Lists in Python

Thomas Schwarz SJ

Lists

 Python is a high-level programming language with built-in
sophisticated data structures

* The simplest of these data structures is the list.

 Alistis just an ordered collection of other objects

* The type of the objects is not restricted

e [et’s start unpacking this a bit.

Lists

* We create a list by using the square brackets.
e alist = [1, 3.5, “hello”]
e A list with three elements of three different types
e plist = [1, 3.5, “hello”, 1]

e A list with four elements, where one element is
repeated

e clist = [1, “hello”, 3.5]
o A different list than alist, but with the same elements

e The order is different

Lists

* Accessing elements in a list

* We access elements in a list by using the square brackets
and an index

* Indices startat 0
e Example:
¢ lista = [‘a', ‘b’', ‘c¢', ‘d’']
® 1ista[0] Is‘a’
® lista[l] Is‘D’

® listal[2] Is‘C’

Lists

 Python uses negative numbers in order to count from the
back of the list

e lista = [‘a', ‘b’, ‘c', ‘d’]

® lista[-1] Isthe last object, namely the character
id!

® lista[-2] Is the second-last object, namely the
character ‘c’

® lista[-4] Is the first object, namely the character ‘a’

Manipulating Lists

* We manipulate lists by calling list methods

* You should read up on lists in the Python
documentations

e https://docs.python.org/3/tutorial/datastructures.html

* The length (humber of objects in a list) is obtained by the
len function.

>>> lista = [1, 2, 3]
>>> len(lista)
3

https://docs.python.org/3/tutorial/datastructures.html

Manipulating Lists

* We add to a list by using the append method

e Example: >>> lista = [1, 2, 3]
>>> lista.append(5)
>>> lista.append([1,2])
>>> print(lista)
[1’ 2’ 3’ 5’ [1; 2]]

e Theresulting list 1ista has five elements, the last one
being a list by itself.

* The append method always adds an element at the end.

Manipulating Lists

* The opposite of append is pop.

e Whereas append returns the special object None, pop
removes the last element in the list and returns It.

e Example >>> lista = [1,2,3]
>>> lista.pop()
3

>>> print(lista)
[1, 2]

Manipulating Lists

e \We can also combine two lists with extend.

* The method parameter is a list that is added to the first list.

>>> listl = [1, 2, 3]
>>> listZ2 = [4, 5]

>>> Listl.extend(list2)
>>> Listl

[1’ 2’ 3’ 4’ 5]

* This is different than appending.

>>> listl = [1, 2, 3]
>>> list2 = [4, 5]

>>> listl.append(list2)
>>> print(listl)

[1, 2, 3, [4, 5]]

* The resulting list has four elements, with the last one being a list

Manipulating Lists

e Jo remove items from a list, we can use
* remove

e del

e The remove method removes the first element from the list
that matches a parameter

e |t does not remove all elements

e Example: >>> lista = [1, 2, 3, 4, 5, 1, 1, 2, 2, 2, 3]
>>> Lista.remove(l)
>>> lista

r2, 3, 4, 5,1, 1, 2, 2, 2, 3]

Manipulating Lists

e del operator:
* A generic operator

* |n order to remove an item from a list, you specify a list
and an index

e Example: Remove the third element (“c”) from a list

" " " "

>>> lista = ["a", "b", "c", "d", "e"]
>>> - lista[2]

>>> lista
[|a|’ |b|’ |d|, |e|]

Manipulating Lists:
A Standard Pattern

e A pattern for list modification
e Often, we need to process a list
A standard pattern:
e Create an empty result list
 Walk through the processed list

e Add elements to the result list

Manipulating Lists:
A Standard Pattern

e Example:
e Filtering:

e Retaln all elements in a list that are even numbers

def even(lista): Create the result as an empty

result = [] list
for ele 1n lista:
1f ele%2==0:

result.append(ele)
return result

>>> even([1,2,3,6,7,98,12,324,43,56,15,37,45])
[2, 6, 98, 12, 324, 56]

