Decision Trees

Thomas Schwarz, SJ

Decision Trees

- One of many machine learning methods
 - Used to learn categories
- Example:
 - The Iris Data Set
 - Four measurements of flowers
 - Learn how to predict species from measurement

Iris Data Set

Iris Setosa

Iris Virginica

Iris Versicolor

Iris Data Set

- Data in a .csv file
 - Collected by Fisher
 - One of the most famous datasets
 - Look it up on Kaggle or at UC Irvine Machine Learning Repository

Measuring Purity

- Entropy
 - n categories with proportions $p_i = (\text{nr in Cat } i)/(\text{total nr})$

• Entropy
$$(p_1, p_2, ..., p_n) = -\sum_{i=1}^n \log_2(p_i) p_i$$

- Unless one of the proportions is zero, in which case the entropy is zero.
- High entropy means low purity, low entropy means high purity

Measuring Purity

Gini index

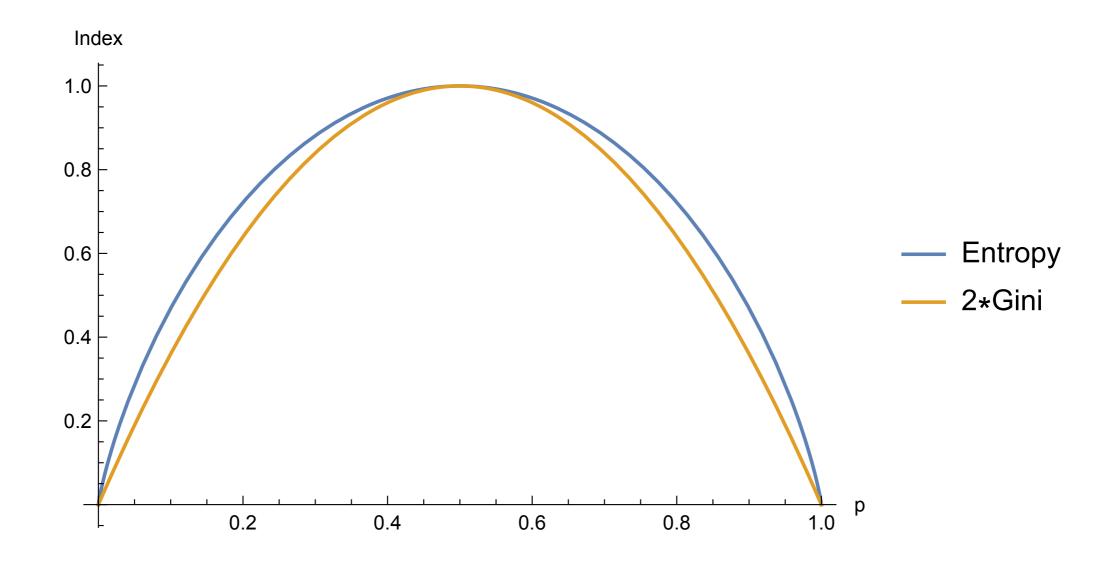
• Gini
$$(p_1, p_2, ..., p_n) = \sum_{k=1}^{n} p_i (1 - p_i)$$

Best calculated as

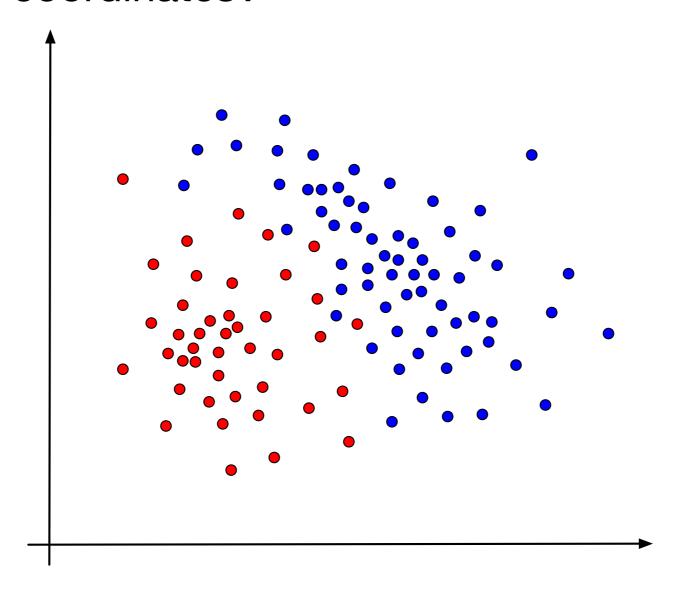
$$\sum_{k=1}^{n} p_i (1 - p_i) = \sum_{k=1}^{n} p_i - \sum_{k=1}^{n} p_i^2 = 1 - \sum_{k=1}^{n} p_i^2$$

