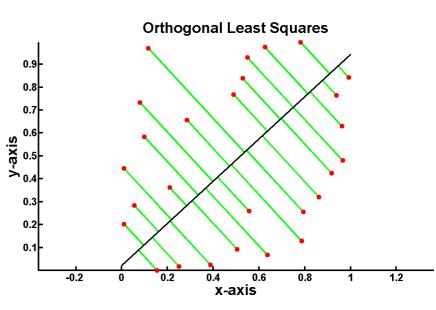
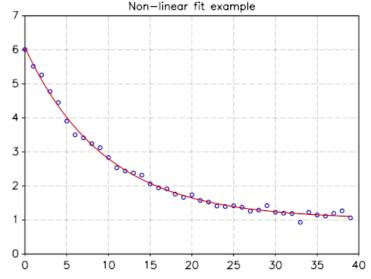
Minimization and Curve Fitting with SciPy

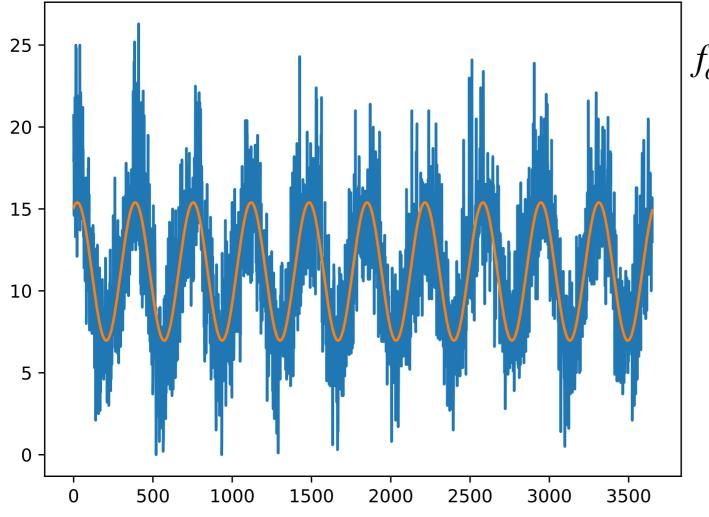
Thomas Schwarz, SJ

- Want to construct a curve (mathematical function) that best fits a series of data points
 - First, need to select a model: what type of curve?
 - Then, need to determine how we measure fit
 - Examples:
 - y-values: $L(y, \hat{y}) = \sum_{\nu=1}^{n} (y_i - \hat{y}(i))^2 \rightarrow \min$
 - orthogonal least squares



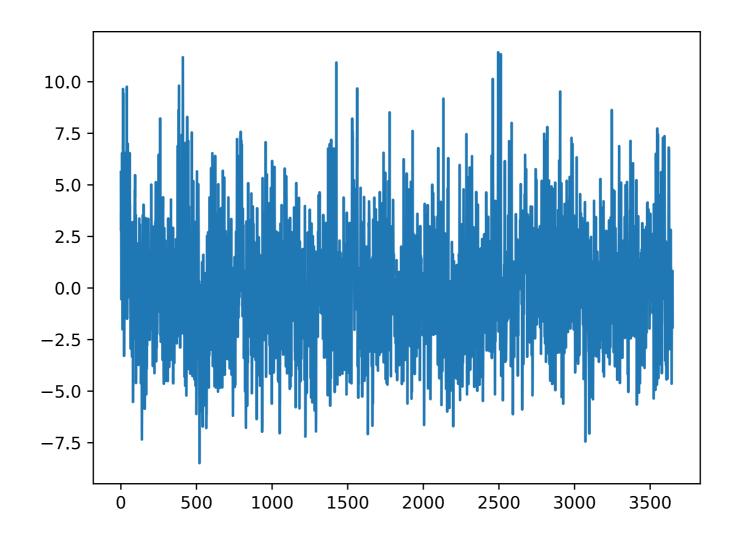


- Example: Fit a sine curve to meteorological data
 - Minimum daily temperatures in Melbourne