Manipulating Lists:
A Standard Pattern

e Example:
e Filtering:

e Retaln all elements in a list that are even numbers

def even(lista):

result = [] Walk through the list
for ele 1n lista: f
1f ele%s2==0:

result.append(ele)
return result

>>> even([1,2,3,6,7,98,12,324,43,56,15,37,45])
[2, 6, 98, 12, 324, 56]

Manipulating Lists:
A Standard Pattern

e Example:
e Filtering:

e Retaln all elements in a list that are even numbers

def even(lista):

result = |[] Filter on condition
for ele 1n lista:
1f ele%s2==0:

result.append(ele)
return result

>>> even([1,2,3,6,7,98,12,324,43,56,15,37,45])
[2, 6, 98, 12, 324, 56]

Manipulating Lists:
A Standard Pattern

e Example:
e Filtering:

e Retaln all elements in a list that are even numbers

def even(lista):

result = |[] Append to the result
for ele 1n lista:
1f ele%s2==0:

result.append(ele)
return result

>>> even([1,2,3,6,7,98,12,324,43,56,15,37,45])
[2, 6, 98, 12, 324, 56]

Manipulating Lists:
A Standard Pattern

e Example:
e Filtering:

e Retaln all elements in a list that are even numbers

def even(lista):

result = []

for ele 1n lista:
. . Return the result
1f ele$2==0:

result.append(ele)
return result

>>> even([1,2,3,6,7,98,12,324,43,56,15,37,45])
[2, 6, 98, 12, 324, 56]

Manipulating Lists:
A Standard Pattern

e Example:
e Map — transforming all elements in a list

e (Given a list of numbers, round them to the nearest
digit after the decimal point

Manipulating Lists:
A Standard Pattern

e Example:

...

def rounding(lista) : Nwwwwwj

...

result = [] B
for ele 1n lista:

result.append(round(ele, 1))
return result

>>> rounding([.113241, 123.45, 1342.68, 12, 123.456, 908.17, -89.1])
[0.1, 123.5, 1342.7, 12, 123.5, 908.2, -89.1]

Manipulating Lists:
A Standard Pattern

e Example:

def rounding(lista): e E
result = [] Walk through the list 5
f Or e l e :|_ n]_ l sta: _,,___._._-_-_-_-::::::SIZI::::: ""

result.append (round(ele, 1))
return result

>>> rounding([.113241, 123.45, 1342.68, 12, 123.456, 908.17, -89.1])
[0.1, 123.5, 1342.7, 12, 123.5, 908.2, -89.1]

Manipulating Lists:
A Standard Pattern

e Example:
Apply the function to the list :
- element 5

..

def rounding(lista) :
result = |[]
for ele in lista: s
result. append(round(ele 1))
return result

>>> rounding([.113241, 123.45, 1342.68, 12, 123.456, 908.17, -89.1])
[0.1, 123.5, 1342.7, 12, 123.5, 908.2, -89.1]

Manipulating Lists:
A Standard Pattern

e Example:

def rounding(lista) :
result = |[]
for ele in lista: .
result.append{round(ele, 1))
return result

..

>>> rounding([.113241, 123.45, 1342.68, 12, 123.456, 908.17, -89.1])
[0.1, 123.5, 1342.7, 12, 123.5, 908.2, -89.1]

Manipulating Lists:
A Standard Pattern

e Example:

...

def rounding(lista) :
result = |[]
for ele 1n lista: .
result.append#round (ele, 1))
return result -

...

>>> rounding([.113241, 123.45, 1342.68, 12, 123.456, 908.17, -89.1])
[0.1, 123.5, 1342.7, 12, 123.5, 908.2, -89.1]

Manipulating Lists:
A Standard Pattern

 We can generate this example to all functions of list elements

def apply(function, lista):
result = []
for ele 1n lista:
result.append (function(ele))
return result

* This pattern is so important that Python 3 has a more elegant
way of doing it. It is called list comprehension

* The apply function was part of Python 2, depreciated in
Python 2.3 and abolished in Python 3.5

Lists are objects

e |ists are objects

e Objects have methods

* Methods are functions that are called with an object
as a parameter, but that are specific to the object

e \We write them as

object . method (additional, optional parameters)

e |n fact, method is a function and object is the first
and sometimes only parameter

Methods vs. Function

* There are two built-in ways to
sort a list in Python:

e The sorted function
e The sort method for lists

 They are called differently
because one is a method and
one a function

e sorted returns a sorted list

e *sort() does not return
anything, but the list is
sorted.