Measuring Purity

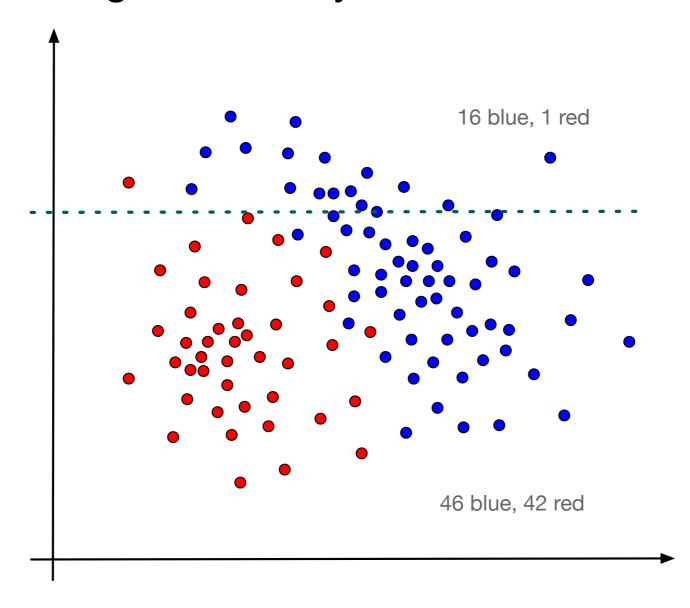
Assume two categories with proportions p and q



- A decision tree
 - Can we predict the category (red vs blue) of the data from its coordinates?

