b

Kerberos
● Login implementation:
● V4: Kerberos asks for login only after credentials are

obtained from the KDC
● Minimizes the time that the password is stored in

machine memory
● Makes it easier for an adversary who can obtain

information from the KDC for a dictionary attack
● V5: Kerberos asks for the password before getting

credentials from the KDC

Kerberos
● Replicated KDC
● KDC is a single failure point
● Replicas need access to the master database of users
● Usually use Master-Slave protocol
● Only the master can change the database
● Master keys in database are encrypted by the master

key of the KDC and protected in transit
● The rest of the contents are stored as hashes.

Kerberos
● Realms
● Principals of Kerberos are divided into reals with their own

database
● The KDC in each realm have their own master keys.

● V4: Every principal has a name consisting of three
components
● Name
● Instance
● Realm
● E.g: Alice.Systemmanager.DMSCS

Kerberos
● To authenticate for principals in another realm
● Need to find a chain of KDCs that know each other
● One obtains the TGT of the previous KDC for the

subsequent KDC
● Until one reaches the KDC for the realm of the target

Kerberos

A
l
i
c
e

KDC@Wond
erland

KDC@OZ

D
o
r
o
t
h
y

KRB_TGS_REQ(Alice@Wonderland,
Oz@Wonderland)

Credentials Oz

KRB_TGS_REQ(Alice@Wonderland,
Dorothy@Oz)

Credentials for Dorothy

KRB_AP_REQ

Kerberos
● Change of keys:
● Naive solution
● Bob changes key
● Alice’s credential no longer work
● Her machine needs to find new credentials based on Bob’s correct

key
● Not always possible in a batch job

● Implemented solution
● All keys have a version number
● Ticket expire in 21 hours, so there is no problem having more than

one version of the key
● Users might still have problems:
● A change of password is effective immediately in a master KDC
● A slave KDC can use the previous key until updating the database
● Which results in failure to authenticate Alice

Kerberos
● V4: IP-directions in tickets
● As an additional authentication mechanism:
● All tickets have the IPv4 address of the user
● Prevents Alice from delegating her rights to someone

else
● Prevents interception of credentials
● The spoofer needs to obtain ticket and

authenticator and prevent that the true
authenticator gets to the server

● Now needs to falsify also his IP address

Kerberos
● Changes in V5
● Uses ASN.1 (data representation

language)
● Example:
● Address in V4: 4 bytes
● Assumes IPv4

● V5:
● addr-type needs a byte to specify if it is type 0

and another one to specify the length
● INTEGER needs a byte to specify that it is an

integer, one for length, and at least one for the
value itself

● address[1] needs four bytes plus the value
● 11 additional bytes

HostAddress := SEQUENCE	 {
	 addr-type[0] 	 INTEGER
	 address[1]	 BYTE STRING }

Kerberos
● V5: Names
● simpler and without prohibited characters like “.”
● contain a type and a variable number of fields.

Kerberos
● Delegation of rights
● Capacity to give access to someone else over something over which one

has a right
● Necessary if someone (Bob) acts instead of another entity
● Cannot be implemented by sharing master key

● V5: Alice can request a TGT with Bob’s address
● Can only be used by Bob

● V5: Alice can request a ticket with Bob’s IP-address
● This limits what Bob can do in lieu of Alice

● Additional interaction for delegation allows KDC to establish an audit trail
● Possible to put in a rule in the master database to specify
● If TGT can be used to obtain a TGT or ticket with different network

address
● If the TGT can be forwarded.

Kerberos
● Implementation of Delegation (continued)
● Flag Forwardable:
● TGT with this flag can be exchanged for a TGT with different

network address
● Allows Alice to give a TGT to Bob with which Bob can obtain

tickets in lieu of Alice
● Flag Proxiable:
● TGT with this flag can be utilized to obtain tickets with different

network address
● Allows Alice to obtain a proxy ticket to give to Bob,
● Does not allow Alice to get a TGT for Bob

Kerberos
● Implementation of Delegation (continued)
● TGT can have flag FORWARDED
● Tickets can have flag FORWARDED and PROXY
● An implementation can distinguish between tickets

obtained by forwarding and proxying
● KDC and application decide on permissibility of

forwarding and proxying

Kerberos
● Ticket Life Time
● V4: Limited to about 21 hours
● Creates problem for long running batch job

● V5: Ticket life time is extended, implemented with
● STARTTIME
● ENDTIME
● AUTHTIME
● when Alice logged in