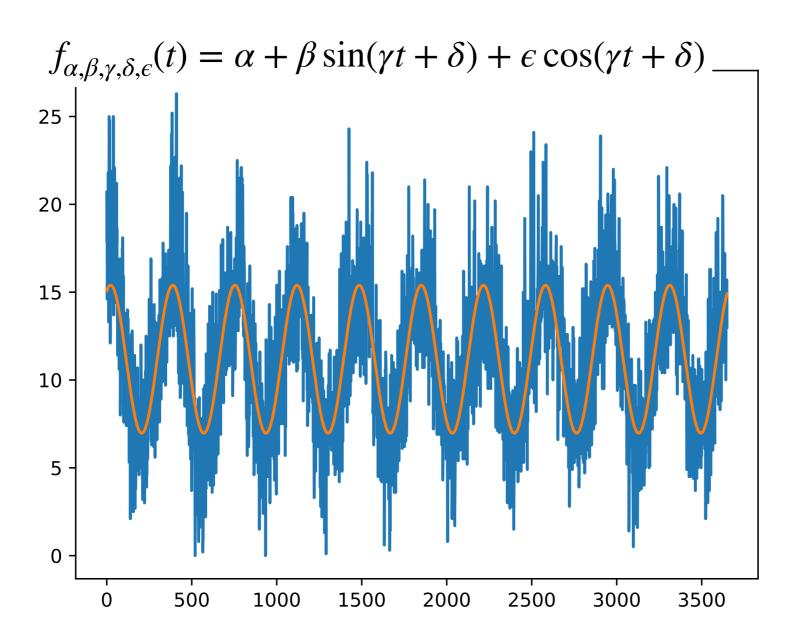


$$f_{\alpha,\beta,\gamma,\delta}(t) = \alpha + \beta \sin(\gamma t + \delta)$$

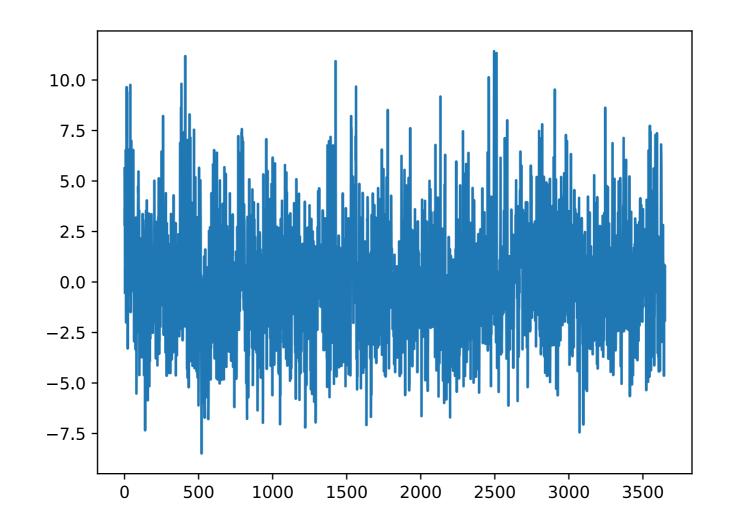
• The data after removing the sine curve shows a seemingly random time series with just a little bit of seasonality



• We can do better by including a cos



- Residual:
 - Looks slightly better?

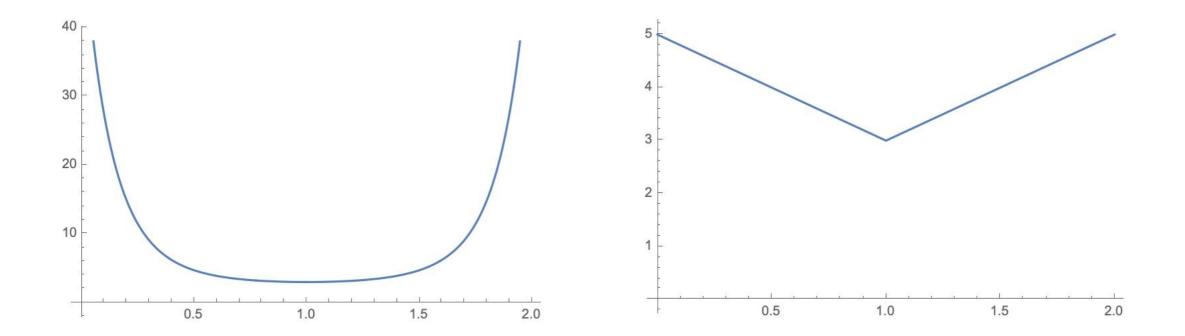


- Find the parameters that minimize the squared difference between function and model
 - This is a minimization problem
- Too general a model:
 - Optimization can be very difficult and lengthy
 - Overfit: The result matches the test set, but not the future
- Not general a model
 - Fit is not good, therefore no strong predictions either

Program

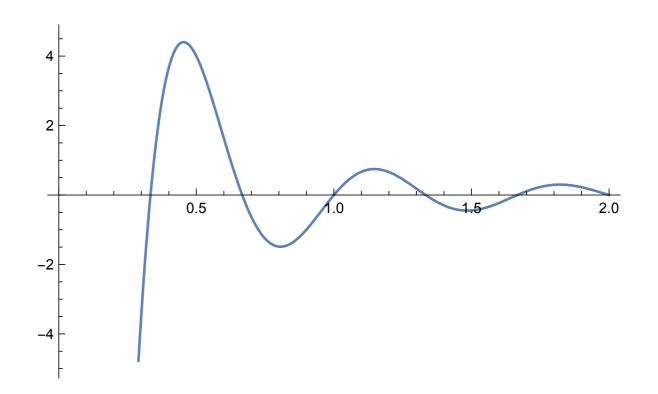
- Need to learn about minimization
 - One dimensional methods: Minimization along a line
 - Gradient Descent Methods
 - Minimization for Sums of Squares
 - Curve-fitting

• Functions can be smooth and non-smooth



- Given a function $\mathscr{R}^n \to \mathscr{R}$
 - Find a minimum

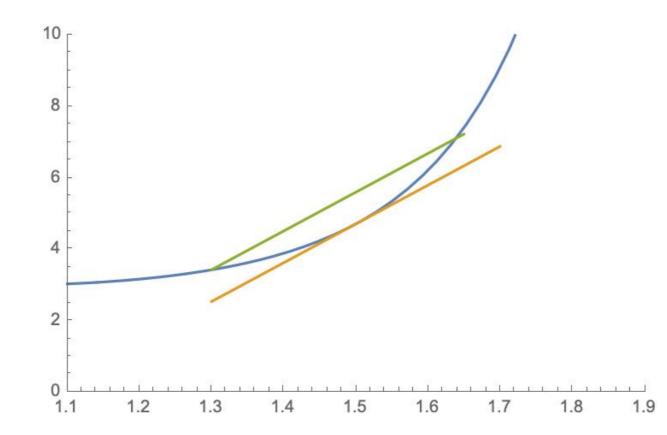
- Potential problems:
 - Minimum might not exist
 - Minimum might be local



