Module 2: Loops

Thomas Schwarz, SJ

Repetition

 Computational model for kindergardeners

We have a very large array of memory
locations

The memory locations are variables

CPU

a=3

b=5

A A

A program consists of a series of
iInstructions

A typical instruction c=a+b takes a value
from storage location a, a value from
storage location b, does a computation,
and stores in storage location c

c=8

Repetition

 Python variables are defined by assignment
 They are "strongly typed":
e E.g.: Operations depend on the type

e + between numbers: addition

e between strings: concatenation: 'THI '+ '+'§ﬁ?ﬂ'

e * petween numbers: multiplication, between integer
and string:

* The same variable name can refer to entities of different types
during the lifetime of a program

Repetition

e Assignment: "=
* 3 = 3*b/c

* Operators:
® Usually set: +, -, *, /, ™
* Binary operators: A, |, <<, >>, &, ~

® Unusual: // is integer division, % modulo operator

Repetition

e Conditional statements
o |f, If else, ifelf...else
e Unusual:
 White spaces form blocks

* No parenthesis around
conditions

if ‘ Condition 1

4P Statement Block 1
one

indent

elif Condition 2

P Statement Block 2
one

indent

’else‘ :

4P Statement Block n
one

indent

Repetition

e Example: (Python has no switch statement)

1f temperature < -20:

print ('welcome to Minnesota 1n the winter')
ell1f temperature < -10:

print ('I love Milwaukee 1n the winter')
elif temperature < 0:

print ('be careful about driving')
elif temperature < 10:

print ('Finally spring in Milwaukee')
elif temperature < 20:

print ("It's getting hot")
ellf temperature < 30:

print ('normal')
elif temperature < 45:

print ('when does monsoon start')
elif temperature < 55:

print ("1t's hot even for Ahmedabad")
else:

print ('where are you living')

Repetition

 Python strings
* Python is very flexible about the encoding that you use
 Python-3 scripts should be written in utf-8

e Strings can be denoted by single or double quotation
marks

 Python is very good at interpreting what you mean
but sometimes escapes are necessary

Pep-8 style guidelines: https://www.python.org/dev/peps/pep-0008/

Conditions

A condition is an expression that evaluates to True or
False

* This type is called Boolean

Boolean Expressions

e The simplest Boolean expressions are True and False

* The next simplest class are numerical comparators

< smaller

> greater

== equals (Two! equal symbols)
= not equals

<= smaller or equal

>= larger or equal

@
Python 3.6.5 (v3.6.5:f59c(

. [GCC 4.2.1 (Apple Inc. bu
| Type "copyright", "credit:
I>>> a =5

>>> a 1=2%2
True

>>> a != 2+3
False

>>> a<b

True

>>> a>/
False

>>>

Boolean Expressions

* We can combine Boolean expressions using the logical
operands

e and
e OFr
e Not

* |f necessary, we can add parentheses in order to specify
precedence

Boolean Expression
Examples

* A program that decides whether user input is divisible by
2, but not by 3.

T T T T T -
x = int(input("Please enter a number: "))
X%2==0 x%3==0:
A

print("The number is divisible by two, but not by three")

print("The number is not divisible by two or it is divisible by three.™)

O ® Python 3.6.5 Shell

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, ©3:03:55)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more information.

>>>

RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example.py
Please enter a number: 5
The number is not divisible by two or it is divisible by three.

>>>

RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example.py
Please enter a number: 6
The number is not divisible by two or it is divisible by three.

>>>
RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example.py
Please enter a number: 4
The number is divisible by two, but not by three
>>>

Boolean Expression
Example

e A program that checks whether the letter “a”, “A”, “e” or “E” is part of
user input.

 Python allows the keyword “in” to check for the presence of letters in
strings.

user_input = input("Please enter a string: ")

a user_input "A' user_input "e" user_input "E" user_input:
print("present")

print("not present")

O © Python 3.6.5 Shell

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 03:03:55)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more information.
>>>
RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example2.py
Please enter a string: retiuyert
present
>>>
RESTART: /Users/thomasschwarz/Documents/My website/Classes/Module4/example2.py
Please enter a string: rtiuyirtuy
not present
>>>

Short-Circuit Operators

e The value of an “or”- or “and” expression is evaluated
from the left to the right

e |f the first operand of an “or” is True, then the second
operand is not evaluated and True is returned.

* This is because the value of the expression is already
kKnown

e Similarly, if the first operand of an “and” expression is
False, then the second operand is not evaluated and
the value of the expression is False.

Conversion of other
expressions

 Any object can be tested for a truth value.

e The truth value of a non-zero number is True, otherwise False.

