Decision Irees

Thomas Schwarz, SJ

Decision Irees

 One of many machine learning methods
 Used to learn categories

e Example:
e The Iris Data Set
e Four measurements of flowers

e | earn how to predict species from measurement

Iris Versicolor

Iris Virgilnica

Iris Data Set

Iris Setosa

Iris Data Set

e Datain a.csv file
 Collected by Fisher
e One of the most famous datasets

e Look it up on Kaggle or at UC Irvine Machine
Learning Repository

Measuring Purity

* Entropy

1 categories with proportions p; = (nr in Cat 1)/(total nr)

. Entropy(p1, Pas -- - D,) = — Z log,(p)p;
i=1

 Unless one of the proportions is zero, in which case
the entropy is zero.

 High entropy means low purity, low entropy means high
purity

Measuring Purity

e Gini index

. Gini(pl,pz, ,pn) — Zpl(l _pl)
k=1

e Best calculated as

. ipi(l —p;) = ipl-— ipizz 1 — ipiz
k=1 — — ~

Measuring Purity

e Assume two categories with proportions p and ¢g

—— Entropy
2+Gini

Building a Decision Tree

e A decision tree

 Can we predict the category (red vs blue) of the data
from its coordinates?

Building a Decision Tree

* |ntroduce a single boundary

A
® o) 16 blue, 1 red
o ® o o ®
® ® ® ¢00 ®
........... .----....9.---.0.-...--------
® o
®e o e
°® o e 9945400, °® °
@ o ©
® ® ...o °
e o ® Y
® 00 o o © o o° : °
0.9 0 @ o ® o °®
® oo. o o °
@ @)
o © Y
o o ° ° o oo °
)
®
)
46 blue, 42 red
>

Almost all points above the line are blue

Building a Decision Tree

e Subdivide the area below the line

ZEEE EERREPR v e Pe - TR T

Defines three almost homogeneous regions

Building a Decision Tree

e EXpress as a decision tree

Building a Decision Tree

* Decision trees are easy to explain
 Might more closely mirror human decision making

e Can be displayed graphically and are easily interpreted by
a non-expert

e (Can easily extend to non-numeric variables

* Jend do not be as accurate as other simple methods

* Non-robust: Small changes in data sets give rise to
completely different final trees

Building a Decision Tree

e |f a new point with coordinates (X, y) is considered
 Use the decision tree to predict the color of the point

* Decision tree is not always correct even on the points
used to develop it

e But it is mostly right
* |f new points behave like the old ones

e EXxpect the rules to be mostly correct

Building a Decision Tree

e How do we build decision trees
e Many algorithms were tried out and compared

e First rule: Decisions should be simple, involving only
one coordinate

e Second rule: If decision rules are complex they are
likely to not generalize

e E.g.: the lone red point in the upper region is
probably an outlier and not indicative of general
behavior

Building a Decision Tree

e How do we build decision trees
e Third rule:
* Don't get carried away

* Prune trees to avoid overfitting

Building a Decision Tree

e Algorithm for decision trees:
* Find a simple rule:
* Maximizes the information gain
e (Continue sub-diving the regions

e Stop when a region is homogeneous or almost
homogeneous

e Stop when a region becomes too small

Building a Decision Tree

e |Information Gain from a split:
u information measure before

K1, > Information measures in the split par

Information gain = u — (pu + (1 — p)u,)

Processing Iris

* Need to get the data:
e make tuples of float
e |ast element:

 use numbers 0, 1, 2 to encode categories

def get datal():
""" opens up the Iris.csv file

mwiwmn

lista = []
with open("Iris.csv") as infile:
infile.readline() # remove first line
for line 1n infile:
values = line.strip () .split(',")
1f values[b] == "Iris—-setosa":
cat = 1
elif values[5] == "Iris-versicolor":
cat = 2
else:
cat = 0
tupla = (float (values[1l]),
float (values|[2]),
float (values|[3]),
float (values|[4]),
cat)

lista.append (tupla)
return lista

Processing Iris

e |et's count categories

def stats(lista):
counts = [0,0,0]
for element 1n lista:
countsl[element[-1]] += 1
return counts

Processing Iris

e (Calculate the Gini index of a list

def gini(lista):

counts = stats(lista)

counts = [counts[0]/len(lista),
counts[l]/len(lista),
counts[2]/len(lista)]

return l-counts[0]**2-counts|[l]**2-counts[2]**2

Processing Iris

e Calculate the entropy of a list

def entropy(lista) :

counts = stats(lista)
proportions = [counts[0]/len(lista),
counts[l]/len(lista)

counts[2]/len(lista)]
entropy = 0
for prop 1n proportions:
1f prop!=0:
entropy —-= prop*math.log(prop, 2)
return entropy

Processing Iris

 Need to find all ways to split a list

e First, let's have a helper function to remove doublettes

def unique(lista):
result = |[]
for value in lista:
1f value not 1n result:

result.append (value)
return result

Processing Iris

* Possible cutting points are the midpoints between values

def midpoints(lista, axis):
""" calculates the midpoints along the coordinate axis
values = unique (sorted([pt[axis] for pt in lista]))
return [round((values|[i-1]+values[i])/2,3) for i in
range (1, len(values))]

Processing Iris

e Splitting happens along a coordinate (axis) and a value:

def split(lista, axis, value):
""" returns two lists, depending on ptlaxis] < value or not

mwiwn

left, right = [], []
for element 1n lista:
1f element[axis] < wvalue:
left.append(element)
else:

right.append (element)
return left, right

Processing Iris

* Now we can find the axis and value that gives the
maximum information gain

e Set up frequently used values and the value to beat
e best_split is going to contain axis and value

e threshold does not look at splits that are too small

def best split(lista, threshold = 3):
best gain = 0
best split = None
ginli total = gini(lista)
nr = len(lista)