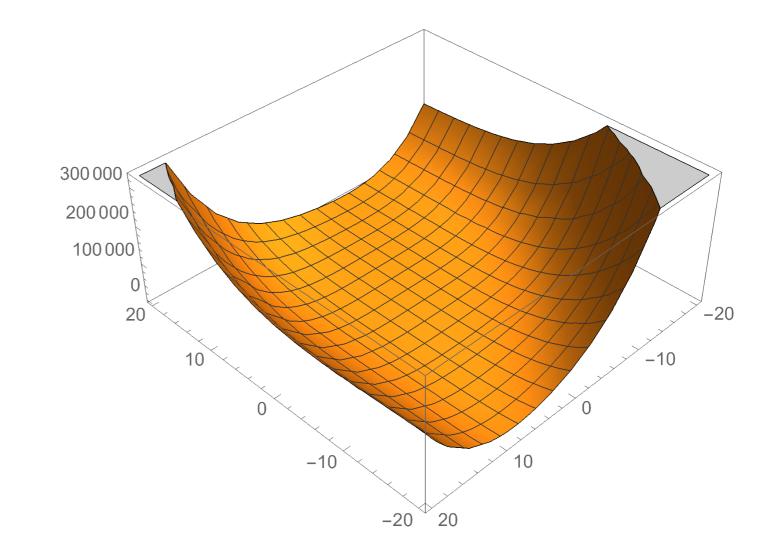
• Convex functions: For $t \in [0,1]$:

•
$$f(\overrightarrow{a} + t(\overrightarrow{b} - \overrightarrow{a})) \le f(\overrightarrow{a}) + t(f(\overrightarrow{b}) - f(\overrightarrow{a}))$$

- Tends to be easy
- Relative minimum is unique



• Minimization is easier for convex functions

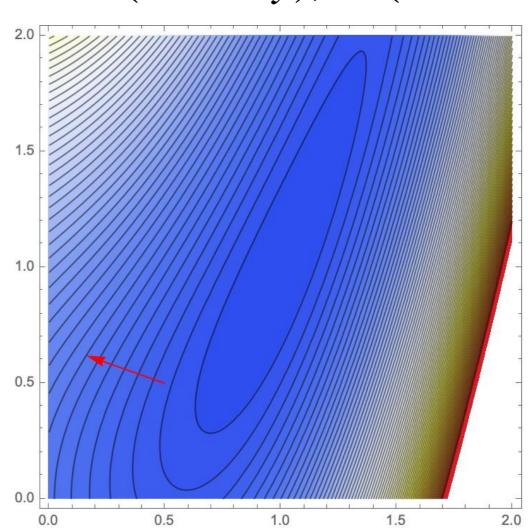


- Smooth functions are (usually) easier than non-smooth functions
 - Exception: Linear systems with constraints —> Linear Programming

• Gradient
$$\nabla f = (\frac{df}{dx_1}, \frac{df}{dx_2}, \frac{df}{dx_3}, \dots, \frac{df}{dx_n})$$
 is always in the direction of gradient increases of a function

direction of greatest increase of a function

- Example: Rosenbrock Function
 - $f(x, y) = 1.2(y x^2)^2 + 1.1(1 x)^2$
 - Gradient is $(-2.2(1-x) 4.8x(-x^2 + y), 2.4(-x^2 + y))$
 - Contour graph is

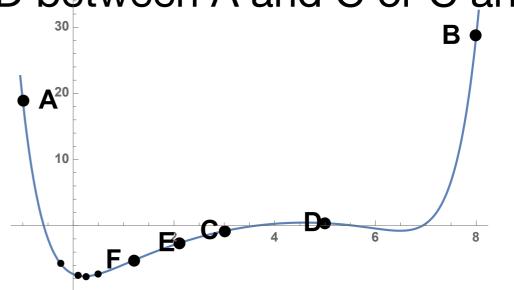


- Descent Methods:
 - 1. Choose a starting point $x_0 \in \mathscr{R}^n$
 - 2. If $\|\nabla f(x_k)\| < \epsilon$ declare victory and return x_k
 - 3. Pick a search direction $d_k \in \mathscr{R}^n$ s.t. $\nabla f(x_k) \cdot d_k < 0$
 - 4. Choose a step size $\alpha_k > 0$ s.t. $f(x_k + \alpha_k d_k) < f(x_k)$
 - 5. Set $x_{k+1} = x_k + \alpha_k d_k$. Go to 2

- This algorithm leaves two things open:
 - Selecting the step length α_k
 - Selecting the search direction d_k

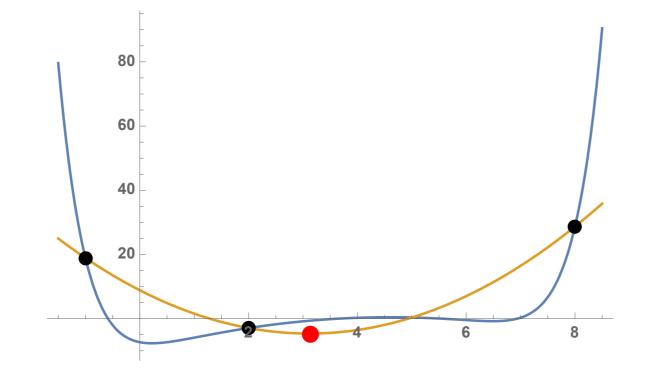
- Finding minimum along line:
 - Finding minimum of function $t \mapsto f(x_k + td_k)$
 - Use derivative is usually dangerous:
 - Often function too flat
 - Better bracketing

- Can use bracketing
 - Three points A < C < B such that f(A) > f(C) < f(B)
 - Thus, minimum guaranteed to exist
 - Now find another point D between A and C or C and B
 - Get a new bracket

