Security

Thomas Schwarz, SJ

BasICS

* A dependable system provides availability, reliabillity,
safety, maintainability, confidentiality, and integrity.

 Confidentiality: refers to the property that information is
disclosed only to authorized parties.

* Integrity: alterations to a system’s assets can be made
only in an authorized way, ensuring accuracy and
completeness.

BasICS

 We attempt to protect against security threats:
1. Unauthorized information disclosure (confidentiality)
2. Unauthorized information modification (integrity)

3. Unauthorized denial of use (availability)

BasICS

e Mechanisms:

* Encryption: transform data to something an attacker
cannot understand, or that can be checked for
modifications.

 Authentication: verify a claimed identity.

* Authorization: check an authenticated entity whether it
has the proper rights to access resources.

 Monitoring and auditing: (continuously) trace access
to resources

BasICS

e Security principles:

Fail-safe defaults: defaults should already provide good protection.
Infamous example: the default “admin.admin” for edge devices.

Open design: do not apply security by obscurity: every aspect of a
distributed system is open for review.

Separation of privilege: ensure that critical aspects of a system can
never be fully controlled by just a single entity.

Least privilege: a process should operate with the fewest possible
privileges.

Least common mechanism: if multiple components require the
same mechanism, then they should all be offered the same
implementation of that mechanism.

BasICS

e Where to implement?

Application Application
Middleware High-level protocols Middleware
OS Services OS Services
Transport | Transport
OS kernel OS kernel
Network Low-level protocols Network
Datalink Datalink
Hardware Physical Physical Hardware

‘ Network ‘

BasICS

* We are increasingly seeing end-to-end security, meaning
that mechanisms are implemented at the level of
applications.

* Trusted Computing Base: The set of all security
mechanisms in a (distributed) computer system that are
necessary and sufficient to enforce a security policy.

Privacy

* Privacy and confidentiality are closely related, yet are
different. Privacy can be invaded, whereas confidentiality

can be breached

e ensuring confidentiality is not enough to guarantee
privacy.

Privacy

e Right to privacy

* The right to privacy is about “a right to appropriate flow of
personal information.”

 Control who gets to see what, when, and how

e a person should be able to stop and revoke a flow of
personal information.

Privacy

e General Data Protection Regulation (GDPR)
 European Union regulation

e The GDPR is a comprehensive set of regulations aiming
to protect personal data.

Privacy

GDPR regulation

Impact on database systems

Attributes Actions
Collect data for explicit purposes Purpose Metadata indexing
Do not store data indefinitely TTL Timely deletion

Inform customers about GDPR
metadata associated with their data

Purpose, TTL,
Origin, Sharing

Metadata indexing

Allow customers to access their data Person id Metadata indexing
Allow customers to erase their data TTL Timely deletion
Do not use data for objected reasons Objections Metadata indexing
Allow customers to withdraw from Automated Metadata indexing
algorithmic decision-making decisions

Safeguard and restrict access to data Access control

Do not grant unlimited access to data Access control
Audit operations on personal data Audit trail Monitor and log
Implement appropriate data security Encryption

Share audit trails from affected Audit trall Monitor and log

systems

Cryptography

e Traditional use / symmetric encryption:

* Confidentiality of information in transit or at rest

Encryption Decryption

[Plaintext J—»[Ciphertext J—»[Plaintext J

 Encryption uses a key (or another secret)

e Decryption (up till lately) uses the same key

Cryptography

e Rail Fence Scheme (used by Spartans)

e A transposition scheme

e Symbols stay but position is scrambled

e Secret is the pattern

TCOHAKEFELPPTEBOH

TCO
HAKEF
ELPPTE
BOH

Cryptography

e Caesar’s Cipher
e Substitution Code
e Key: A shift amount x, often represented by a letter
 Encryption:

e Each letter is replaced by a letter moved by x
positions down in the alphabet

e Decryption:

e Each letter is replaced by a letter moved by x
positions upwards in the alphabet

e Example
GALLIAOMNIAESTDIVISAINPARTESTRES
PITTRIYVXRINCDMRERCIRXZIBDNCDBNC

N<X<H4H0ITOTVOZEZIrX—IOmMmmMmOO®?>

TOTMUOWIPN<XSX<40ITOUTOZZrX-—

Cryptography

e General Substitution Cipher
e Key: Uses a fixed permutation of letters

e Example: Generate a permutation of letters using a random
number generator, the key is the seed of the generator

 Encryption:

 Replaces a letter by the image of the letter under the
permutation

e Decryption:

 Replaces a letter by the image of the letter under the
Inverse permutation

Vigenere Cipher

e A.k.a: The unbreakable code

e |dea: Use a Caesar cipher, but vary the shift amount
with each letter

e Key is along phrase
e CSA used cipher disks and phrases
e “Manchester Bluff”
e “Complete Victory”
e “Come Retribution”

e To encode a letter:

e Move the inner disk’s A under the current letter of
the key phrase

* Take the letter of the plain text

e Read the inner disk’s letter under that letter in the CSA cipher disk: Luckily,

outer disk.
CSA SIGSEC was atrocious
e This is your cipher letter

Vigenere Cipher

Example

e “Divisions (commanded by) Maj. Gen. Picket, Brig.
General Pettigrew and Maj. Gen. Trimble will charge
cemetery hill after a preliminary bombardment”

e “DIVISIONSPICKETPETTIGREWTRIMBLEWILLCHAR”
e key: “FINALVICTORY”
e cipher: DAF, INLVAN,INA,SAL, ...