>>> 5%2 :

* Example: orint("5 is odd™)

5 1s odd

e Since 5%2 evaluates to 1, it’s truth value is True and the
conditional statement (print (..)) is executed

e This behavior extends to other type of objects such as strings

e The empty string “” has truth value 0, every other string has
truth value 1.

Loops

* In CS: two types of for-loops

e Using an index as in C, C++, Java

for(int 1 = 0; 1 < 10; 1i++)

e Using lists as in Lisp

* (loop for x in '"(a b c d e)
do (print x))

* Python for loops iterate through an 'iterator’

Loops

 Jo repeat a block of statements, use

for 1 1n range (n) :

- Indent >

Block of Statements

Loops

Range used to generate a list, but is now a generator
e Like a list, but values are generated only on demand
range with a single variable: variable is the stop value

range (5) (0,1,2,3,4]

range allows a start value:

range (2, 5) [2,3,4]

range allows a stride:

range (2,10, 3) (2,5, 8]
range (10,1, -3) [(10,7,4]

Loops

e Examples:
100
, Calculate Z i2=1%2+2%+ ... +99% + 1002
i=1

e Use an accumulator to get the sum

def sum of squares(limit : 1int) -> 1int:
accu = 0
for 1 in range(l, limit+1l):
accu += 1*1
return accu

Notice that the

sum includes 100

Loops

e Example: Count-down

for 1 1n range (10, -1, -1):
print (1)

O

O N WD OToy J 00 O

Loops

e Calculating the factorial
n

n!=Hi=1-2-3-...-(n—1)-n

=1

accu = 1
for 1 1n range(l, n+1l):
accu *= 1

return accu

Calculating Sums

 For loops are handy to calculate mathematical sums

e (Geometric series:

1 1 1 1 1 |
e Calculate 2—+§+§+§+?+ ﬁ
e Determine iterator needs to run from 0 to 10
(inclusive)

® for 1 1n range(1ll):
e Need to accumulate fractions in a sum

e Just don’t call it “sum”, because “sum” has
another meaning

Calculating Sums
1S

accu = 0
i in range(1ll):
accu += 1/2%**1
print(accu)

O ® Python 3.6.5 Shell

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 03:03:55)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.
>>>

RESTART: /Users/thomasschwarz/Google Drive/AATeaching/Ahmedabad/Solutions/geome
tric.py

1.9990234375

>>>

Calculating Sums

 Admittedly, we could have used Mathematics instead

e Thesumis1.1111111111 in binary.

e Add 1/2**100r 0.0000000001 In binary and we
get 2.

e Thus,thesumis2 - 1/2**10

Drawing Pictures

i in range(@,6):

e We can use the index In print((5-1)%" "+2%{*"* 748"

i in range(5,-1,-1):

a for loop in order to Primt((5-)%" "42Win"* 1)
draw contours

: © Python 3.6.5 S
Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018,

e The trick is to use [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on

Type "copyright", "credits" or "license()" for

string repetition

RESTART: /Users/thomasschwarz/Google Drive/AA

instead of drawing Vo,

u st
each line separately.
% 3 ok ok ok Kk ok
A 3k ok ok ok ok ok ok
& 3k ok ok ok ok ok ok kK
3 3k ok ok ke ok ok ok kK
3 ok ok ok ok ok Kk ok
A 3 %k ok Ak Kk
A& %k %k
* %k K
H

>>>

Drawing
Pictures

for 1 in range(8):

~

ror

j in range(2):
pr‘int(4*(4*" ”+4*||*"))

for j in range(2):

|

Print(4*(4*"*"+4%" "))

* % % * % %k %* % %k %* % %k
* % %k * % %k * % %k %* % %k
* % %k * % % * % %k %* % %k
* %k % * %k % * %k %k * % %