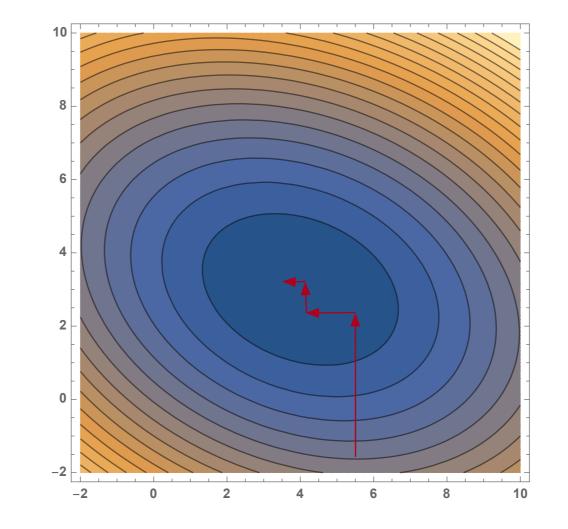


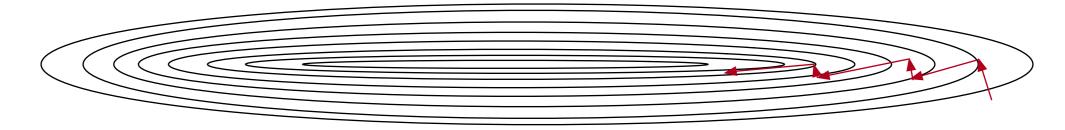
• One possibility: golden ratio: $\frac{|A - C|}{|A - B|} = \frac{|B - C|}{|A - C|}$

- Other possibility: parabolic approximation
- Or a combination of both

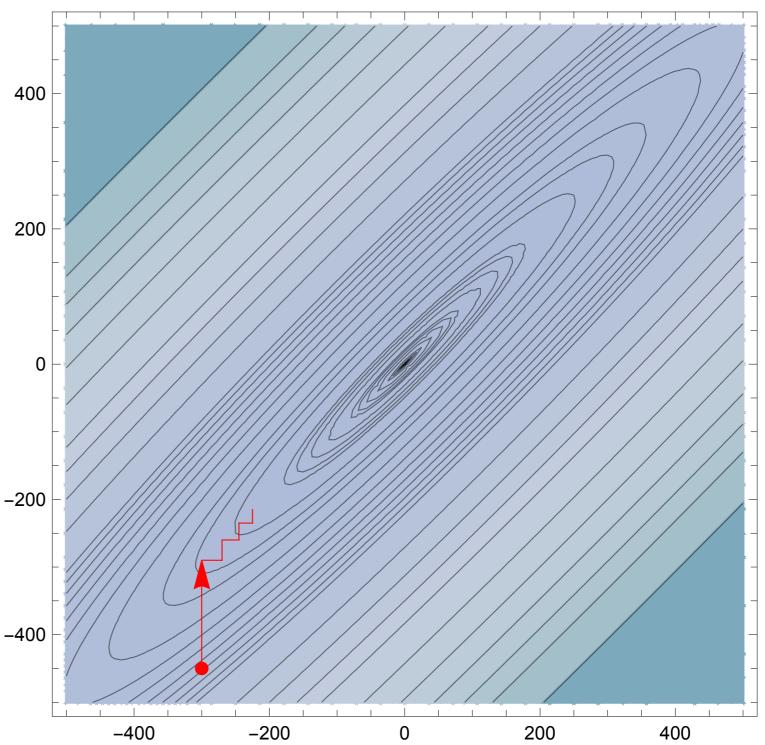


- Determining direction:
 - Can use coordinates





- Using coordinates 400
 - Make little progress per iteration



- Better use orthogonal directions:
 - otherwise we partially undo the previous steps
- Possibilities
 - Canonical Directions
 - Steepest Descent (Cauchy)
 - badly affected by round-off errors and subject to zigzagging
 - Powell: Change set of directions every so often

- Selecting the step length
 - Finding the best step length is laborious
 - Often do better by guessing
 - Many machine learning algorithms use a steadily declining α
 - Trying out several guesses

- Newton Methods:
 - Repeatedly replace condition $\nabla f(x) = 0$ by a sequence of linear problems
 - Newton-Raphson:
 - apply **exact** Newton steps
- possibly does not converge
- works best for convex functions
 - Use linear-search descent, then switch to Newton

- Numerical minimization of a cost function of the parameters
 - Various minimization methods
 - Line methods
 - Minimize along a particular line

- Instead of line searches: Trust Region Methods
 - Idea: for each iteration: replace f with a quadratic model function
 - Quadratic model function approximates f in the "trust region"
 - And quadratic model functions are easy to minimize!
 - The proposed solution can or cannot have a smaller value for f
 - Many different ways of defining the model

- Can use a number of method for finding a local minimum
 - Some need the Jacobian and some need in addition the Hessian
 - Can be calculated numerically but results are better with exact functions

• Jacobian
$$\mathbf{J}(f) = \frac{df}{dx} = \left(\frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2}, \dots, \frac{\delta f}{\delta x_n}\right)$$

• Hessian $\mathbf{H}(f) = \left(\frac{\delta^2 f}{\delta x_i \delta x_j}\right)_{i,j}$

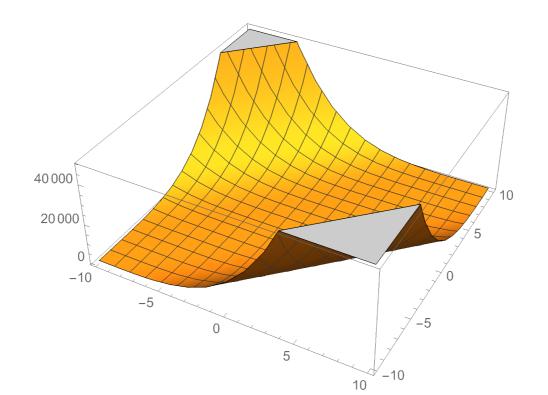
- Use scipy.optimize.minimize
 - Needs a function that is a one-dimensional np.array
 - Specify a starting point, options, and method