Processing Iris

* We need to try out all axes

def best split(lista, threshold = 3):
best gain = 0
best split = None
ginl total = gini(lista)
nr = len(lista)
for axis in range (4):
for value 1n midpoints(lista, axis):
left, right = split(lista, axis, value)
1f len(left) > threshold and len(right) > threshol
galin = ginili total - len(left) /nr*gini (left) -
len(right) /nr*gini (right)
1f gain > best gain:
best gain = gailn
best split = (axis, value)
return best split

Processing Iris

* We need to try out all axes, and then all midpoints

def best split(lista, threshold = 3):
best gain = 0
best split = None
ginli total = gini(lista)
nr = len(lista)
for axis 1n range(4):
for value in midpoints(lista, axis):
left, right = split(lista, axis, wvalue)
1f len(left) > threshold and len(right) > threshold:
gain = gini total - len(left)/nr*gini(left)-
len(right) /nr*gini (right)
1f gain > best gain:
best gain = gain
best split = (axis, value)
return best split

Processing Iris

e |f the left and right side have more than threshold
members, calculate the gain

def best split(lista, threshold = 3):
best gain = 0
best split = None
ginl total = gini(lista)
nr = len(lista)
for axis 1n range(4):
for value 1n midpoints(lista, axis):
left, right = split(lista, axis, value)
1f len(left) > threshold and len(right) > threst
gain = (gini_ total - len(left)/nr*gini (left)
-len(right) /nr*gini (right))
1f gain > best gain:
best gain = gailn
best split = (axis, value)
return best split

Processing Iris

e |f the information gain is the best, we store it

def best split(lista, threshold = 3):
best gain = 0
best split = None
ginli total = gini(lista)
nr = len(lista)
for axis 1n range(4):
for value 1n midpoints(lista, axis):
left, right = split(lista, axis, value)
1f len(left) > threshold and len(right) > threshold:
gain = gini total - len(left)/nr*gini (left)-
len(right) /nr*gini (right)
if gain > best gain:
best gain = gain
best split = (axis, value)
return best split

Processing Iris

* At the end, we return the best split point

def best split(lista, threshold = 3):
best gain = 0
best split = None
gini total = gini(lista)
nr = len(lista)
for axis 1n range(4):
for value 1n midpoints(lista, axis):
left, right = split(lista, axis, value)
1f len(left) > threshold and len(right) > threshold:
gain = ginili total - len(left) /nr*gini (left) -
len(right) /nr*gini (right)
1f gain > best gain:
best gain = gailn
best split = (axis, value)
return best split

Processing Iris

* We could save the result of the best split seen so far

e put splits are fast, so we do not bother

Processing Iris

e We need to check how well our decision tree works
 We split the data set into a training set and a test set

e We use 80% - 20%, i.e. p=.80

def separate(lista, p):

train, test = [], []
for element 1n lista:
1f random.random() < p:
tralin.append (element)
else:

test.append (element)
return train, test

Processing Iris

* We build the decision tree by hand

>>> best split (train)

(2, 2.45)

>>> 1, r = split(train, 2, 2.45)
>>> stats (1)

(0, 43, 0]

>>> stats(r)

(40, O, 43]

* First decision neatly separates Iris-versicolor from the
rest

Processing Iris

e Now we look at the other set

>>> best split (r)

(3, 1.75)

>>> rl, rr = split(r,3,1.75)
>>> stats(rl)

[5, 0, 43]

>>> stats(rr)

[35, 0, 1]

 This is almost an optimal split
* rr should not be further subdivided

e 1| could work better

Processing Iris

>>> best split(rl)

(2, 4.95)

>>> rll, rlr = split(xrl, 2, 4.95)
>>> stats(rll)

(1, 0, 41]

>>> stats(rll)

(4, O, 2]

Processing Iris

e Summary

Petal-Length > 2.45

Petal-Width > 1.75

Petal-Length > 1.75

Iris
versicolor

Testing

e | et's implement the decision tree:

def predict (element) :
1f element[2] < 2.45:
return 1
else:
1f element[3] < 1.75:
1f element[2] < 4.95:
return 2
else:
return O
else:
return O

Testing

e And see how it works on the test data
e One confused element or 1/36 error rate
e Total:

e Four confused elements out of 150

2.5 1

2.0 A

1.5 A

1.0 A

0.5 A1

0.04_,

o
o ®
e o
@ 000 L
L 1 J []
«ane o
L L N J
®oe o
®e ®ee ¢
e o
o0 © o
o @0 e
o o0]
o NN
®»ee o
[L
000 ®
[
[
o e
o e
© 60800 &
o @
1 2 3 4 5 6 7

Result

from matplotlib import pyplot

plt.
plt.

plt.

plt.

plt.

figure(figsize = (5,6))
scatter ([el[2] for el
[el[3] for el
c='red')
scatter([el[2] for el
[el[3] for el
c="blue')
scatter ([el[2] for el
[el[3] for el
c="'green')
show ()

in
in
in
in
in
in

Petal length and width are best at separating types

as plt

Iris
Iris

Iris
Iris

Iris
Iris

el[-1]==0]
el[-1]==0]
el[-1]==1]
el[-1]==1]
el[-1]==2]
el[-1]==2]

