
Laboratory: The Hangman Game

Prerequisites:

Lists, Interaction with files, String processing, Loops, Conditional statements.

Overview

The hangman game is a game where a player has to guess a word
with a certain number of attempts. Initially, the player is shown a
template with one space per letter. In each round, the player
guesses a (new) letter. If the letter is in the word, then the spaces
where the letter appears are filled in. Otherwise, one of the head,
torso, left arm, right arm, left leg, and right leg of a hanged stick-
person is drawn hanging from a gallows. Once the last body part
of the hanged man is drawn, i.e. after six unsuccessful guesses for
a letter in the word, the player has lost. You can find much
information for the Hangman Game in the internet, including quite a
number of Python code projects, which is why it is no longer used
as a class project. In this laboratory, we are going to build the
hangman game step by step.

Getting a word

Before we can start, we need to have a source for words to be guessed. On the internet, you
can find a “English word list” by Lawler that you can download. For your convenience, it is
also provided via the course page. As you can see, it is a straight .txt file in ASCII with one
English word per line. Our first task is to remove some words that do not fit the hangman
game. We write a Python script that takes the words in the Lawler file and writes them into
another file, called “vocabulary.txt”. We copy a word if it does not contain a hyphen, a
parenthesis, and if it has a length of six letters or more.

After we created our file, we write a function def get_random_word(): This function
randomly selects a word from “vocabulary.txt”. The function opens the file and reads all words
line by line into a list. We then use the function random.randint(0, len(lista)-1) to
randomly select an index of an element in the list and then print out the word in the list at this
index. If we were anticipating playing Hangman incessantly, then we might want to create the
list of words once per session and select the word out of the list separately for each round of
game.

Drawing the stick figure

Write a function def draw(errors): that draws the stick figure (see above right) in
dependence on the number of errors. If the number of errors is 0, then there is only the rope, if
it is 1, then there is the head, … If the number of errors is larger than 5, then the full figure is
displayed with an appropriate message. I create the drawing one line at a time, checking for
the number of errors for each line, but you can use a different strategy such as creating
different strings for each class of errors.

+----+
| |
| O
| /|\
| / \
|
|
|
|
 You lost

Game Design

We design the game with a big while loop at its core. In the
initialization phase, we select the word to be guessed (with
get_random_word) and write the initial screen to the shell.
The initial screen consists of a drawing of the hangman with
no errors and a line that displays the letters of the word to be
guessed with only underscores. We then enter an infinite
while loop (Figure on right). In each iteration, we ask for a
letter, see whether the letter was already entered, and then
whether the letter is part of the word to be guessed. In the
latter case, we also check whether the whole word has been
guessed. We maintain a central data structure, namely a list
of letters that have already been seen, the seen_list. It is
originally empty, but fills up each time the player enters a new,
previously not seen letter.

Displaying a word

We display the secret word by replacing all letters not yet seen with underscores. Besides the
word to be guessed, we need a list of all seen letters. For example, if the secret word is
“xenophobia” and the list of guessed letters is “a”, “e”, “i”, “o”, “u”, “n”, then we display

_eno__o_ia.

Getting a letter

Write a function def get_letter(seen_list): that uses a list of already seen letters. It
uses an infinite loop. In each iteration, the program asks the user to enter a letter, takes the first
letter of the input, and converts the letter to lower case. If the letter is not in the list of already
seen letters, it accepts the letters and returns it (jumping out of the infinite loop by this).
Otherwise, it just complains. The drawing on the left shows the control flow, but frankly, it is
more complicated than the Python function.

Checking for Success

If the user enters a letter, three cases arise: First, the letter has already been entered. In this
case, the previously described getting-a-letter function handles the prompting for another
letter. Second, the letter is new, but not in the word. In the main function, this results in
incrementing the number of errors. Third, the letter is new and it is in the word. The main
function will then check whether the word has been guessed. To do this, it is easier to write a
function def success(word, seen_list) that returns True if all of the letters in the
argument word (containing the word to be guessed) are in the seen_list, containing all the
letters that the user has guessed so far. The function just passes through the letters in word. If
a letter is not in the seen_list, then it returns False. If however all the letters are in the
seen_list, then it returns True.

Putting this together: the play_hangman() function

Like good software engineers, we have divided the task into small modules. In a bottom-up
manner, we now create the main function, called def play_hangman(). The function

While True

Ask user for a
letter

Select first
letter of input

Move answer
to lower case

Is selection in
the list of

words already
seen?

Return
selectionComplain

YesNo

Arguments: a list of letters already seen

maintains a state consisting of the list of seen letters, the secret word, and the number of
errors. It then enters the main loop. We display the secret word (initially with only underscores)
and ask for a new letter. The new-letter function already handles instances of the letter entered
by the user having been seen before. There are now two possibilities: First, the new letter is
not in the word. In this case, we increment the number of errors and inform the user with a
“Sorry”. We also check whether the number of errors is too large, in which case we inform the
user, print out the secret word and return from the play_hangman function, or alternatively,
draw the hangman. Second, the new letter is in the word. We check whether the user has
guessed the word. If yes, we congratulate, otherwise, we display the hangman and the secret
word (minus the non-guessed letters). Some of this functionality can be embedded in the test
for the while loop or you can have an infinite while True loop.

Congratulations, you have build your first usable game.

	Laboratory: The Hangman Game
	Prerequisites:
	Overview
	Getting a word
	Drawing the stick figure
	Game Design
	Displaying a word
	Getting a letter
	Checking for Success
	Putting this together: the play_hangman() function
	Congratulations, you have build your first usable game.