• Importing the optimizer:

import numpy as np
from scipy.optimize import minimize

- Defining a function to be minimized
 - Needs to be in "standard form", i.e. numpy array of one dimension

```
def func(x):
    return np.sin(x[0]*x[1])+(x[0]+x[1]-1)**2+(x[0]-x[1]+1)**4
```



Sometimes need to give Jacobian

```
def jacob(x):
    return np.array(
        (4*(1+x[0]-x[1])**3 +
        2*(x[0]+x[1]-1)+
        x[1]*np.cos(x[0]*x[1]),
        -4*(1+x[0]-x[1])**3 +
        2*(x[0]+x[1]-1)+
        x[0]*np.cos(x[0]*x[1])) )
```

• We pick (5,5) as the starting point

```
res = minimize(func,
    [5,5],
    method = 'nelder-mead',
    options = {'xatol': 1e-9, 'disp':True}
    )
```

print(res.x)

• Success: (but with lots of function evaluations)

Optimization terminated successfully. Current function value: -0.295490 Iterations: 84 Function evaluations: 164 [-0.37249737 1.18821832]

```
res = minimize(func,
    [5,5],
    method = 'Newton-CG',
    jac = jacob,
    options = {'disp':True}
    )
print(res.x)
```

Optimization terminated successfully. Current function value: -0.295490 Iterations: 10 Function evaluations: 12 Gradient evaluations: 47 Hessian evaluations: 0 [-0.37249737 1.18821832]

```
res = minimize(func,
        [5,5],
        method = 'Powell',
        options = {'disp':True}
        )
print(res.x)
```

Optimization terminated successfully. Current function value: -0.295490 Iterations: 5 Function evaluations: 139 [-0.37249969 1.18821518]

```
res = minimize(func,
        [5,5],
        method = 'BFGS',
        options = {'disp':True}
        )
print(res.x)
```

Optimization terminated successfully. Current function value: -0.295490 Iterations: 15 Function evaluations: 84 Gradient evaluations: 21 [-0.37249848 1.18821848]

• Want to minimize a sum of squares

•
$$f: \mathscr{R}^n \to \mathscr{R}^m$$

$$f(\overrightarrow{x}) = \frac{1}{2} \sum_{j=1}^{m} r_j^2(\overrightarrow{x})$$

• (Factor of 1/2 to make derivatives look nicer)

• With this special form, we can calculate the Jacobian of $(r_1(\vec{x}), r_2(\vec{x}), ..., r_m(\vec{x}))^T$ more easily

$$\mathbf{J}^{T} = \begin{pmatrix} \frac{\delta r_{1}}{\delta x_{1}} & \frac{\delta r_{2}}{\delta x_{1}} & \dots & \frac{\delta r_{m}}{\delta x_{1}} \\ \frac{\delta r_{1}}{\delta x_{2}} & \frac{\delta r_{2}}{\delta x_{2}} & \dots & \frac{\delta r_{m}}{\delta x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta r_{1}}{\delta x_{n}} & \frac{\delta r_{2}}{\delta x_{n}} & \dots & \frac{\delta r_{m}}{\delta x_{n}} \end{pmatrix} = \begin{pmatrix} \frac{\delta r_{j}}{\delta x_{i}} \end{pmatrix}$$

• Then

$$\nabla f(\vec{x}) = \mathbf{J}(\vec{x})^T \mathbf{r}(x)$$
$$\nabla^2 f(\vec{x}) = \mathbf{J}(\vec{x})^T \mathbf{J}(\vec{x}) + \sum_{j=1}^m r_j(\vec{x}) \nabla^2 r_j(\vec{x})$$

- Now we assume that $||\mathbf{r}(\vec{x})||$ is linear
 - Then ${\boldsymbol{J}}$ is a constant
 - $\nabla^2(r_j)(\overrightarrow{x}) = 0$
 - Taylor expansion is

$$f(\overrightarrow{x}) = f(x_0) + \mathbf{J}(f(x))|_{\overrightarrow{x}_0}(\overrightarrow{x} - \overrightarrow{x}_0) + \frac{1}{2}(\overrightarrow{x} - \overrightarrow{x}_0)^T \mathbf{H}(f(\overrightarrow{x}))|_{\overrightarrow{x}_0}(\overrightarrow{x} - \overrightarrow{x}_0) + \dots$$

- Taking derivatives gives
- $\nabla f(\vec{x}) = \mathbf{J}^T (\mathbf{J}\vec{x} + \vec{r}) = 0$
- at a minimum

- This means we can solve for the minimum since then $\mathbf{J}^T \mathbf{J} \overrightarrow{\mathbf{x}} = -\mathbf{J}^T \mathbf{r}(\overrightarrow{\mathbf{x}})$
- and so we could solve $\overrightarrow{x} = (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r}$

- However, calculating the inverse is
 - computationally expensive
 - numerically unstable
 - •