>>> lista = ['c’, 'b", "a', 'd']
>>> lista.sort()

>>> lista

[‘fa’, 'P', "c', 'd']

>>> lista = ['c’', 'b", "a', 'd']
>>> sorted(lista)

[‘fa’, 'b", "c', 'd']

Manipulating Lists

Here is an overview of the most important list methods:

Method Effect
append() adds an element to the end of the list

clear() removes all elements from a list

copy() returns a copy of the list

count() returns the number of elements in the list
extend() adds the elements in the parameter to the list

index() returns the index of the first occurrence of the parameter

insert() inserts an element at the specified location

pop() removes an element at the specified location or if left empty, removes the last element

remove() removes the first element with that value

reverse() reverses the order of the list

sort() sorts the list

Range Is not a list

* A range belongs to a data structure (called iterators) that
are related to lists

* |n an iterator, you can always produce the next element

 Jo make a list, just use the list keyword:

lista = list(range (2, 1000))

Lists and for loops

* The for-loop in Python iterates through a list (or more
generally an iterator)

® for x 1n 1lista:

e xtakeson all valuesin 1ista

Checking membership

e |In Python, membership in a list is checked with the in
keyword

* There is a more appealing, alternative form of negation

e Examples:

® 1f element 1n lista:

® 1f element not 1n lista:

e Use this one instead of the negation around the
statement

® 1f not element 1n lista:

Sieve of Eratosthenes

 Jo calculate a list of all primes, we could:

e Check all numbersin [2, 3, 4, ..., n] that have no
divisors

* Which is tedious and does not scale to large n
e Eliminate all multiples

e This is the idea behind the famous Sieve of
Eratostenes

Sieve of Eratosthenes

e We start out with a list of all numbers between 2 and 1000
e [2,3,4,5,6,7,...,999, 1000]
e The smallest number in the list is a prime, this would be 2

e We can eliminate all true multiples of 2, that is, we
remove 4, 6, 8, 10, ..., 1000 from the list

 This gives us
e [2,3,5,7,9, 11,13, ..., 997, 999]

* The next smallest number has also to be a prime

Sieve of Eratosthenes

e [2,3,5,7,9,11,13,15,17, ..., 997, 999]
Therefore, 3, is a prime.

For the next step, we eliminate all multiples of three that are
left

e [2,3,5,7,11,13, 17,19, 23, 25, 29, ... ,995, 997]

We remove all multiples of 5 that remain in the list: 25, 35, 55,

e [2,3,5,7,11, 13,17, 19, 23, 29, ... ,991, 997]

And so we continue, until we can no longer eliminate
multiples

Sieve of Eratosthenes

e We implement this in Python

 We first define a function that removes multiples of an
element from a list (of numbers)

e We need one parameter 1imit to tell us when we
should stop

def remove multiples (element, lista, limit):
multiplier = 2
while multiplier*element <= limit:
1f multiplier*element 1n lista:
lista.remove (multiplier*element)
multiplier += 1

Sieve of Eratosthenes

* We can now implement the sieve
 We initialize a list to the first 1000 elements

e \We maintain an index to tell us to which of the elements
we already processed

def eratosthenes|() :
lista list (range (2, 1000))
index 0

Sieve of Eratosthenes

 We stop when the index is about to fall out of the current
size of the list

 Don’t forget to increase the index

def eratosthenes|() :
lista = list(range (2, 1000))
index = 0
while index < len(lista):
#Do the work here
index += 1

Sieve of Eratosthenes

e The work to do for each index is to remove the multiples
of the current element

def eratosthenes (max number) :

lista = list (range (2, max number))
index = 0
while index < len(lista):

element = lista[index]

remove multiples (element, lista, limit)
index += 1
return lista

Sieve of Erathosthenes

* And here is the result, all primes until 1000

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73,
77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 133, 137, 139,

