Data Link Layer

Design Issues

- Uses the physical layer to send and receive bits over a communication channel
- Defines an interface to the network layer
- Deals with transmission errors
- Regulates the flow of data
 - unless an eager sender overwhelms a slow receiver
- IN CASE OF A SHARED CHANNEL
 - Provides Medium Access Control (MAC) services

Services provided to network layer

- Data link layer can provide
 - unacknowledged connectionless service
 - acknowledged connectionless service
 - acknowledged connection-oriented service

Framing

- Physical layer can send a raw bit stream
- Network layer provides a bit stream or a stream of packages
- Usually, data link layer breaks network layer stream into frames
- Frames carry metadata for
 - Error detection / control
 - flow control
 - acknowledgments

Framing

Framing

- Frames need to be delimited
 - So that receiver can recognize the frame and its parts
 - Four methods:
 - Byte count
 - Flag bytes with byte stuffing
 - Flag bits with bit stuffing
 - Physical layer coding violations

Byte Count

- Can start out a frame with the byte count.
 - Receiver reads the byte count
 - Throws byte count away
 - Reads as many bytes as in the byte count as the frame
 - Divide the following byte stream into frames

- Once synchronization is lost, cannot recover framing
- Byte counts can never be corrupted

Flag Bytes

- Use a special flag byte as beginning and end marker
- Use another byte as an escape if the flag appears in the text
- Use a double escape in order to escape an escape

Flag bytes

What is the encoding of

Flag	I	Т	Esc	Esc	W	Α	Flag
------	---	---	-----	-----	---	---	------

Flag bytes

- Stuffing bytes adds to the size of the stream
 - If a text contains 1/256 flags and 1/256 escapes per byte, then we add 2/256 bytes or about 1% to the size of the text
- Flag bytes is used in the Point-to-Point Protocol
- Flag bytes assume that all data is in the form of bytes

Flag bits

- Developed for the High-level Data Link Control protocol
- Each frame starts and ends with the pattern 011111110 = 0x7E
- To prevent this pattern from appearing in the text of the frame
 - After five consecutive ones, sender inserts a zero
 - After receiving five consecutive ones, receivers drops the following zero.

Flow Control

- True simplex traffic without feedback:
 - Sending pictures from Mars Mariner expeditions
 - All messages / frames are sent with additional error control bits
 - Receiver can reconstruct original message even if the received message is distorted by noise

Flow Control

- To provide reliable, connection-oriented service
 - Receiver provides sender with feedback
 - in form of special control frames
 - Receiver resends frame after negative feedback
 - or sometimes based on a timer
 - because a frame can be completely lost in a noise burst
 - Usually, frames are numbered

Flow control

- Feedback-based flow control
 - Receiver tells sender when it is ok to send more frames
- Rate-based flow control
 - Sender has mechanism that limits the number of frames per time unit

- A Network Interface Card (NIC) runs at "wire speed" if it can handle all frames that can appear on the wire
 - Then there is no need for flow control at the data link layer

Error Detection / Correction

- Error detection:
 - Receiver can tell that message contains errors
- Error correction:
 - Receiver can reconstruct true message
- Errors:
 - Burst errors (a high error rate for the duration of the burst or several bits in a row are transmitted in error)
 - Erasures (receiver's physical layer cannot decode a bit)
 - Random errors (bits switch value)

Flow Control

- Sender's network layer gives packets to the data link layer
- Data link layer needs to get exactly the same sequence of packets delivered
- Feedback protocols:
 - Data can get destroyed or corrupted
 - Acks can get destroyed or corrupted
 - Frames can be resend by mistake
 - Need frame numbering and timers

Flow-Control

- Automatic Repeat reQuest (ARQ) / Positive Acknowledgment with Retransmission (PAR)
 - Frames are numbered with a single bit
 - Increment switches 0 to 1 and vice versa
 - Sender sends frame, then waits for Ack
 - If Ack does not arrive in time, then resends frame
 - NEVER sends a new frame without an Ack
 - Increments frame number
 - Receiver sends an Ack for each successful frame
 - Increments expected frame number
 - Can send a No-Ack to ask for resending a corrupted frame

Exercise

 Play through all scenarios to determine whether a frame can be lost or duplicated.

- Frame fine, Ack fine
- Frame bad, No-Ack sent, lost
- Frame bad, No-Ack sent, and received
- Frame fine, Ack sent, and lost
- Frame bad, No-Ack sent and lost

Flow Control

- ARQ does not work with long delays
 - Exercise:
 - Satellite link has 100 msec delay and 100Mbps bandwidth
 - How much of the channel can actually be used
 - Assume frames of 10Kb.

Answer

- Time to send a frame:
 - 10Kb/100Mbps = $10^4/10^8$ sec = 10^{-4} sec = 10^{-1} msec

satellite	a c k	waiting for signal to reach ground	trans missi on	waiting for signal to reach satellite	a c k	waiting for signal to reach ground	trans missi on	waiting for signal to reach satellite	a c k	

Useful time proportion:

$$\frac{10^{-1}}{2 \times 10^2 + 10^{-1}} = 0.000499975$$

Sliding window protocol

- For better use of physical link, use sliding window protocols
 - Idea: Sender sends a number of frames without waiting for acks
 - When acks are missing, resend frames after a while
 - Fundamental problem: Frames need numbers, but numbers need to roll over
 - Use a sliding window: numbers repeat

Sliding window protocol

- Sender needs to buffer all unacknowledged frames
- Acknowledgments can be done cumulatively
 - When we ack frame n, we also ack all preceding frames n-1, n-2, ... in the sliding window
- Some protocols have resend messages for garbled frames, others just relay on not acknowledging them
- Selective repeat:
 - Receiver buffers all frames that arrive after a garbled one
 - Sends a resend request to sender
 - Gives frames to the network layer only in order received