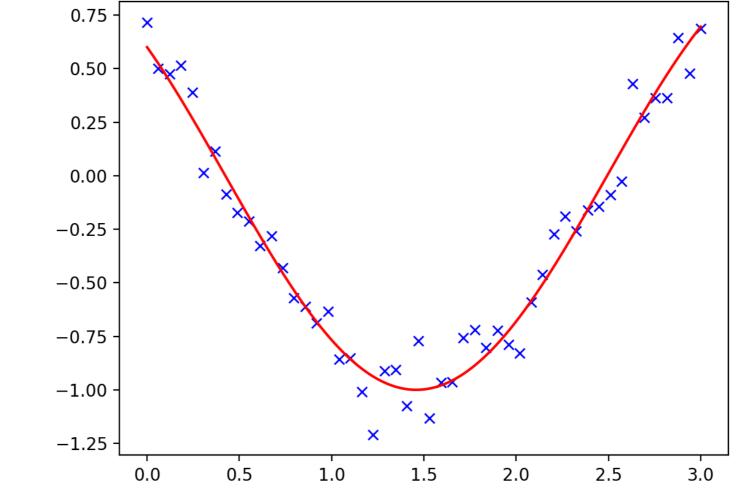
• Can use

- Cholesky factorization
- QR factorisation
- Singular value decomposition of
- $\mathbf{J}^T \mathbf{J}$
 - which are all implemented in np.linalg

- Levenberg Marquardt algorithm
 - Even if **r** is not linear:
 - Assume that it is approximately
 - Use the above method as an approximator
 - Get results

Curve Fitting

- Number of numerical methods for minimization problems
- Curve fitting:
 - Given a number of points, find a smooth curve going through it



Curve Fitting

• Use a cosine as the test function

```
def f(t, omega, phi):
    return np.cos(omega * t + phi)
```

• Create sample data

x = np.linspace(0, 3, 50)
y = f(x, 1.5, 1) + .1*np.random.normal(size=50)

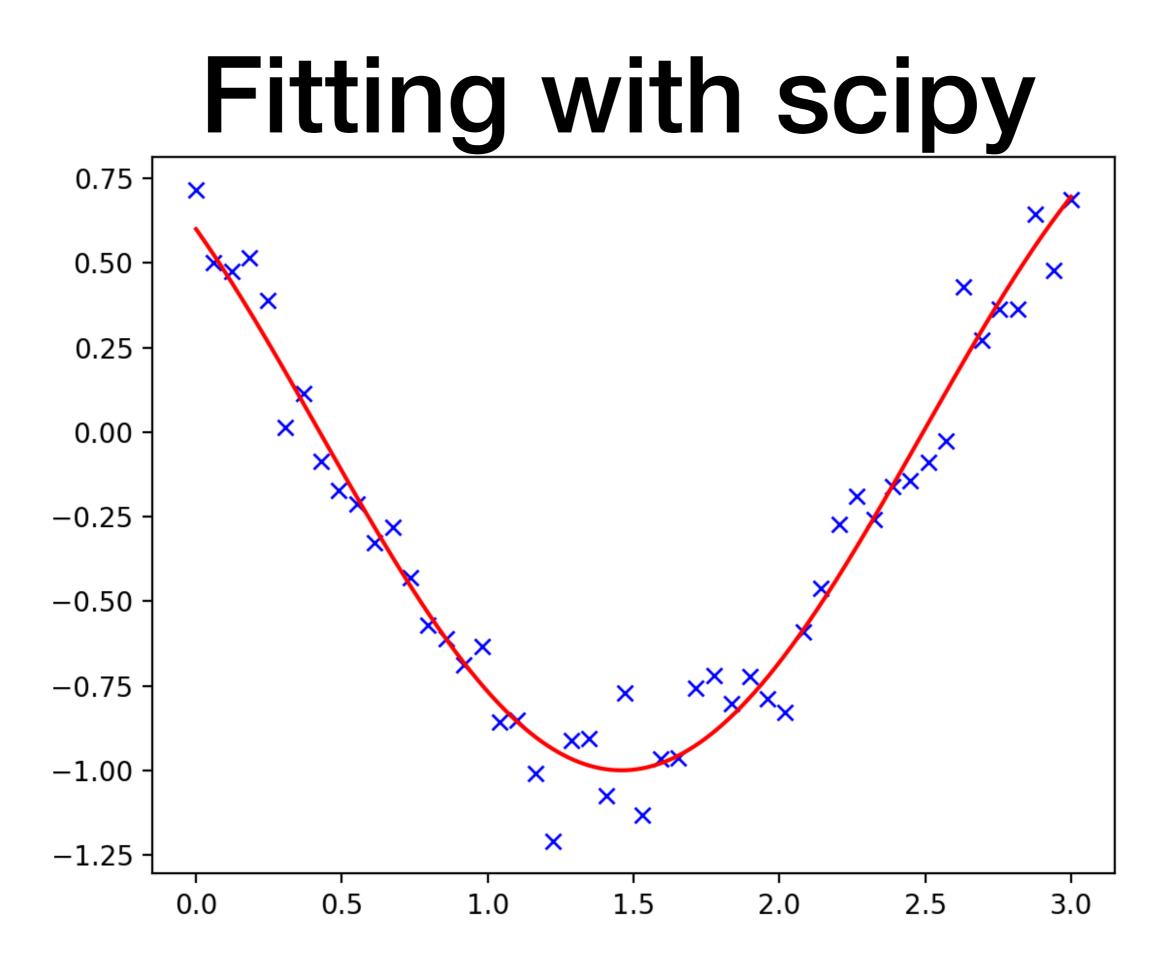
• Now fit using scipy.optimize

```
params, params_cov = optimize.curve_fit(f, x, y)
print(params)
```

• Can almost recover parameters

y = f(x, 1.5, 1) + .1*np.random.normal(size=50)