e Result:

* |QIDDWPLDZAPMGPPOBKZFVUYZVMMGMYBZCAMIE

Secret Key Cryptography

Plaintext |LEncryptio

Ciphertext

A
®
<

Ciphertext n Plaintext

Public Key Cryptography

Encryption

Plaintext 7 Cipher text

Private Key

Public Key

) 2
Cipher text |) Plaintext

Decryption

Using Public Keys

e Alice has public - private key pair P, and R,
e Bob has public - private key pair Pz and R,
* Alice wants to send Bob a private message

e Invents a symmetric key K
e Sends my, Pp(K) to Bob

e Only Bob can decrypt Pp(K) as K = Rp(Pg(K)) and
therefore decrypt mi

Using Public Keys

e Alice has public - private key pair P, and R,

e Bob has public - private key pair Pz and R,

* Alice wants to sign a message

e Sends (RA(m),m)

* Anyone knowing P, can decrypt: m = P,(R,(m))

Homomorphic Encryption

e (Can use operations directly on encrypted data

* M XN =MD n)g

Attacks on
Communication Channel

Passive intruder
only listens to C

A

—

Plaintext, P —»»

Encryption
method

Active intruder
can alter messages

A

A 4

Active intruder
can insert messages

Sender

f

Encryption
key, EK

Ciphertext
C = Ex(P)

Decryption| _y, paintext
method

f

Decryption
key, Dk Receiver

Examples

e Pedestrian behavior

 Detect device information of people walking with a cell-
phone or similar device

e Cellphone signals
 Wifi enabled cell-phones: MAC address
e Traffic planning does not know about the identity

 Find a way to anonymize identities

Hashes and message
Digests

Message Digest

010101
010111

001100
011000

Hashes

* Hashes are one-way functions

e Space of BLOB (Binary Large OBjects) to space of
small fixed-length string

* Blob changes a little bit induces big changes in hash

Hashes

* Various notions of security
* Pre-image resistance

e Given hash h it should be hard to find a blob m such
that hash(m) = h

* Second pre-image resistance

e Given blob m it should be hard to find a blob n such
that hash(m) = hash(n)

e (Collision resistance

e |t should be hard to find two different blobs m and n
such that hash(m) = hash(n)

Hashes

* “Provably” secure hashes:
* |f there is an algorithm that finds a pre-image

e Then we can solve an NP difficult problem /
probabilistic NP difficult problem in polynomial time

e TJend to be too slow

Hashes

e Can be used to ID documents.
e Computer Forensics:

 Use hashes of known good functions (OS, standard
software) to exclude artifacts from examination

* Public sighatures of documents
e |nstead of encrypting objects with private key
 Encrypt secure hash of object with private key

 Because public key encryption takes time
E,(0) vs E,(h(0))

Hashes

| arge number of proposed hashes
e Selection process by NIST
e Validation of implementation through CMVP

Hashes
for signing
* Public encryption is expensive

e Alice has public - private key pair U, and R,

* Alice wants to sign a message

. Sends (R,(h(m)), m)
e Only she knows R,

e Anyone knowing can decrypt: U,(R,(h(m))) 2 h(m)

Hashes

128b

160b

160b

224b / 256b /
384b /512 b

224b - 512b

335MB/sec

192 MB/sec

139 - 154
MB/sec

Status

completely broken

broken

no practical attacks yet but
theoretically broken

secure but not recommended

recommended

Key Management

Thomas Schwarz, SJ

Key-Management

e Keys are generated by programs
e Hashes of user-provided passwords
e Random strings
* Public-private key programs

* Problem is key-distribution

Session Keys

Common practice to use a ephemeral key used during a
single session

 Can be generated by Diffie-Hellman

* |Invented by one of the parties and distributed with a
master key

Provides “forward security”:

e |f an adversary stores encrypted communication and
later obtains the key information of one of sender and
recipient, then the adversary can still not decrypt the
communication

Key Management

e Session keys
e Use Diffie-Hellman

 Based on the hardness of the discrete logarithm problem

e Share prime p and multiplicative generator g

- {g'%plie(0,1,...,p—1})
e Alice invents a and sends g“ to Bob

e Bob invents b and sends gb to Alice
b
« Both use g% = (g“) = (gb)a

* Only they can do this calculation

Key Management

e Distributed Diffie-Hellman:
» All servers agree on a generator g and p

e Each server §; invents a secret g,

o Servers §; and §; communicate via the secret key g

Key Management

o Key distribution

 For secret keys:

Encryption

Plaintext, P —» method

A

Encryption
key, K

—>

*

Decryption | o b intext
method

Ciphertext

N

Symmetric-key
generator

A
Decryption

key, K

/

Communication channels with
confidentiality and authentication

Key Management

o Key distribution

 For public-private keys:

Encryption

Plaintext, P —» method

A

Public
key, PK

Decryption .
—>> method » Plaintext
A y
Ciphertext
Private
key, SK

Asymmetric-key
generator

Communication channel with
authentication only

Communication channel with
authentication and confidentiality

Kerberos

http://images.google.com/imgres?imgurl=www.aksityayincilik.com/images3/mitoloji/herakles-kerberos.jpg&imgrefurl=http://www.aksityayincilik.com/mitolojigaleri.htm&h=430&w=389&sz=28&tbnid=_0lKfTTIessJ:&tbnh=122&tbnw=110&prev=/images?q=kerberos&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&sa=N

Kerberos

e Simplifies administration of authentication

e User signs 1in on her/his workstation

Using password, ...

e User 1s automatically authenticated to all services
e Network 1s not considered safe

e Uses the concepts of
e KDC — Mediated authentication

e |rusted intermediary

o Implements Single Sign-On SSO

B 1\
; £ 5~ ! 57 2 {

@ — ‘5. NS
T A X N\

2 — -~ C A58 L) SN

e). 2 iy

LIS [t e \| [-

L) N v

KerberOS EANAZ - HELLAS 130

e Kerberos: Developed at MI'T" based on the work by
Needham Schroeder

e Uses symmetric encryption (for patent reasons)
e Available 1n versions 4 and 5
e Version 4 has better performance, but needs 1TCP/1P
e Version 5 has more functionality
e Part of Windows OS
e Available in Linux as Heimdal
e Available 1n variants for commercial UNIX and Apple

OS X
e PKINIT 15 a version using public keys

Kerberos

o lickets and Ticket Granting lickets (1'G'T)

e All principals have a shared, secret key with the KDCi:
master key / principal key

o If Alice needs a service from Bob, she goes to the KDC to
obtain a session key K,pand a ticket for B

e Alice’s Credential: K, and the ticket for Bob

e Alice cannot read what 1s 1in the ticket

Kerberos
e Orniginal Authentication
o Alice authenticates with her workstation

e Her master key 1s derived from her password

e Her workstation asks the KDC for a session key: S,

e Session key 1s valid for some hours

e Protects Alice’s master key
e She also obtains a TGl (Ticket Granting Ticket)

o [S4., Information on Alice’s 1dentity, expiration time| encrypted by
the master key of the KDC

o Her workstation only maintains the TGl and S,

“ <% ﬁ’ i v, |
.\ \ <) 1IN

s password
)

Kerberos

Alice

KRB_AS_REQ
“Alice needs 1TG'1™

KRB AS REP
KAZice {SAZice 5 TGY—}

TGT = Kgped “Alice”,
SAZice }

Kerb

! & &K, B\ &L -'-.",‘.

£ pla el ; S R J
LA < Vel
| SRo==tF 14

P A
* :’\\ 3 g

: = | \ '

o [2 NN
22s ws S 1% || [0
B s e IR\ N

EAAAZ -HELLAS .30

eros

e Alice’s credentials are encrypted with & ;, but the TGl 1s

already encrypted
e Why do we need a TG'I?

o If Al
with
e The

1ce needs a service, her machine sends the TG'T
the request to the KDC

KDC decrypts the request and has all the

information needed on Alice

e KDC does not need to maintain state such as
information send previously to Alice.

Kerberos

e In order to obtain service from Bob, Alice uses a program

EAAAZ - HELLAS A. 30

o T'he program needs to interact with Kerberos
e Her workstation generates a request to the KDC for a ticket
e |'he request contains an authenticator

e KDC uses the information in the TGT to authenticate
Alice and returns a ticket.

e Her workstation sends ticket and authenticator to Bob

e Bob deciphers the ticket to obtain the session key and uses
the authenticator in order to authenticate Alice

e Bob then sends his authenticator to Alice who now can
authenticate Bob

Kerberos

e Wants service from Bob.

KRB_TGS_REQ
“Alice needs Bob”
1GT = KKDG{“IAXHCG”J SAZice }

authenticator = S ;, {time}

KRB_TGS_REP
Satice L BOD”, Ayp, T1cket]
Ticket = Kp,, { “Alice”, Ry p}

Kerberos

KRB_AP_REQ
Ticket = [{Bob {“IAXHCG ”) [{AB}

authenticator = K5 {time}

KRB_AP_REP
K AB {tlmﬁ +1 }

7 /2 AL \
Kerberos % o5
EAAAZ - HELLAS A.30

e Login implementation:

e V4: Kerberos asks for login only after credentials are

obtained from the KDC

e Minimizes the time that the password 1s stored 1n
machine memory

e Makes it easier for an adversary who can obtain
information from the KDC for a dictionary attack

e V5: Kerberos asks for the password before getting
credentials from the KDC

Kerberos

e Replicated KDC
o KDC 1s a single failure point

e Replicas need access to the master database of users
o Usually use Master-Slave protocol
e Only the master can change the database

e Master keys in database are encrypted by the master
key of the KDC and protected 1n transit

e T'he rest of the contents are stored as hashes.