● RENEWTILL

Kerberos
● Renewable tickets
● Why? Tickets with long life are difficult to revoke
● If Alice needs a long-life ticket, KDC sets flag

RENEWABLE
● Before ticket expiration:
● Alice needs to renew the ticket
● The KDC just gives a ticket with changed expiration

time
● Alice needs to run a daemon in order to renew tickets

about to expire

Kerberos
● Post-dating tickets
● Used to allow tickets to valid in the future
● KDC emits a ticket with a flag INVALID and

STARTTIME set to when the ticket will be needed
● When the start time comes, Alice presents the ticket to

get a new ticket
● This allows easy ticket revocation

● A post-dated ticket has a flag POSTDATED to allow
an application to refuse post-dated tickets.

Kerberos
● Key versions
● Problem with key change:
● Tickets become suddenly invalid

● Key versions allow server Bob to change his principal
key
● All keys carry version number
● The database entry for Bob contains key, p_kvno, k_kvno
● key – key of Bob encrypted by the principal key of KDC
● p_kvno – version number of Bob’s key
● k_kvno – version number of the KDC key used
● Allows the KDC to change key

Kerberos
● If human user Alice is registered in various realms, she

probably wants to reuse the same password
● To avoid generating the same principal key, V5 generates

it as hash of the password and the realm name
● Does not avoid dictionary attacks but protects good

passwords

Kerberos
● Hierarchy of realms
● V4: To obtain a ticket of another realm, both realms

need to be mutually registered
● V5: Allows a request to pass through a chain of realms
● An intermediate KDC can pretend to be any user in

the whole world
● Counter-measure:
● Tickets with field TRANSITED with a list of realms

through which the request went
● A rogue KDC cannot change its name in this list,

only the ones that came before

Kerberos
● Measures against password guessing
● Login attacks
● V4 sends a request without authentication to the KDC
● Adversary can use the resulting ticket for an offline

dictionary attack
● V5 can use PREAUTHENTICATION-DATA to prove

that the user known his principal key
● Ticket attacks

● Alice asks KDC for a ticket for a human user, Bob
● Receives a ticket encrypted with Bob’s principal key
● She can now verify a guess of Bob’s password

● V5 has a field in the user list that disallows the creation of a
ticket.

Kerberos
● PKINIT
● Version that avoids dictionary attacks on passwords
● Two modes:
● Certificates
● Diffie-Hellman

Kerberos
● PKINIT
● Uses Public Key Infrastructure
● All principals have public / private key pairs
● For Alice:
● Public key UAlice
● Private key RAlice

● All principals have certificates
● (Alice - Alice’s public key)signed by certifying authority

Kerberos

M
a
c
h
i
n
e

K
D
C

KRB_AS_REQ:
“Alice needs TGT from KDC”

n1
Certificate(Alice, UAlice)
RAlice{timestamp, n2}

KRB_AS_REP:
Alice, TGT,

UAlice{Certificate(KDC, UKDC) , RKDC{k, checksum}}
k{SAlice ,n1 , TGT}

KDC invents symmetric key k
and session key SAlice

checksum is a keyed hash of Alice’s request

Kerberos
● Diffie-Hellman modality
● Secret key k is not invented by KDC
● Rather: it is generated by a Diffie-Hellman exchange

between Alice and KDC

Key Management
• Distribute public keys using certificates

	 In the early days of the Indian
Territory, there were no such things
as birth certificates. You being there
was certificate enough

	 - Will Rogers

	 In the early days of the Indian
Territory, there were no such things
as birth certificates. You being there
was certificate enough

	 - Will Rogers

Certificates
• Certificates link entity’s name to its public key
• Are signed by a certifying authority

Alice has public key 1450293485797signed Carol

Alice is the subject
Carol is the issuer
If Bob uses the certificate,
he becomes the verifier

Certificates
• Need to specify algorithms used
• Add validity dates

X.509
X.509 Version Number
Serial Number
Signature Algorithm Identifier
Issuer (X.500 Name)
Validity Period (Start – Expiration dates / times)
Subject (X.500 Name)
Subject Public Key Information: 	 Algorithm Identifier, Public Key
Value
Issuer Unique Identifier
Subject Unique IdentifierCA Digital Signature

Certificates
• Naming is a security concern

• Example: “Microsoft Corporation” vs “Microsoft
Corporation”
• Look the same, but are different unicode

strings (the second one uses the Hungarian
letter o)

• How many “Bill Smith” are there?