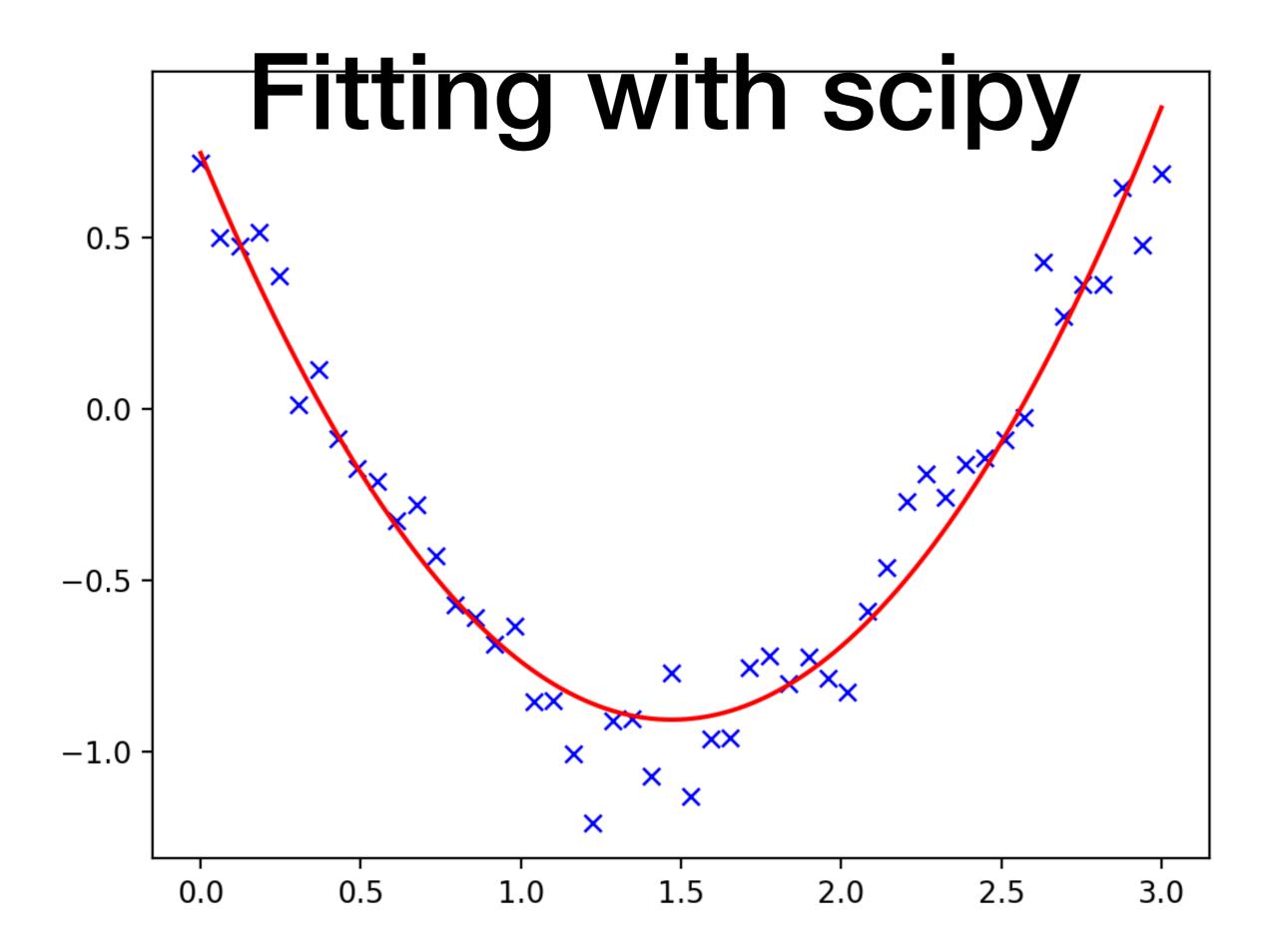
[1.51854577 0.92665541]