>>>

Python 3.6.5 Shell

RESTART: /Users/thomasschwarz/Google Drive/AATeachi

Py

%* %k %k %k * % %k %k * % % %k * % %k %k
* %k %k %k %* % %k %k * % %k %k * % % %k
* %k Xk % * %k k% % % % %k % % %k %
* %k Xk % * %k Xk % * %k k% % %k %k %k
% % %k % % % %k %k * %k %k % * %k %k %
& % %k % %* %k %k % %* % %k % * % %k %k
* %k %k % * %k %k % * %k %k % & % %k %k
* %k %k % * %k %k % * %k %k % & % %k %
% % %k % %* % %k % * % %k % * % %k %
% % %k % %* % %k % * % %k % * % %k %
* % %k % * %k %k % * %k %k % & % %k %
* %k %k % * %k %k % & %k %k %k & %k %k %k
% %k %k % %* % %k %k * %k %k % * %k %k %
% %k %k %k * % %k %k * % %k %k * % %k %k
* %k %k % * %k %k % A& % %k %k % %k %k %k
* %k %k % * %k Xk % % %k %k %k % %k %k %k
%k %k %k %k * % %k %k * % %k %k * %k %k %
* % %k %k * %k %k %k * %k %k %k * %k %k %k
* %k %k % * %k %k % * %k %k % & % %k %k
* %k %k % * %k %k % * %k %k % & %k %k %
* % %k % * % %k % % % %k % * % %k %
% % %k % * % %k % * % %k % * % %k %
* %k %k % * %k %k % * %k %k % & %k %k %
* %k %k % * %k %k % * %k %k % & %k %k %k
% %k %k % %* % %k % * %k %k % % % %k %
% % %k %k * % %k % * % %k % * % % %k
* %k %k % * %k %k % & %k %k %k & %k %k %k
* %k %k % * %k k% A& %k %k %k A& % %k %
% %k %k %k * % %k % * %k %k %k * %k %k %k
%* % %k %k * % %k %k * %k % %k * %k %k %k
* %k Xk % * %k Xk % * %k k% % % %k %k
* %k %k % * %k %k % * %k %k % & % %k %

>>>

While Loops

e Form of the while loop:

while condition :

- -+ Statement Block
Indent

e Keyword is while
e Condition needs to evaluate to either True or False

e Condition is a boolean

While Loop Conditions

e Statement block is executed as long as condition is valid.

* Allows the possibility of infinite loops

Apple Inc.

One Infinite Loop
Cupertino, CA 95014
(408) 606-5775

S —

while condition :

- - Statement Block
Indent

An Infinite Loop

while True:

print (“Hello World”)

If this happens to you, you might have to Kkill Idle process.

While Loops can emulate
for loops

* Find an equivalent whlle loop for the following for-loop

e (which calculates Z

1/—1

n = 1nt (i1nput ("Enter n: "))
suma = 0
for 1 1n range(l,n+1l):

suma += 1/1

rint ("The", n, "th harmonic number 1s", sum)
©

While loops can emulate for
loops

e Solution: the loop-variable / has to start out as 1 and then
needs to be incremented for every loop iteration

* We stop the loop when i/ reaches n+1, i.e. we continue as
long as / <=n.

n = int (input ("Enter n: "))
sum = 0
i=1

while i<= n:
sum += 1/1
i+=1
print ("The", n, "th harmonic number 1is", sum)

Harmonic Numbers

— 1
e The nth harmonic number is hn — Z —
U
v=1
e |tis known that this series diverges.

* Given a positive number x, we want to determine n such
that the nth harmonic number is just above x

min({n|h, > x})

|
e Solution: add = while you have not reached x

Harmonic Numbers

x = float (input ("Enter x: "))
nu = 1
sum = 0

while sum <= X:
sum += 1/nu

nu += 1
print ("The number you are looking for is ", nu-1,
"and 1incidentally, h n =%, sum)

* When we stop, we need to undo the last increment of nu,
but not for sum.

Breaking out of a while loop

* You break out of a while loop, if the condition in the while
loop Is False

 Or by using a statement
e break Dbreaks out of the current loop
e Can be used in for loops as well
* A related statement is the continue statement

e continue breaks out of the current iteration of the
loop and goes to the next

e We’ll learn them in the course of the classes.

Example

* Find a number that fulfills the following congruences

x =2 (mod 3)
x =3 (mod 5)
x =2 (mod 7)

 Thisis Sun-Tsu’s problem and the Chinese
Remaindering Theorem in Mathematics helps with
solving these problems.

Example

e We try out all numbers between1and 3 x5 X7
 We check each number whether they fulfill the congruences

e |f we find one, we print it out and break out of the while
loop.

x =1
while x < 3*5*7;
1f x%3==2 and x%5==3 and x%7/==2:
print (x)
break
X += 1

While Loops

 break: stop the execution of the loop

e continue: stop the execution of the current iteration and
go back to the evaluation of the loop condition

e (Stupid) Example: Print out all even numbers from 1 to
100

for 1 in range(l, 101):
1f 1%2==1:
continue
print (1)

While Loops

* A frequent pattern:
e Have an infinite while loop

e Break out If a certain condition is true

While Loops

 Else clause (an example that Python is not perfect)

e Executed if a break is not taken

while condition :
~ ™

break

else :

While Loops

 Else clause example:

for n in [2,3,4,5,0,7,8,20,21,22,23,24]:
for p 1in range (2, n):

if p*(n//p) == n: # p devides n
print(n,'=', p, '*', n//p)
break

else:

print (n, 'is prime')

* Notice: 'else' belongs to the inner for, not the if statement