Kerberos

e Realms

e Principals of Kerberos are divided into reals with their own
database

e The KDC 1n each realm have their own master keys.
e V4: Every principal has a name consisting ot three

components

e Name

e Instance

e Realm

o I.g: Alice.Systemmanager. DMSCS

Kerberos

e 'lo authenticate for principals in another realm

e Need to find a chain of KDCs that know each ot]

1CT

e One obtains the TG'T of the previous KDC for t
subsequent KDC

1€

e Until one reaches the KDC for the realm of the target

Kerberos

KRB_TGS_REQ(Alice@Wonderland,
Oz@Wonderland)

v

KDC@Wond

Credentials Oz erland

A

KRB_TGS_REQ(Alice@Wonderland,
Dorothy@Oz)

v

KDC@OZ

Credentials for Dorothy

N

KRB_AP_REQ

Kerberos

e Change of keys:
e Naive solution
e Bob changes key
e Alice’s credential no longer work

e Her machine needs to find new credentials based on Bob’s correct
key

e Not always possible 1n a batch job
e Implemented solution
o All keys have a version number

o 'Ticket expire in 21 hours, so there 1s no problem having more than
one version of the key

o Users might still have problems:
o A change of password 1s effective immediately in a master KDC
o A slave KDC can use the previous key until updating the database
e Which results 1n failure to authenticate Alice

Kerberos

e V4: IP-directions 1in tickets
e As an additional authentication mechanism:

e All tickets have the IPv4 address of the user

e Prevents Alice from delegating her rights to someone
else

EAAAZ - HELLAS A.30

e Prevents interception of credentials

e |'he spoofer needs to obtain ticket and
authenticator and prevent that the true
authenticator gets to the server

e Now needs to falsify also his IP address

Kerberos

e Changes in V)
e Uses ASN.I (data representation

language)
o FExample: HOStAddre(Sisd:: SE%[]JENCEIN TEGEI{{
. . addr-type
Address in V4: 4 bytes address|[1] BYTE STRING }

o Assumes IPv4

Va:

* addr-type needs a byte to specity if 1t 1s type 0
and another one to specity the length

 INTEGER needs a byte to specify that it 1s an
integer, one for length, and at least one for the

value itself
o address|[1] needs four bytes plus the value

o 11 additional bytes

Kerberos
e V)H: Names

e simpler and without prohibited characters like
e contain a type and a variable number of fields.

¢ 3

Kerberos

e Delegation of rights

o (lapacity to give access to someone else over something over which one

has a right
e Necessary if someone (Bob) acts instead of another entity
e (Cannot be implemented by sharing master key
e V5: Alice can request a TGT with Bob’s address
e (an only be used by Bob
e V5: Alice can request a ticket with Bob’s IP-address
e 'This limits what Bob can do 1n lieu of Alice
e Additional interaction for delegation allows KDC to establish an audit trail
e Possible to put in a rule in the master database to specity

o If TGT can be used to obtain a TGT or ticket with different network
address

e If the TG'T can be forwarded.

Kerberos

e Implementation of Delegation (continued)

e Ilag Forwardable:

TG'T with this flag can be exchanged for a TG'T with different
network address

o Allows Alice to give a TGl to Bob with which Bob can obtain

tickets 1n lieu of Alice

e Ilag Proxiable:

TG'T with this flag can be utilized to obtain tickets with different
network address

Allows Alice to obtain a proxy ticket to give to Bob,
Does not allow Alice to get a TG'T for Bob

Kerberos

e Implementation of Delegation (continued)

e 1'G'T can have flag FORWARDED
e lickets can have tflag FORWARDED and PROXY

e An implementation can distinguish between tickets
obtained by forwarding and proxying

EAAAZ - HELLAS A 30

e KDC and application decide on permissibility of
forwarding and proxying

Kerberos

o licket Lite Time
e V4: Limited to about 21 hours
o Creates problem for long running batch job

e V5: Ticket life time 1s extended, implemented with
o STARTTIME

e ENDTIME
o AUTHTIME

e when Alice logged 1n
e RENEWTILL

Kerberos

e Renewable tickets
o Why? Tickets with long life are difficult to revoke

o If Alice needs a long-life ticket, KDC sets flag
RENEWABLE

e Before ticket expiration:

e Alice needs to renew the ticket
o The KDC just gives a ticket with changed expiration
time
e Alice needs to run a daemon 1n order to renew tickets
about to expire

Kerberos

e Post-dating tickets

EAAAZ - HELLAS A.30

e Used to allow tickets to valid 1n the future

o KDC emits a ticket with a flag INVALID and
STARITTIME set to when the ticket will be needed

e When the start time comes, Alice presents the ticket to
get a new ticket

e |'his allows easy ticket revocation

o A post-dated ticket has a flag POSTDATED to allow

an application to retuse post-dated tickets.