Names
• X 500 names

• Common name, country, organization,
organizational unit

X.509 Certificates
• Uses X.500 identifiers for used algorithms

• Issuer signature
• Public key certified

• Algorithms are registered and numbered in the
Abstract Syntax Notation 1

X.509 Certificate
• VERSION — 2 or 3
• SERIALNUMBER — identifies uniquely certificates of issuer
• SIGNATURE — Method used for signing
• VALIDITY — start and end time of validity
• SUBJECT
• SUBJECTPUBLICKEYINFO
• ISSUERUNIQUEIDENTIFIER
• ALGORITHMIDENTIFIER
• ENCRYPTED

Value of Certificates
• Value of certificate depends on the diligence of the

issuer in verification of the identity of the subject
• Verisign once issued a certificate for Microsoft on

a stolen credit card
• Claimed to have changed procedures so that it

could never happen again
• But would not say how for security reasons

Value of Certificate
• Need public / private key pairs and hence

certificates for each use of asymmetric
cryptography
• One for signing
• One for each authentication protocol
• One for confidentiality

X.509 Extensions
• Version 3 allows extensions

• Standard extensions
• Key information
• Policy information
• Subject and issuer attributes
• Restrictions on certificate path
• Extensions for certificate revocation

PKIX
• Another standard from IETF 1994

• Has extensions
• AuthorityKeyIdentifier
• SubjectKeyIdentifier
• KeyUsage
• PrivateKeyUsagePeriod
• CertificatePolicies
• PolicyMappings
• SubjectAltName

Other standards
• PBP
• WAP WTL — replaces ASN.1 names with simpler

ones
• DNSSEC — certificates for DNS
• SPKI (Simple PKI) RFC 2693

Revocation
• Certificates need to be revoked because of

• Issuer mistakes
• Loss of private keys

Revocation
• Certificate Revocation Lists (CRL)

• Basic Idea: publish a list of revoked certificates periodically
• Certificates are identified by serial number and issuer
• Security problems:

• Confidentiality:
• Publish only serial number and hash of contents

• Adversary can publish old CRL
• Always publish a CRL at a given time
• Sign CRL

Revocation
• Need to save space:

• Delta CRL
• Publish difference between previous and

current CRL
• Include first valid serial number

• Allows to revoke old certificates en masse

Implementation of
Revocation

• On-Line Revocation Service (OLRS)
• Server that responds whether a certificate is valid

• Black List versus White List
• Black List of revoked certificates
• White List of valid certificates
• Both prevent falsifying a certificate with a used

serial number

PKI modes
• Certificate chains

• Verifier needs to know public key of issuer
• Might need a certificate for issuer
• Gives raise to chains of certificates

PKI models
• Who can become an issuer?

• Anarchy (PGP)
• Everybody can sign certificates
• Verifiers have a database of certificates
• Verifier assigns trust to certificates

• Usually multiple chains for the same subject
— public key pair

PKI models
• Monopoly

• Only one entity (certifying authority) in the
universe

• Its public key is embedded in all software and
hardware products

• Who should this entity be?

PKI models
• Monopoly with Registration Authorities (RA)

• Sole CA allows RA
• RA authenticate the identity of a subject,

create keys, and guarantee the link between
subject and key

• All certificates are from the same CA

PKI models
• Monopoly with delegated CA

• Root CA authenticates other CAs
• CAs sign their own certificates

PKI models
• Oligopoly

• There are several trusted CAs
• Software / OS manufacturer decide which CAs

are trusted

PKI models
• Domain CAs

• Certificates for users in a certain domain
• Each CA administers its own domain
• Possible to allow cross-site certification
• PKIX allows to restrict certificates to certain

domains

Handshake Protocols

Handshake Protocols
• Threat model

• Passive sniffing

• Malicious Mallory can read messages between Alice and Bob

• but does not change / suppress them

• Spoofing

• Mallory pretends to be Alice or Bob

• Breaking Crypto

• Man-in-the-Middle

• Replay attacks

• Reflection attacks (open several sessions)

Handshake Protocols
• Simple password protocol

• Vulnerable to:

• Sniffing

• Spoofing (Mallory pretends to be Bob)

• Replay attacks

Alice Bob
Alice; Fiddlesticks

Welcome

Handshake Protocols
• One sided authentication (Alice to Bob)

• Alice and Bob share secret K and use symmetric encryption

• Bob challenges Alice with a random number N.

