Exception Handling

Thomas Schwarz, SJ

Exceptions

® RAISING AN EXCEPTION interrupts the flow of the
program

® HANDLING AN EXCEPTION puts the program flow back
on track or deals with an error situation

® Such as out of memory, file cannot be found, CPU
illegal instruction error, division by zero, overflow, ...

Python Philosophy

Socrates scores, got a besutiful cross from Il
Archimedes. The Germans are disputing it.

Kant, via the categorical lmpenbva ":"G;;{,
is holding that, ontologically, it exists S A
only in the imagination. - And Marx is claiming it was offside.

Philosopher’s Football

¢ Handle the common case.

 And deal with the uncommon with exceptions.

C, Java, C++ Philosophy

e (C: check before you assume

e Java, C++: Use exceptions to handle bad situations

* Python: Use exceptions for the not so ordinary

Python

e |f an instruction or block of instruction can cause an error,
put it in a try block.

try:

int (string)

Converts the string into
an integer

Notice that we are not using the result of the conversion,
we just attempt the conversion

Python Exceptions

* Then afterwards, handle the exception.

* You should, but are not required to specify the possible
offending exception

try:
int (string)
If the conversion fails, a except ValuekError:

ValueError is thrown . .
print (“"Conversion error”)

This block handles the
exception

Python Exceptions

e How do you find which error is thrown:;
* You can cause the error and see what type of error it is

* You can look it up

>>> 5/0
Traceback (most recent call last):
File "<pyshell#5>", line 1, 1n <module>
5/0
ZeroDivisionError: division by zero

Division by zero creates a
ZeroDivisionError

Python Exceptions

e Putting things together: Testing whether a string
represents an integer

def 1s 1nt(string) :
try:
Try out the conversion 1nt (string)
return True
except:

return False

Python Exceptions

e Putting things together: Testing whether a string
represents an integer

def 1s 1nt(string) :
try:
Try out the conversion 1nt (string)
return True
except:

return False

It worked:
We return True

Python Exceptions

e Putting things together: Testing whether a string
represents an integer

def 1s 1nt(string) :

Try out the conversion

try:
int (string)
return True
except:
return False

It did NOT work:
An exception is thrown
We return FALSE

Python Exceptions

 As you can see from this example, the moment an
exception is thrown, we jump to the exception handler.

Python Exceptions

e When to use exceptions and when to use if

e Recall: Using if is defensive programming

e Recall: Using exceptions amounts to the same degree
of safety, but is offensive programming

e Rule of thumb:

e |f exceptions are raised infrequently, then use them

Python Exceptions

* Let’s make some timing experiments

* Define two functions that square all elements in a list, if the
elements are integers.

def square list(lista):
result = []
for element 1n lista:
1f element.isdigit () :
result.append (int (element) **2)

def square listZ2(lista):
result = []
for element 1n lista:
try:
result.append (int (element) **2)
except:
pass

Python Exceptions

* The pass instruction:

* When Python expects a statement, but we don’t have
one:

e Just use pass

e The No-Operation instruction

Python Exceptions

e Recall how to use the time-module to obtain the CPU
(wall-clock) time

e \We use this to measure execution time

* First a list that only contains integers

def timeit (function, trials):
lista = [str(i) for 1 in range(1000000)]
count = 0
for 1n range(trials):
start = time.time ()
lista?Z2 = function(lista)
count += time.time () -start

return count/trials

Python Exceptions

 Result: Exceptions are somewhat faster

>>> timeit(square_list,5)
0.3025518894195557

>>> timeit(square_list2,5)
0.2796015739440918

Python Exceptions

 What if none of the list elements are integers:

def timeit (function, trials):
lista = ["a"+tstr (1) for 1 in range(1000000)]

count 0

for 1n range(trials):
start = time.time ()
lista? = function(lista)
count += time.time()-start

return count/trials

>>> timeit(square_list,5)

0.0251597881317138¢8
>>> timeit(square_list2,5)
| 0.41803536415100095

Python Exceptions

e \What about if the letter is at the end

def timeit (function, trials):
lista = [str(1)+"a" for 1 1in range(1000000)]
count = 0
for 1n range(trials):
start = time.time ()
lista?2 = function(lista)
count += time.time () -start

return count/trials

>>> timeit(square_list,5) _
0.030397653579711914 Sﬁﬁcrﬁggl‘:"joj;‘;
'>>> timeit(square_list2,5)

0.40491724014282227

Self Test

 Define a function that calculates the geometric mean of
two numbers.

e Use an exception to deal with a ValueError, arisen by
taking the square-root of a negative number

e Here is the if-version. We return None if there is no
mean.

def geo(x, Vy):
1f x*y > 0O:
return math.sqgrt (x*y)
return None

Self Test Solution

def geoe(x,VY):
try:
return math.sqgrt (x*y)
except ValueError:
return None

Multiple Exceptions

* We can write an exception handler that handles all the
exceptions

* This is discouraged since there are just too many
exceptions that can occur

* such as out-of-memory, system-error, keyboard-
interrupt ...

* |n this case, the except clause specifies no exception

try:
accum += 1/n No exception specified
except: Handler handles
print (“something bad happened”) everything

Multiple Exceptions

e Normally, you want to specify which exceptions you are
handling

* You can specify several exception handles by repeating the
exception clause

e Or you can handle a list of exceptions
The parentheses are

def test(): necessary

try:
f = open("none.txt")
block = f.read(250)
except IOError:
print ("something happened when reading the file")
except EOFError:
print ("ran out of file")
except (KeyboardInterrupt, ValueError):
print ("something strange happened")

Cleaning Up

e Sometimes you need to make sure that failure-prone
code cleans up

e Usethe finally clause

e (Guaranteed to be executed
e Even with return statements

* Even when exceptions are raised

Example for finally clause

* |f we open a file without the if-clause, we are morally
obliged to close it

e |et’s say, if you have a long-running process that only
needs a file for a little time, you should not hog the file
and prevent others from accessing it.

Example for :

def harmonic (filename) :
Assumes that the elements in
We return the harmonic mean

mwiiw

count = 0
accumulator = 0
try:
infile = open(filename,

for line in infile:
for words 1in line.sp
accumulator += 1
count += 1
return count/accumulator
except ZeroDivisionError:
print ("saw a zero")
return 1000000000
except ValueError:
print ("saw a non-integer
return O
finally:
print ("I am done and clo
infile.close()

"inally clause

the file are numbers.
of the numbers.

Return in the try block

encoding="utf-8")

it () :

. _ Return in the handler
/int (we—ds)

But finally is
guaranteed to run
before any of the

1Al)
returns

sing thé file")

Raising exceptions

* You can also raise your own exception

* You can even define your own exceptions when you
have understood classes

e Justsay: raise ValueError

 or whatever the exception is that you want to raise.

Self Test

* Recall that the finally clause is always executed.

 What is the output of the following code

def raising():
try:
raise ValueError
except ValueError:
return 0
finally:
return 1

Answer

e The functions returns 1

* The exception is raised and control passes to the
exception handler

» Before the exception handler can return, the finally
clause is executed

e And that one returns 1