Kerberos

o Key versions

e Problem with key change:

e lickets become suddenly invalid

e Key versions allow server Bob to change his principal

key

o Al

keys carry version number

o |

he database entry for Bob contains key, p_kvno, k_kono

key — key of Bob encrypted by the principal key of KDC

p_kvno — version number of Bob’s key

k_kvno — version number of the KDC key used
Allows the KDC to change key

Kerberos

e If human user Alice 1s registered 1n various realms, she
probably wants to reuse the same password

e 'lo avoid generating the same principal key, V5 generates
it as hash of the password and the realm name

e Does not avoid dictionary attacks but protects good
passwords

Kerberos

e Hierarchy of realms

e V4: 1o obtain a ticket of another realm, both realms
need to be mutually registered

e V): Allows a request to pass through a chain of realms

e An intermediate KDC can pretend to be any user 1n
the whole world

e Counter-measure:

e |ickets with field TRANSITED with a list of realms
through which the request went

e A rogue KDC cannot change its name 1n this list,
only the ones that came betfore

Kerberos

e Measures against password guessing

e Login attacks
e V4 sends a request without authentication to the KDC

e Adversary can use the resulting ticket for an oftline
dictionary attack

e V) can use PREAUTHENTICATION-DATA to prove
that the user known his principal key

o |icket attacks
e Alice asks KDC for a ticket for a human user, Bob
e Receives a ticket encrypted with Bob’s principal key
e She can now verify a guess of Bob’s password

e V5 has a field in the user list that disallows the creation of a
ticket.

Kerberos
e PKINIT

e Version that avoids dictionary attacks on passwords
e '|wo modes:
e Certificates

e Diflie-Hellman

Kerberos

o PKINIT
e Uses Public Key Infrastructure

e All principals have public / private key pairs
e or Alice:

e Public key Uajice
e Private key Raiice
e All principals have certificates
e (Alice - Alice’s public key)signed by certifying authority

Kerberos

KRB_AS_REQ;
“Alice needs TG'T from KDC”

ni

Certificate(Alice, Ulice)
Ruiic.{ timestamp, n2}

v

KDC mvents symmetric key £
and session key Saiic
checksum 1s a keyed hash of Alice’s request

KRB_AS_REP:

Alice, TG

-

Uuiice{ Gertificate(KDC, Urpc) , Rgpcik, checksum}}

k{SAlice o TGT}

N

Kerberos

e Diffie-Hellman modality
e Secret key £ 1s not invented by KDC

e Rather: 1t 1s generated by a Dithie-Hellman exchange
between Alice and KDC

Key Management

e Distribute public keys using certificates

Oklahoma and Indian Territories Eastern

Shawnee
Ottawa

_ Ka
Neutral Strip Tonkawa
Cherokee Outlet Pon Osage
Otoe-Missouria Cherokee
Oklahoma /\“ﬁ\
wn
L T
Tel'l'lt()l'y Unassigned
Sac
Fox
N Muscogee
Kickapoo . (Creek)

In the early days.of th(e% a
W= o]

Territory, here were n such t]zmgs o
wnee ¢ y

as birth eertificates. You being there

| County Kiowa

was ceﬁ\ﬁcate erough \ Choctaw

Chickasaw

— - Wall Rogers

QW“‘“\X

Miami~__ \ Quapaw
Peoria
Modoc

Certificates

e Certiticates link entity’s name to its public key

* Are signed by a certitying authority

Alice has public key 145029348579 7signed carol

Alice Is the subject

Carol is the issuer

It Bob uses the certificate,
he becomes the verifier

Certificates

* Need to specity algorithms used
 Add validity dates

X.009

X.509 Version Number

Serial Number

Signature Algorithm Identifier

Issuer (X.500 Name)

Validity Period (Start — Expiration dates / times)
Subject (X.500 Name)

Subject Public Key Information: Algorithm Identifier; Public Key
\ZING

Issuer Unique Identifier

Certificates

« Naming is a security concern

* Example: “Microsoft Corporation” vs “Microsoft
Corporation”

* Look the same, but are different unicode
strings (the second one uses the Hungarian
letter o)

« How many “Bill Smith” are there?

Names

e X 500 names

« Common name, country, organization,
organizational unit

Z2 Adobe Acrobat Professional - [Chris1.pdf] - |Cl|5]
'?‘_4 File Edit View Document Tools Advanced Window Help -5 x|

Fopen @ save (et (M Email P Search - T CrestePDF - | ') Review & Comment |+ (| Secure ~ Z Sign - | | Advanced Edting

§§‘—WIT]SelemTen -{@ iR -] ® 9% ~ @ |- 0% FOE S HowTo.? -

N Tl:PT 'v‘.-v‘ﬁu«?’"v
= ote Too A ext Edits -—
LIl SUILILIICl 'y, 4 il UJILvVaIiIvo AP S T4) N S S) TVIIT I S AL UIC CULIII0UGLUIVLY Wiailowlav 1l 111
J

industrial or academic research.

vfl | Show -

Smcerely Yours

% Digitally signed by Thomas Schwarz, S.J.