143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 203,
209, 211, 217, 221, 223, 227, 229, 233, 239, 241, 247, 251, 253, 257, 259, 263, 269,
271, 277, 281, 283, 287, 289, 293, 299, 301, 307, 311, 313, 317, 319, 323, 329, 331,
337, 341, 343, 347, 349, 353, 359, 361, 367, 371, 373, 377, 379, 383, 389, 391, 397,
401, 403, 407, 409, 413, 419, 421, 427, 431, 433, 437, 439, 443, 449, 451, 457, 461,
463, 467, 469, 473, 479, 481, 487, 491, 493, 497, 499, 503, 509, 511, 517, 521, 523,
527, 529, 533, 539, 541, 547, 551, 553, 557, 559, 563, 569, 571, 577, 581, 583, 587,
589, 593, 599, 601, 607, 611, 613, 617, 619, 623, 629, 631, 637, 641, 643, 647, 649,
653, 659, 661, 667, 671, 673, 677, 679, 683, 689, 691, 697, 701, 703, 707, 709, 713,
719, 721, 727, 731, 733, 737, 739, 743, 749, 751, 757, 761, 763, 767, 769, 773, 779,
781, 787, 791, 793, 797, 799, 803, 809, 811, 817, 821, 823, 827, 829, 833, 839, 841,
847, 851, 853, 857, 859, 863, 869, 871, 877, 881, 883, 887, 889, 893, 899, 901, 907,
911, 913, 917, 919, 923, 929, 931, 937, 941, 943, 947, 949, 953, 959, 961, 967, 971,
973, 977, 979, 983, 989, 991, 997]

Sieve of Eratosthenes

 This implementation can be improved in a number of
ways

 For example, we do not need to remove all multiples
because we know that some have been removed

 For example, if we are processing 13, then we do no
need to check for 213, 3*13, 4*13, ... because they
have already been replaced

* And there are ways to implement it more elegantly, but
the point is just to see how to program with lists.

P # NP

* Pythonic is not Non-Pythonic

e Using indices when processing lists is usually not
warranted

 As much as possible, write functions on lists that
would work with iterables just as well

Python lterators

* Python iterator: an object that contains a countable
number of values

e An object is iterable if it implements an iter and a next
method

e iter returns an iterator
e next gives us the next element.

e When an iterator runs out of objects to provide on a
next, it will create a Stoplteration exception

Python lterators

numbers = [3,5,7,11,13,17,19,23,29,31]
num lterator = iter (numbers)
while num 1terator:
try:
current number = next (num 1terator)

print (current num. =r)
except Stoplteration:

break _ _
Creating an iterator

Python lterators

numbers = [3,5,7,11,13,17,19,23,29,31]
num lterator = iter (numbers)
while True:
try:
current number = next (num lterator)

print {(current number)
except Stoplceration:
break

Looping

Python lterators

numbers = [3,5,7,11,13,17,19,23,29,31]
num lterator = iter (numbers)
while True:
try:
current number = next (num i1terator)

print (current number)
except Stoplteration:
break

Getting the
next item

Python lterators

numbers = [3,5,7,11,13,17,19,23,29,31]
num lterator = iter (numbers)
while True:
try:
current number = next (num i1terator)
print (current number)
except Stoplteration:
break

Handling the
exception
generated when
next fails

Python lterators

e Why do you need to know iterators:
* Jo understand otherwise cryptic error messages

e Jo use

Python Generators

* Python allows you to define generators

* We do not discuss generators in this course but you
ought to be aware of their existence

* A generator object creates a sequence of objects

* A generator just creates a generator object

 |Looks like a function, but has a yield instead of a return

Python Generators

def fib generator() :

previous, current = 0, 1
while True:
previous, current = C rrent, previous+tcurrent

yield current

Generators look like
functions !

Python Generators

def fib generator() :

previous, current = 0, 1
while True:
previous, current = current, previous+tcurrent

yield current

But have a “yield”
iInstead of a “return”

Python Generators

def fib generator() :

previous, current = 0, 1
while True:
previous, current = current, previous+tcurrent

yield current

If this were a function,
it would return just one
element

Python Generators

def fib generator() :

previous, current = 0, 1
while True:
previous, curr=nt = current, previous+t+current

yield current

But a generator keeps
on yielding

Python Generators

def fib generator() :

previous, current = 0, 1
while True:

previous, current = current, previous+tcurrent
yield current

This Is tuple assignment!