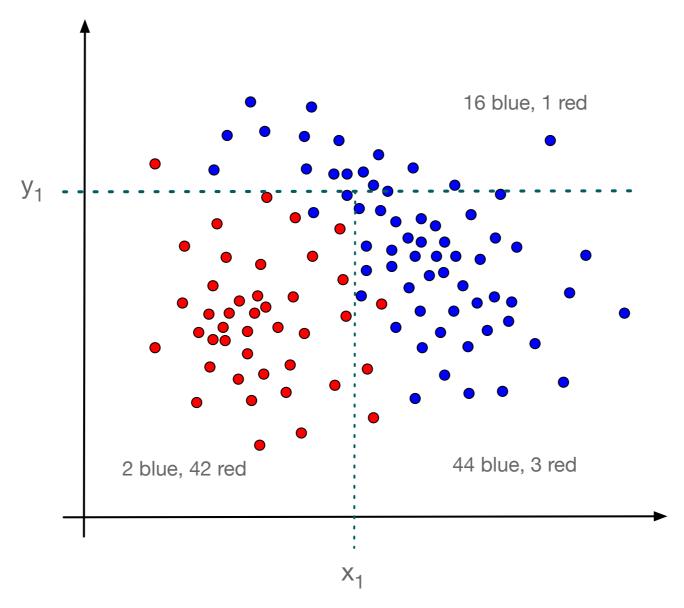


Introduce a single boundary



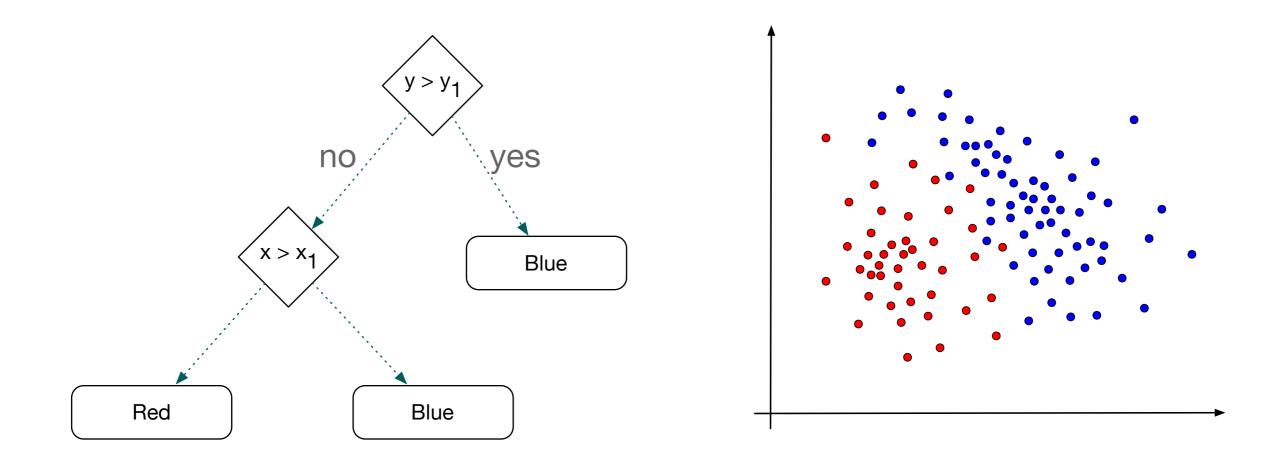
Almost all points above the line are blue

Subdivide the area below the line



Defines three almost homogeneous regions

Express as a decision tree



- Decision trees are easy to explain
- Might more closely mirror human decision making
- Can be displayed graphically and are easily interpreted by a non-expert
- Can easily extend to non-numeric variables

- Tend do not be as accurate as other simple methods
- Non-robust: Small changes in data sets give rise to completely different final trees

- If a new point with coordinates (x, y) is considered
 - Use the decision tree to predict the color of the point
- Decision tree is not always correct even on the points used to develop it
 - But it is mostly right
- If new points behave like the old ones
 - Expect the rules to be mostly correct

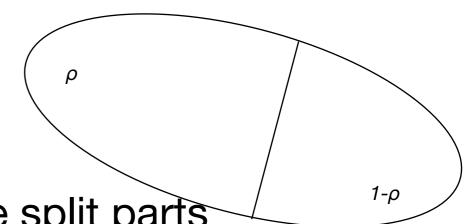
- How do we build decision trees
 - Many algorithms were tried out and compared
 - First rule: Decisions should be simple, involving only one coordinate
 - Second rule: If decision rules are complex they are likely to not generalize
 - E.g.: the lone red point in the upper region is probably an outlier and not indicative of general behavior

- How do we build decision trees
 - Third rule:
 - Don't get carried away
 - Prune trees to avoid overfitting

- Algorithm for decision trees:
 - Find a simple rule:
 - Maximizes the information gain
 - Continue sub-diving the regions
 - Stop when a region is homogeneous or almost homogeneous
 - Stop when a region becomes too small

Information Gain from a split:

 μ information measure before



 μ_1, μ_2 information measures in the split parts

Information gain =
$$\mu - (\rho \mu_1 + (1 - \rho)\mu_2)$$

- Need to get the data:
 - make tuples of float
 - last element:
 - use numbers 0, 1, 2 to encode categories

```
def get data():
    """ opens up the Iris.csv file
    ** ** **
    lista = []
    with open ("Iris.csv") as infile:
        infile.readline() # remove first line
        for line in infile:
            values = line.strip().split(',')
             if values[5] == "Iris-setosa":
                 cat = 1
            elif values[5] == "Iris-versicolor":
                 cat = 2
             else:
                 cat = 0
             tupla = (float(values[1]),
                      float (values [2]),
                      float (values[3]),
                      float (values [4]),
                      cat)
            lista.append(tupla)
    return lista
```

Let's count categories

```
def stats(lista):
    counts = [0,0,0]
    for element in lista:
        counts[element[-1]] += 1
    return counts
```