DN: CN = Thomas Schwarz, S.J., C = US, O = Santa Clara
h O m a S S Chwa rz] S . 'J = University, OU = Depart:'nent of Computer Engineering

Date: 2005.01.12 17:18:55 -08'00'

§ Cof | § Sionf Bookmarks

Thomas Schwarz. S.J.
o] 85x1tin 4| ¥

F 4 4 2 0f 2 P H O O [0 H G

X.509 Certificates

e Uses X.500 identitiers tfor used algorithms
* |ssuer signature

* Public key certified

* Algorithms are registered and numbered In the
Abstract Syntax Notation 1

X.509 Certificate

VERSION — 2 or 3

SERIALNUMBER — identities uniquely certificates of issuer
SIGNATURE — Method used for signing

VALIDITY — start and end time of validity

SUBJECT
SUBJECTPUBLICKEYINFO
ISSUERUNIQUEIDENTIFIER
ALGORITHMIDENTIFIER
ENCRYPTED

Value of Certificates

* Value of certificate depends on the diligence of the
Issuer in verification of the identity of the subject

* Verisign once issued a certiticate for Microsoft on
a stolen credit card

* Claimed to have changed procedures so that it
could never happen again

* But would not say how for security reasons

File Action

View Help

'i«e»lzﬁ'_

[MERREREIN 7 Na:

G Certificates - Current User

» || Personal
» | Trusted Root Certification Au
| Enterprise Trust

4 || Intermediate Certification Au
| Certificate Revocation Lis
| Certificates

» || Active Directory User Object

» | Trusted Publishers

4 || Untrusted Certificates
| Certificates |

» || Third-Party Root Certificatior

» | Trusted People

» || Smart Card Trusted Roots

< | m | »

Issued To

] Microsoft Corporation
) Microsoft Corporation

Issued By

VeriSign Commercial Software Pu...
VeriSign Commercial Software Pu...

Expiration Date

1/31/2002
1/30/2002

Intended Purposes

<All>
<All>

Friendly Name

Fraudulent, NOT M...
Fraudulent, NOT M...

Status

Certificate Te...

Untrusted Certificates store contains 2 certificates.

Value of Certificate

 Need public / private key pairs and hence
certificates for each use of asymmetric

cryptography
* One for signing
* One for each authentication protocol

* One for confidentiality

X.509 Extensions

* Version 3 allows extensions
e Standard extensions
e Key information
* Policy information
e Subject and issuer attributes
* Restrictions on certificate path

e Extensions for certificate revocation

PKIX

 Another standard from IETF 1994

e Has extensions

o AuthorityKeyldentifier

SubjectKeyldentifier
KeyUsage
PrivateKeyUsagePeriod
CertificatePolicies
PolicyMappings
SubjectAltName

Other standards

PBP

WAP WTL — replaces ASN.1 names with simpler
ones

DNSSEC — certificates for DNS
SPKI (Simple PKI) RFC 2693

Revocation

e (Certificates need to be revoked because of
e |ssuer mistakes

* Loss of private keys

Revocation

* Certificate Revocation Lists (CRL)
* Basic ldea: publish a list of revoked certiticates periodically
* Certificates are identified by serial number and issuer
e Security problems:
* Confidentiality:
* Publish only serial number and hash of contents
* Adversary can publish old CRL
* Always publish a CRL at a given time
e Sign CRL

Revocation

 Need to save space:
* Delta CRL

* Publish ditference between previous and
current CRL

 |nclude first valid serial number

e Allows to revoke old certificates en masse

Implementation of
Revocation

 On-Line Revocation Service (OLRS)

e Server that responds whether a certificate is valid
* Black List versus White List

* Black List of revoked certificates

* White List of valid certificates

* Both prevent falsitying a certificate with a used
serial number

PKI modes

e Certiticate chains
e Verifier needs to know public key of issuer
 Might need a certificate for issuer

 (3ives raise to chains of certificates

PKI models

* Who can become an issuer”
* Anarchy (PGP)
* Everybody can sign certificates
* \eritiers have a database of certificates
* Verifier assigns trust to certificates

* Usually multiple chains for the same subject
— public key pair

PKI models

 Monopoly

* Only one entity (certifying authority) in the
universe

* |ts public key is embedded in all software and
hardware products

* Who should this entity be”

PKI models

 Monopoly with Registration Authorities (RA)
* Sole CA allows RA

 RA authenticate the identity of a subject,
create keys, and guarantee the link between
subject and key

e All certificates are from the same CA

PKI models

* Monopoly with delegated CA
e Root CA authenticates other CAs

* CAs sign their own certificates

PKI models

* Oligopoly
e There are several trusted CAs

e Software / OS manufacturer decide which CAs

are trusted 2

Intended purpose: <Al v
Trusted Root Certification Authorities ITrusted Publishers I 4 | » |
Issued To l Issued By l Expiratio. .. l Friendly Name IZI

SecureSign RootCA3 SecureSign RootCA3 9/15/2020 Japan Certificati...
SERVICIOS DE CER... SERWICIOS DE CERTI... 3/9/2009 SERVICIOS DE C...
Es14 Secure Client CA SIA Secure Client CA 71812019 Societa Interban...
(Es1a Secure Server CA SIA Secure Server CA 71812019 Societa Interban...
Swisskey Root CA Swisskey Root CA 12)31/2015 Swisskey Root CA
1 TrustCenter Cla... TC TrustCenter Class ... 1/1/2011 TC TrustCenter ...
E1C TrustCenter Cla... TC TrustCenter Class ... 1/1/2011 TC TrustCenter ... —
E=1C TrustCenter Cla... TC TrustCenter Class ... 1/1/2011 TC TrustCenter ...
E7C TrustCenter Cla... TC TrustCenter Class ... 1/1/2011 TC TrustCenter ... Ll

[~ P — . p——— — —

Import... | Export,., Remove Advanced...