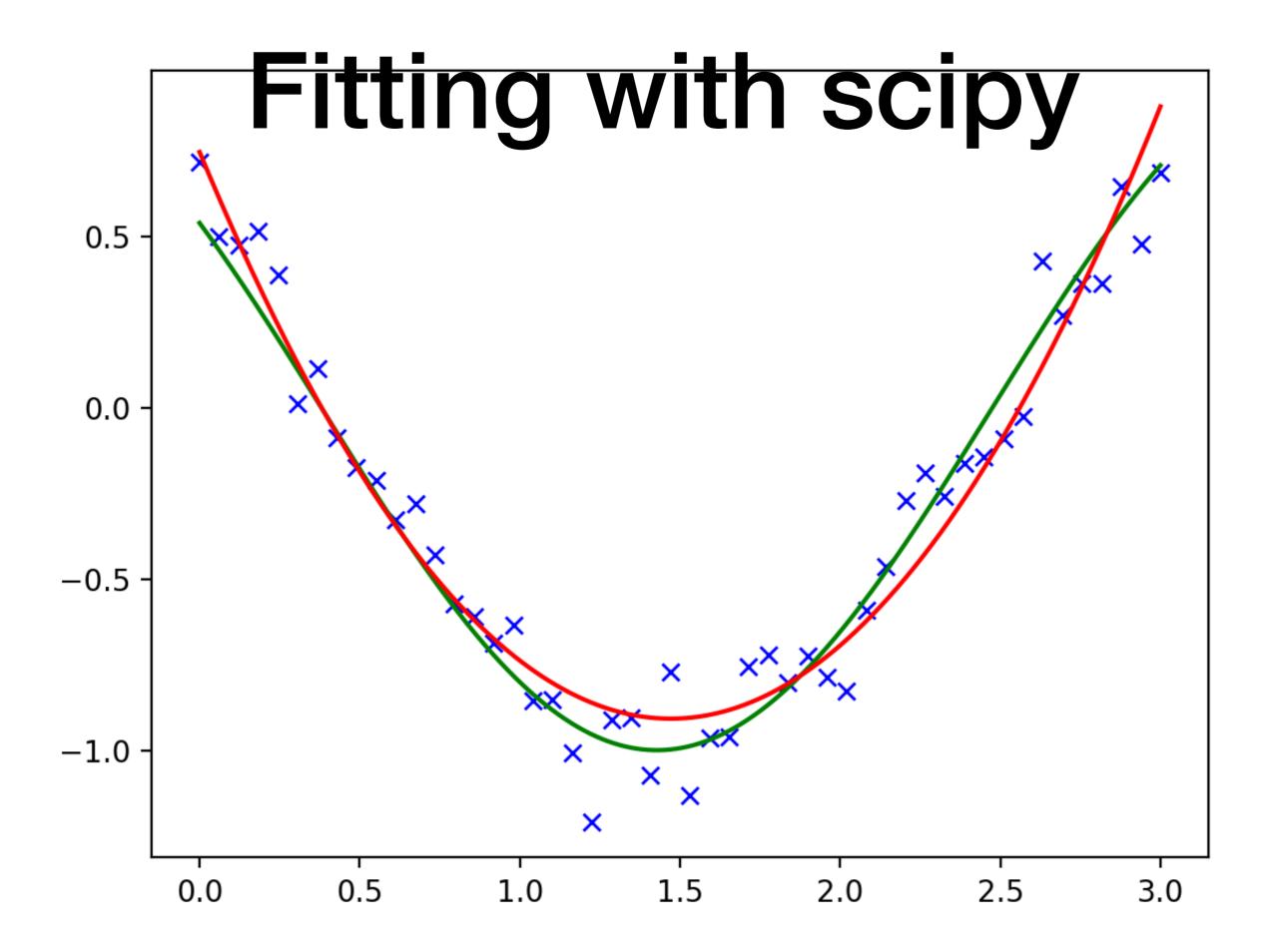


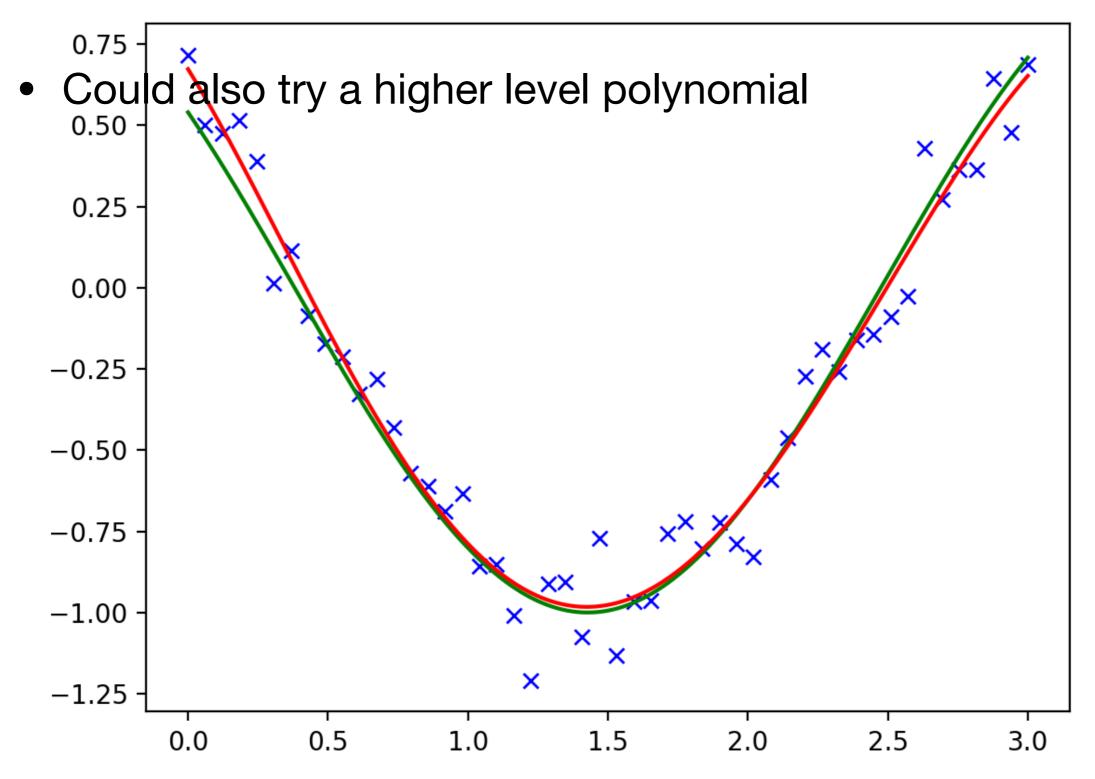
• Could also fit with a quadratic

```
def g(t, a, b, c):
    return a*t**2+b*t+c
```

params, params_cov = optimize.curve_fit(g, x, y)







- And if we try with a polynomial with as many degrees as there are points, we would get perfect fit
 - And absolutely no insights!

Optimization

- Global optimizers:
 - Grid search: Start out at a large number of starting positions
 - Try out several methods
 - If possible, calculate the gradient and the Hessian yourself
 - Can use scipy.optimize.check_grad() to see whether you calculated correctly

Curve Fitting

- Need to have a good model:
 - Avoids under- and over-fitting
 - Find a way to measure success
 - E.g. time series: You want to remove trends and have white noise left over

HELP!!!!

- Get Scipy Lecture notes (for free)
 - www.scipy-lectures.org