Simultaneously assigns
previous <— current
current <— previous+current

Python Generator

* This Python generator will generate all the Fibonacci
numbers

Tuples

Thomas Schwarz, SJ

Tuples

* Tuples are like immutable lists.

* They are immutable, i.e. you cannot change them once
they have been created.

 This allows us to use them as keys for a dictionary

Tuple Creation

* You create a tuple by putting a comma separated list of
items Iin parentheses

small primes = (2,3,5,7,11,13)

digits — ("O", "1", "2", "3", "4", "5", "6", "'7", "8", \\9")

Accessing Elements

* You access tuple coordinates by using the same notation
as for lists

dig—j—ts — ("O"’ "1", "2", "3", "4"’ "5"’ "6"’ "'7"’ "8"’ "9"
print (digits[5])

e prints out “5”

Using Tuples: Tuple
Assignment

* Juple assignment
* The "tuple operator” is the comma

* Meaning, putting commas between things creates a
tuple

 Tuples can be assigned

Using Tuples: Tuple
Assignment

 Tuple assignment

e The “tuple operator” is the comma
 Meaning, putting commas between things creates a tuple
 Juples can be assigned as tuples
 Which assigns the elements of the tuple as well

e Example:

a, b =3, 5

e Creates two tuples and makes them equal

e Resultisais3andbisb

Using Tuples: Tuple
Assignment

* Tuple assignment makes it easy to switch values
 Assume that we have two variables
 We want them to exchange values

e Here is code that does not succeed:

a=3
b=5
#fnow we want to switch values
a=p

b=a
print (a,b) #prints 5 5

e Spend some time figuring out why

Using Tuples: Tuple
Assignment

* When we assign b=a, the old value of a has just be
overwritten

a=3
b=5
#fnow we want to switch values
a=p

b=a
print (a,b) #prints 5 5

Using Tuples: Tuple
Assignment

* We need to safeguard the value of a in a temporary
variable

 This is a well-known trap for beginners

 But now we have three assignments

a=3
b=5

#fnow we want to switch wvalues
temp = a

a=b

b=temp

print (a,b) #prints 5 3

Using Tuples: Tuple
Assignment

 With tuples, this works much simpler

3
o)

a
b
#fnow we want to switch values

a,b =Db,a
print (a,b) #prints 5 3

* The right side of the assignment is a tuple
 We assign it as a tuple to the left side

* Which then updates the values of aand b

Using Tuples: Unpacking

* |n general, you can unpack a tuple through an assignment
* On the left, you have a tuple with variables

* On the right, you have an established tuple

(name, last name, birth year, birth month, birth date) = caesar

* This will load name, last_name, birth_year, ... with the
values in caesar

* The number of elements on both sides of the
assignment needs to be the same

Using Tuples: Unpacking

* You can even unpack when calling a function
e Put an asterisk before the tuple to cause the unpacking

e Define a function of two variables

def geo mean(a,b):
return (a*b)**(1/2)

e We call it in the usual way
print (geo mean(4,7))
e But we can also call it with a tuple

tp = (3,7)
print (geo mean (*tp))

Using Tuples: Several
Return Values

 Assume that you want to return more than one value from
a function

* You can “kludge” it by return a list

* Then you access the various return values via indices

* You can return a tuple

 And use tuple unpacking at the other end

Using Tuples: Unpacking

e Several return values example

 Assume that you want to return the mean and the

standard deviation of a list of numbers
import math

def stats(lista):

if not lista: #lista 1s empty
return 0,0

mean = 0

var = 0

for element 1n lista:
mean += element

mean = mean/len(lista)

for element 1n lista:
var += (element—-mean) **2

return mean, math.sqgrt (var/len(lista))

Using Tuples: Unpacking

 This code returns a tuple
def stats(lista):

return mean/len(lista), math.sgrt (var/len(lista))

If we call this function, we unpack in a single statement

mu, sigma = stats([12,23,12,12,14,12,13,16,29,11,12,13])