Certificate intended purposes

e
View |

Close

PKI models

 Domain CAs
» Certificates for users in a certain domain
 Each CA administers its own domain
* Possible to allow cross-site certitication

e PKIX allows to restrict certificates to certain
domains

2

Handshake Protocols

Handshake Protocols

- Threat model

- Passive sniffing
- Malicious Mallory can read messages between Alice and Bob
- but does not change / suppress them
- Spoofing
- Mallory pretends to be Alice or Bob
- Breaking Crypto
- Man-in-the-Middle
- Replay attacks

- Reflection attacks (open several sessions)

Handshake Protocols

- Simple password protocol

Alice: Fiddlesticks
Alice > Bob
) Welcome

- Vulnerable to:

- Sniffing
- Spoofing (Mallory pretends to be Bob)
- Replay attacks

Handshake Protocols

- One sided authentication (Alice to Bob)

- Alice and Bob share secret K and use symmetric encryption

“A '%” N
N
Er(N)

<

- Bob challenges Alice with a random number N.
- A nonce
- Alice encrypts the random number

- Bob verifies the encryption

Handshake Protocols

- Variations

- Bob asks Alice to decrypt a random value that Bob has
encrypted

- Same vulnerabilities and same work

Handshake Protocols

- Vulnerable to

- Denial of Service Attack
- Mallory makes lots of login attempts
- Each time, Bob encrypts something

-+ Can be vulnerable to sniffing / replay if the random
number is not random or repeated

Handshake Protocols

- Clock-based scheme

‘Alice” Ek (time)

>

+ Instead of a challenge, Alice just encrypts the time

Handshake Protocols

- Clock-based schemes

- Problem is clock drift

- |If Bob demands too much accuracy, then clocks
need to be closely synchronized

+ Synchronization can be a point of attack

-+ Otherwise, vulnerable to replay attack

Handshake Protocols

- How to organize a replay attack

- Mallory fills up Bob’s message queue with pseudo-
messages

- Alice sends login message to Bob, which is intercepted
“Alice, Fk (time)”

- Mallory stops attacking Bob’s message buffer and
starts attacking Alice’s

- Mallory resends the intercepted login message

Handshake Protocols

* Public key based one-sided authentication
e Alice has private key R and public key U

“Alice”

Er(N)

Bob authenticates if
Ey(Er(N)) =N

Handshake Protocols

- Variation

- Bob can challenge with a key encrypted with Alice’s
public key

- Vulnerable to DoS attack

- Bob spends time on public-key cryptography for each
login attempt

Mutual Authentication

- With symmetric cryptography: Both Alice and Bob
challenge each other with nonces

“Alice”
Np

N 4 Ex(Np)

Er(Na)

Mutual Authentication

- Less vulnerable to Denial-of-Service attacks

- Uses four rounds

Mutual Authentication

- To save one round, one can have Alice challenge Bob first

“Alice”, N4
Erx(Na),Np

Er(Np)

Mutual Authentication

- The three-round protocol is vulnerable to a replay attack

- Mallory pretends to be Alice.

“Alice”, N 4

Mutual Authentication

- The three-round protocol is vulnerable to a replay attack

- Mallory pretends to be Alice.

“Alice”, N 4

- Mallory is now stuck. (S)he opens a second connection to
Bob.

Mutual Authentication

“Alice”, N 4

“Alice”, N

-+ Mallory reflects Bob’s challenge back to Bob

- Bob solves the challenge and poses a new one

Mutual Authentication

“Alice”, N 4

“Alice”, Np

Fr(Np)

Mallory

- Mallory then returns to the first session

- Reflects Bob’s own answer to her challenge in the second

session

Mutual Authentication

* Warning signs for the possibility of a reflection
attack

1. Requestor authenticates last

2. Both requestor and authenticator use the same
porotocol for dealing with challenges

Mutual Authentication

 Can break the scheme by:
 Have Alice authenticate first
e (the previous scheme)
* Destroy symmetry

 £.g.: Alice’s nonces have to be even and Bob's
have to be odd

Mutual Authentication

e Other attack: spoofing for offline password attack
* Mallory spoofs Alice
e Obtains Ex(Na),Np
* First part controlled by her
e Can now try to brute-force key

Mutual Authentication

 Mutual authentication based on asymmetric
cryptography is not symmetric between requestor
and authenticator

Mutual Authentication

* Assume that Alice has public key [J 4 and private

key KA
7 Alice” Ny
Rg(N4a) Np
RA(NpB) X
Alice checks: Bob checks:

Up(Rp(Na)) == Na Ua(Ra(Np)) == Np

Mutual Authentication

* Vulnerabilities:
e Possibility of Denial of Service Attack — yes
* Spoofing / Sniffing:
* No point, can directly brute-force the public keys
* Replay:
e Only if nonces get reused
* Reflection attack:
* No: protocol is not symmetric
 Man-in-the-middle:
* Vulnerable: MitM just passes on the messages

Mutual Authentication

* Reuse of key-pairs
e Jo sign, we encrypt a hash with the private key
e Spoofing:

* Pretend-Alice sends the hash of a message as
nonce

 Bob signs it
* Prevention:
 ALWAYS let requestor authenticate first

 NEVER use private-public key-pairs for more than
one purpose

Key Distribution Centers

e Users / services have an account with a KDC
e Based on a shared secret

e |n case of need to access someone else, KDC
porovides credential

Key Distribution Centers

e Attempt 1:
K Ahce KAB)

Mutual authentication using K p

Alice to Bob

K Alice(Bob, Kap)

Alice b

>

KDC invents a common session key
Distributes it to both

Key Distribution Centers

e Attempt 1:
« KDC invents a common session key
* Sends it to both Alice and Bob
 Problem at Bob's side:

* The sending by KDC and initialization of
mutual authentication are not synchronized

* Forces Bob to remember previous messages

Key Distribution Centers

e Needham Schroed

er Protocol

Alice asks KDC

her) and a ticket

for a session
KDC sends Alice the session

Key

Key (only visible to

* Ticket contains the KDC message to Bob

Alice presents both her authentication request
and the ticket to Bob at the same time

Bob no longer has to remember credentials

Key Distribution Centers

e Needham Schroeder

1. Alice sends request to KDC, stating her ID and
the service she wants to contact

N1, Alice, Bob

e Nonce in order to label sessions

Key Distribution Centers

e Needham Schroeder

2. KDC sends Alice a message encrypted with
the key shared by her and the KDC

 The nonce as a session identitier
 [he service name
e A ticket for the service

* The ticket can only be read by Bob

K4 (N1,Bob, Kap, Kg(K 4p, Alice))

Key Distribution Centers

* Since only Bob can read the ticket
KB (KAB, AllC@)

* No need to encrypt it with Alice’s key

Key Distribution Centers

 Needham Schroeder
 The KDC's job is now done
* Alice and Bob mutually authenticate
* Alice to Bob:

KB(KAB,AHCG),KAB(NQ)

e With an additional nonce

Key Distribution Centers

e Needham Schroeder

 Bob unpacks the ticket and then obtains the
nonce

* Proves that he could unpack the ticket and is
therefore Bob by performing an arithmetic
operation on Alice’s nonce.

e Adds a nonce of his own.
e Sends to Alice

KAB(NZ — 17N3)

Key Distribution Centers

e Needham Schroeder

» Alice responds by deciphering (proving that she

can read the information send by the KDC to
her),

e performing an arithmetic operation on the result
e and sending it back to Bob

Kap(Ng — 1)

Key Distribution Centers

Alice to KDC:
KDC to Alice:

Alice to Bob:
Bob to Alice:
Alice to Bob:

N1, Alice, Bob
K 4(N1,Bob, Kap, Kg(K ap, Alice))
Kp(Kap, Alice), K Aop(N>)
Kap(Ny — 1, N3)
Kap(N3 — 1)

Key Distribution Centers

 What happens if the message from Bob to Alice is

Kap(N2 — 1), Kap(N3)

Key Distribution Centers

* There is a small vulnerability in Needham
Schroeder

* Trudy manages to determine the common key K 4 g
long after it has been used

* Jrudy has sniffed messages (3)-(5)
e Trudy sends Kp(Kap,Alice), Kap(N2)
* Bob responds with K ap(/N2 — 1, N3)
* where the last nonce is new
e But Trudy can respond with K 4g(/N3 — 1)

Key Distribution Centers

e Solution 1: Timestamps
 Add atime stamp T to the protocol

Alice to KDS: Alice, Bob, N;

KDS to Alice
Alice to Bob
Bob to Alice
Alice to Bob

. KA(N1,Bob, Kap,T, Kg(Alice, Kap,T))
. Kp(Alice, Kap,T), Kap(Ns))

. Kap(Ny — 1, N3)

. Kap(N3 —1)

Key Distribution Centers

e Solution 2: Strong Needham Schroeder

* Alice goes to Bob who hands her a nonce that
only he can verity

» Alice asks the KDC to put this verifier into the
ticket for Bob

Key Distribution Centers

e Strong Needham Schroeder

Alice to Bob: I want to talk to you

Bob to Alice: Kp(Npg)

Alice to KDS: Alice, Bob, N1, Kg(Npg)

KDS to Alice: K4(N1,Bob, Kap, Kg(Alice, Kap,Ng))
Alice to Bob: Kp(Alice, Kaop, Np), Kap(N>))

Bob to Alice: Kap(No — 1, N3)

Alice to Bob: Kap(N3 —1)

Key Management

Key Management

Key Management