• A nonce

• Alice encrypts the random number

• Bob verifies the encryption

Alice Bob

“Alice”

EK(N)

N

Handshake Protocols
• Variations

• Bob asks Alice to decrypt a random value that Bob has
encrypted

• Same vulnerabilities and same work

Handshake Protocols
• Vulnerable to

• Denial of Service Attack

• Mallory makes lots of login attempts

• Each time, Bob encrypts something

• Can be vulnerable to sniffing / replay if the random
number is not random or repeated

Handshake Protocols
• Clock-based scheme

• Instead of a challenge, Alice just encrypts the time

 Alice
Bob

“Alice” EK(time)

Handshake Protocols
• Clock-based schemes

• Problem is clock drift

• If Bob demands too much accuracy, then clocks
need to be closely synchronized

• Synchronization can be a point of attack

• Otherwise, vulnerable to replay attack

Handshake Protocols
• How to organize a replay attack

• Mallory fills up Bob’s message queue with pseudo-
messages

• Alice sends login message to Bob, which is intercepted

“Alice, ”

• Mallory stops attacking Bob’s message buffer and
starts attacking Alice’s

• Mallory resends the intercepted login message

EK(time)

Handshake Protocols
• Public key based one-sided authentication

• Alice has private key R and public key U

Alice Bob

“Alice”

N

ER(N)

Bob authenticates if
EU (ER(N)) = N

Handshake Protocols
• Variation

• Bob can challenge with a key encrypted with Alice’s
public key

• Vulnerable to DoS attack

• Bob spends time on public-key cryptography for each
login attempt

Mutual Authentication
• With symmetric cryptography: Both Alice and Bob

challenge each other with nonces

Alice Bob

“Alice”

NB

NA EK(NB)

EK(NA)

Mutual Authentication
• Less vulnerable to Denial-of-Service attacks

• Uses four rounds

Mutual Authentication
• To save one round, one can have Alice challenge Bob first

Alice Bob

“Alice”, NA

EK(NA), NB

EK(NB)

Mutual Authentication
• The three-round protocol is vulnerable to a replay attack

• Mallory pretends to be Alice.

Mallory Bob

“Alice”, NA

EK(NA), NB

Mutual Authentication
• The three-round protocol is vulnerable to a replay attack

• Mallory pretends to be Alice.

Mallory Bob

“Alice”, NA

EK(NA), NB

• Mallory is now stuck. (S)he opens a second connection to
Bob.

Mutual Authentication

• Mallory reflects Bob’s challenge back to Bob

• Bob solves the challenge and poses a new one

Mallory Bob

“Alice”, NA

EK(NA), NB

Mallory Bob

“Alice”, NB

EK(NB),MB

Mutual Authentication

• Mallory then returns to the first session

• Reflects Bob’s own answer to her challenge in the second
session

Mallory Bob

“Alice”, NA

EK(NA), NB

Mallory Bob

“Alice”, NB

EK(NB),MB

Mallory Bob
EK(NB)

Mutual Authentication
• Warning signs for the possibility of a reflection

attack
1. Requestor authenticates last
2. Both requestor and authenticator use the same

protocol for dealing with challenges

Mutual Authentication
• Can break the scheme by:

• Have Alice authenticate first
• (the previous scheme)

• Destroy symmetry
• E.g.: Alice’s nonces have to be even and Bob’s

have to be odd

Mutual Authentication
• Other attack: spoofing for offline password attack

• Mallory spoofs Alice
• Obtains

• First part controlled by her
• Can now try to brute-force key

EK(NA), NB

Mutual Authentication
• Mutual authentication based on asymmetric

cryptography is not symmetric between requestor
and authenticator

Mutual Authentication
• Assume that Alice has public key and private

key
UA

RA

Alice Bob

”Alice” NA

RB(NA) NB

RA(NB)

UA(RA(NB)) == NBUB(RB(NA)) == NA

Alice checks: Bob checks:

Mutual Authentication
• Vulnerabilities:

• Possibility of Denial of Service Attack — yes
• Spoofing / Sniffing:

• No point, can directly brute-force the public keys
• Replay:

• Only if nonces get reused
• Reflection attack:

• No: protocol is not symmetric
• Man-in-the-middle:

• Vulnerable: MitM just passes on the messages

Mutual Authentication
• Reuse of key-pairs

• To sign, we encrypt a hash with the private key
• Spoofing:

• Pretend-Alice sends the hash of a message as
nonce

• Bob signs it
• Prevention:

• ALWAYS let requestor authenticate first
• NEVER use private-public key-pairs for more than

one purpose

Key Distribution Centers
• Users / services have an account with a KDC

• Based on a shared secret
• In case of need to access someone else, KDC

provides credential

Key Distribution Centers
• Attempt 1:

Alice Bob

KDC

Alice to Bob

KBob(Alice,KAB)KAlice(Bob,KAB)

Mutual authentication using KAB

KDC invents a common session key
Distributes it to both

Key Distribution Centers
• Attempt 1:

• KDC invents a common session key
• Sends it to both Alice and Bob
• Problem at Bob’s side:

• The sending by KDC and initialization of
mutual authentication are not synchronized

• Forces Bob to remember previous messages

Key Distribution Centers
• Needham Schroeder Protocol

• Alice asks KDC for a session key
• KDC sends Alice the session key (only visible to

her) and a ticket
• Ticket contains the KDC message to Bob

• Alice presents both her authentication request
and the ticket to Bob at the same time

• Bob no longer has to remember credentials

Key Distribution Centers
• Needham Schroeder

1. Alice sends request to KDC, stating her ID and
the service she wants to contact

• Nonce in order to label sessions

N1,Alice,Bob

Key Distribution Centers
• Needham Schroeder

2. KDC sends Alice a message encrypted with
the key shared by her and the KDC

• The nonce as a session identifier
• The service name
• A ticket for the service

• The ticket can only be read by Bob

KA(N1,Bob,KAB ,KB(KAB ,Alice))

Key Distribution Centers
• Since only Bob can read the ticket

• No need to encrypt it with Alice’s key

KB(KAB ,Alice)

Key Distribution Centers
• Needham Schroeder

• The KDC’s job is now done
• Alice and Bob mutually authenticate

• Alice to Bob:

• with an additional nonce

KB(KAB ,Alice),KAB(N2)

Key Distribution Centers
• Needham Schroeder

• Bob unpacks the ticket and then obtains the
nonce

• Proves that he could unpack the ticket and is
therefore Bob by performing an arithmetic
operation on Alice’s nonce.

• Adds a nonce of his own.
• Sends to Alice

KAB(N2 � 1, N3)

Key Distribution Centers
• Needham Schroeder

• Alice responds by deciphering (proving that she
can read the information send by the KDC to
her),

• performing an arithmetic operation on the result
• and sending it back to Bob

KAB(N3 � 1)

Key Distribution Centers
• Alice to KDC:
• KDC to Alice:
• Alice to Bob:
• Bob to Alice:
• Alice to Bob:

N1,Alice,Bob

KB(KAB ,Alice),KAB(N2)

KAB(N2 � 1, N3)

KAB(N3 � 1)

KA(N1,Bob,KAB ,KB(KAB ,Alice))

Key Distribution Centers
• What happens if the message from Bob to Alice is

KAB(N2 � 1),KAB(N3)

Key Distribution Centers
• There is a small vulnerability in Needham

Schroeder
• Trudy manages to determine the common key

long after it has been used
• Trudy has sniffed messages (3)-(5)
• Trudy sends
• Bob responds with

• where the last nonce is new
• But Trudy can respond with

KAB

KB(KAB ,Alice),KAB(N2)

KAB(N2 � 1, N3)

KAB(N3 � 1)

Key Distribution Centers
• Solution 1: Timestamps

• Add a time stamp T to the protocol

Alice to KDS: Alice, Bob, N1

KDS to Alice: KA(N1,Bob,KAB , T,KB(Alice,KAB , T))

Alice to Bob: KB(Alice,KAB , T),KAB(N2))

Bob to Alice: KAB(N2 � 1, N3)

Alice to Bob: KAB(N3 � 1)

Key Distribution Centers
• Solution 2: Strong Needham Schroeder

• Alice goes to Bob who hands her a nonce that
only he can verify

• Alice asks the KDC to put this verifier into the
ticket for Bob

Key Distribution Centers
• Strong Needham Schroeder

Alice to Bob: I want to talk to you

Bob to Alice: KB(NB)

Alice to KDS: Alice, Bob, N1,KB(NB)

KDS to Alice: KA(N1,Bob,KAB ,KB(Alice,KAB , NB))

Alice to Bob: KB(Alice,KAB , NB),KAB(N2))

Bob to Alice: KAB(N2 � 1, N3)

Alice to Bob: KAB(N3 � 1)

Key Management

Key Management

Key Management

