
Data Structures for
Classes
Thomas Schwarz

Interfaces
• Interfaces encapsulate how a user can use a certain set

of classes

• Python does not need interfaces and only implemented
them as Abstract Base Classes (ABC) in 3.4

Interfaces
• Example: Sequences

• An interface describes what can be invoked

Sequence

__getitem__
__contains__
__iter__
__reversed__
index
count

Sized

__len__

Iterable

__iter__

Container

__contains__

Interfaces
• Example: Sequences

• Some missing methods can be implemented via other
methods

• in still works even without __contains__ and __iter__

Interfaces
• ABC: Abstract Base Class

• A class that does not have any methods implemented

• If you derive a class from an ABC:

• You have to implement these methods

• You make a public declaration that these methods are
in your class

Interfaces
class FrenchDeck(collections.MutableSequence):
 ranks = [str(n) for n in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

 def __len__(self):
 return len(self._cards)

 def __getitem__(self, position):
 return self._cards[position]

 def __setitem__(self, position, value):
 self._cards[position] = value

 def __delitem__(self, position):
 del self._cards[position]

 def insert(self, position, value):
 self._cards.insert(position, value)

Interfaces
• Here we have to implement methods that do not make

sense for a deck of cards because MutableSequence
demands them

• But now we get a whole lot of other methods that are
implemented in terms of these methods

