
Classes and Objects
Thomas Schwarz, SJ

Classes and Objects
• Allows programmer to create their own data structures

• Data Layout

• Methods (functions working on the data structure)

Classes and Objects
• Object Oriented programming is its own style:

• Imperative programming manipulates the state of
memory

• Breaks up tasks through procedures and functions

• Object Oriented Programming

• Creates objects that interact with each other

• Objects are defined with a user-defined data type

Classes and Objects
• Each object maintains its own state

• Objects manipulate themselves and other objects
through methods

Classes and Objects
• Running Example:

• Rational Numbers

• Rational numbers have numerator and denominator

• Divide by the largest common divisor

• And if there is a negative sign, let it be at the
denominator

Defining Objects
• Objects consists of fields and methods

• Fields contain values

• Two types:

• Class variables aka Class fields

• Belong to all objects of the class

• Object variables aka Object fields

Defining Objects
• Example:

• class math has a class field e

• math.e

• This is Euler's constant

• math.pi

• This is pi

• There is only one such thing

• Therefore it is a class variable

Defining Objects
• Example:

• class Rational

• Each object has their own denominator and numerator

• These are object variables, because they differ
between objects

•

Defining Objects
• Methods also belong either to a class or to an object

• class methods vs. object methods

• An object method will also use the current object

Defining Objects
• To create an object of type class, “instantiation”: we

define and use an initializer called __init__()

• The initializer can have arguments.

• If we create object variables and methods, we use the
keyword self to refer to the object.

class Rational

• A rational number has an denominator and a numerator

• We give them name: den and num

• We use the key word class and the colon to define the
class

class Rational:

class Rational

• We then add the “initializer”

• You can think of this as a sort of constructor

• This method will run whenever we create an object

class Rational:

 def __init__(self, a, b):

 self.num = a

 self.den = b

Defining Objects
• The init function is one of many special functions

• Characterized by two underscores before and after the
function name

• These are known as dunder functions

• You create an object by assigning the class name

class Rational

Defining Objects
• You can access fields and methods using the dot notation

class Rational

• We need to keep rational numbers neat

• Factor out common factors of numerator and
denominator

• Use the gcd function with the Euclidean algorithms

• This becomes a class method, because there is only
one of them

class Rational

• We call a class function by using class name and the dot

class Rational:

 def __init__(self, a, b):

 self.num = a

 self.den = b

 def gcd(a, b):

 while(b):

 a, b = b, a % b

 return a

class Rational

• We need to improve the initial definition

• Both numerator and denominator are either positive or
numerator is negative and denominator is positive

• There is no common divisor between numerator and
denominator

class Rational

• This leads to:

• class Rational:

 def __init__(self, a, b):

 divisor = Rational.gcd(abs(a),abs(b))

 self.num = a//divisor

 self.den = b//divisor

 if self.den < 0:

 self.num = -self.num

 self.den = -self.den

Defining Objects
• The string and repr dunder

• string dunder is called when we apply the str function
on objects

• repr dunder is used to show the state of an object

• Both need to return a string

• If there is no string dunder, then Python uses the repr
dunder and vice versa

class Rational

• The two dunders

 def __str__(self):

 return f'{self.num}/{self.den}'

 def __repr__(self):

 return f'{self.num}/{self.den}'