Calculate the Gini index of a list

Calculate the entropy of a list

- Need to find all ways to split a list
 - First, let's have a helper function to remove doublettes

```
def unique(lista):
    result = []
    for value in lista:
        if value not in result:
            result.append(value)
    return result
```

Possible cutting points are the midpoints between values

```
def midpoints(lista, axis):
    """ calculates the midpoints along the coordinate axis
    """
    values = unique(sorted([pt[axis] for pt in lista]))
    return [ round((values[i-1]+values[i])/2,3) for i in
range(1, len(values))]
```

Splitting happens along a coordinate (axis) and a value:

```
def split(lista, axis, value):
    """ returns two lists, depending on pt[axis] < value or not
    """
    left, right = [], []
    for element in lista:
        if element[axis] < value:
            left.append(element)
        else:
            right.append(element)
    return left, right</pre>
```

- Now we can find the axis and value that gives the maximum information gain
 - Set up frequently used values and the value to beat
 - best_split is going to contain axis and value
 - threshold does not look at splits that are too small

```
def best_split(lista, threshold = 3):
    best_gain = 0
    best_split = None
    gini_total = gini(lista)
    nr = len(lista)
```

We need to try out all axes

```
def best split(lista, threshold = 3):
   best gain = 0
    best split = None
    gini total = gini(lista)
    nr = len(lista)
    for axis in range(4):
        for value in midpoints(lista, axis):
            left, right = split(lista, axis, value)
            if len(left) > threshold and len(right) > threshol
                gain = gini total - len(left)/nr*gini(left)-
len(right)/nr*gini(right)
                if gain > best gain:
                    best gain = gain
                    best split = (axis, value)
    return best split
```

We need to try out all axes, and then all midpoints

```
def best split(lista, threshold = 3):
    best gain = 0
    best split = None
    gini total = gini(lista)
    nr = len(lista)
    for axis in range (4):
        for value in midpoints(lista, axis):
            left, right = split(lista, axis, value)
            if len(left) > threshold and len(right) > threshold:
                gain = gini total - len(left)/nr*gini(left)-
len(right)/nr*gini(right)
                if gain > best gain:
                    best gain = gain
                    best split = (axis, value)
    return best split
```

 If the left and right side have more than threshold members, calculate the gain

```
def best split(lista, threshold = 3):
    best gain = 0
    best split = None
    gini total = gini(lista)
    nr = len(lista)
    for axis in range (4):
        for value in midpoints(lista, axis):
            left, right = split(lista, axis, value)
            if len(left) > threshold and len(right) > thresh
                gain = (gini total - len(left)/nr*gini(left)
                        -len(right)/nr*gini(right))
                if gain > best gain:
                    best gain = gain
                    best split = (axis, value)
    return best split
```

• If the information gain is the best, we store it

```
def best split(lista, threshold = 3):
    best gain = 0
    best split = None
    gini total = gini(lista)
    nr = len(lista)
    for axis in range (4):
        for value in midpoints(lista, axis):
            left, right = split(lista, axis, value)
            if len(left) > threshold and len(right) > threshold:
                gain = gini total - len(left)/nr*gini(left)-
len(right)/nr*gini(right)
                if gain > best gain:
                    best gain = gain
                    best split = (axis, value)
    return best split
```

At the end, we return the best split point

```
def best split(lista, threshold = 3):
    best gain = 0
    best split = None
    gini total = gini(lista)
    nr = len(lista)
    for axis in range(4):
        for value in midpoints(lista, axis):
            left, right = split(lista, axis, value)
            if len(left) > threshold and len(right) > threshold:
                gain = gini total - len(left)/nr*gini(left)-
len(right)/nr*gini(right)
                if gain > best gain:
                    best gain = gain
                    best split = (axis, value)
    return best split
```

- We could save the result of the best split seen so far
 - but splits are fast, so we do not bother

- We need to check how well our decision tree works
 - We split the data set into a training set and a test set
 - We use 80% 20%, i.e. p=.80

```
def separate(lista, p):
    train, test = [], []
    for element in lista:
        if random.random() < p:
            train.append(element)
        else:
            test.append(element)
    return train, test</pre>
```

We build the decision tree by hand

```
>>> best_split(train)
(2, 2.45)
>>> 1, r = split(train, 2, 2.45)
>>> stats(1)
[0, 43, 0]
>>> stats(r)
[40, 0, 43]
```

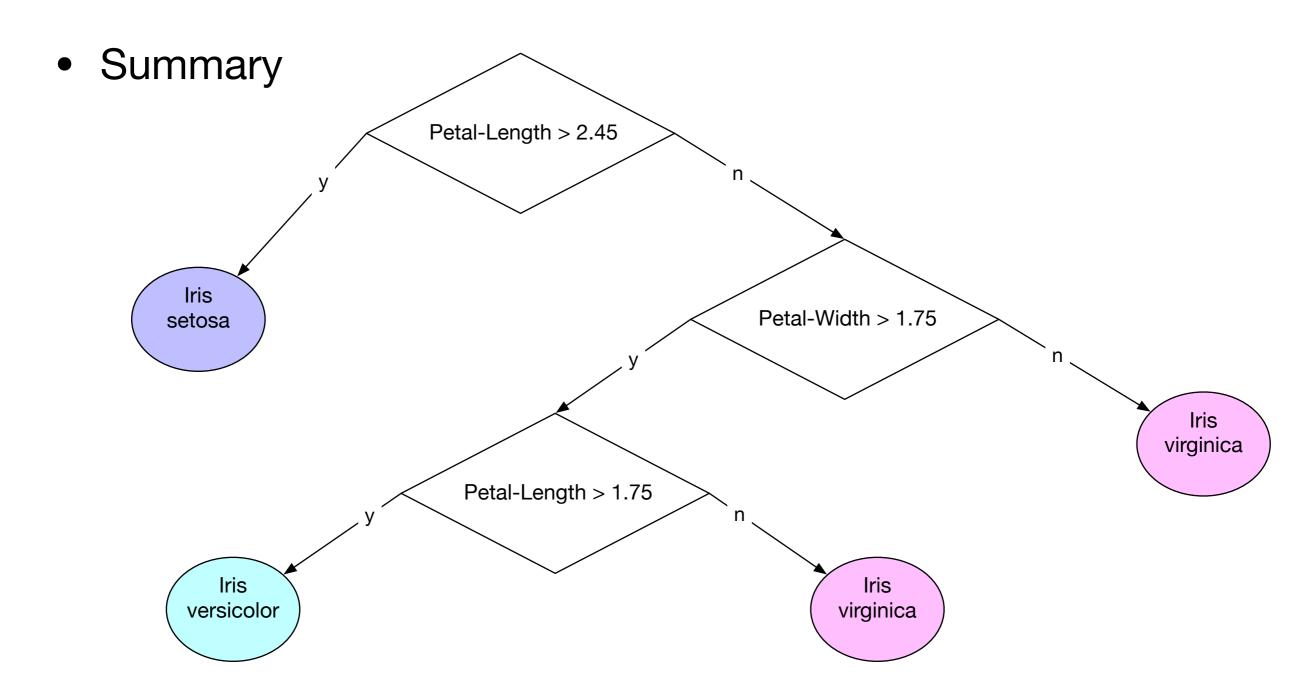
First decision neatly separates Iris-versicolor from the rest

Now we look at the other set

```
>>> best_split(r)
(3, 1.75)
>>> rl, rr = split(r,3,1.75)
>>> stats(rl)
[5, 0, 43]
>>> stats(rr)
[35, 0, 1]
```

- This is almost an optimal split
 - rr should not be further subdivided
 - rl could work better

```
>>> best_split(rl)
(2, 4.95)
>>> rll, rlr = split(rl, 2, 4.95)
>>> stats(rll)
[1, 0, 41]
>>> stats(rll)
[4, 0, 2]
```



Testing

• Let's implement the decision tree:

Testing

- And see how it works on the test data
 - One confused element or 1/36 error rate
- Total:
 - Four confused elements out of 150

Result

Petal length and width are best at separating types

