
Support Vector
Machines

Thomas Schwarz

Introduction
• Recall Decision Trees

• Use the features in order to make recursively decisions

• End up with a classification

y > y1

x > x1

no

Blue

yes

BlueRed

16 blue, 1 red

44 blue, 3 red2 blue, 42 red

y1

x1

Introduction
• Decision trees are a type of supervised learning

• Limited by using only a single feature

Introduction
• KNN — k nearest neighbors

• Supervised learning

• to classify a feature point:

• we look at all elements in the training set

• Drawback: Not scalable if training set is large

Introduction
• SVM:

• Uses any hyperplane to separate sets

Decision tree boundaries are
parallel to axes

SVM boundaries can be
any hyper-planes

Introduction
• SVM:

• Can encode the hyper-plane using a few data points:

• The support vectors

Hyperplane

Support Vector

Normal

margin

Support Vector

Support Vector

Introduction
• SVM:

• Can solve classification even if the data set is not
linearly separable

Introduction
• Use a (non-linear transform of the data)

• Kernel function: (x, y) ↦ (x, (x − 2)2 + (y − 2)2)

Mathematics of SVM
• Hyper-plane through the origin is an -dimensional

subspace of

•

• is a "normal" vector, usually of length 1

• Dot is the dot product

• Can also use the matrix product

•

n − 1
ℝn

H = {x ∈ ℝn |c ⋅ x = 0}

c

H = {x ∈ ℝn |ct ⋅ x}

Mathematics

Hyperplane defined
by normal vector (2,3,1)
through the point (1,1,0).

H = {x ∈ ℝn |c ⋅ x = 0}

Mathematics
• Task: Find

• Orthogonal to vector

• Passing through a point

Hc,p

c

p

Mathematics
•

• if and only if is orthogonal to

•

x ∈ Hc,p

(x − p) c

(x − p) ⋅ c = 0

c
p

x
x-p

Mathematics
• Hyperplane given by

•

•

• Defined by a linear functional

•

Hc,p = {x ∈ ℝn |x ⋅ c − c ⋅ p = 0}

= {x ∈ ℝn |x ⋅ c + b = 0}

λ : ℝn ⟶ ℝ

Hc,p = {(x ∈ ℝn |λ(x) = b}

Mathematics
• Hyperplane separates space into two halves:

•

•

H−
c,p = {(x ∈ ℝn |λ(x) + b < 0}

H+
c,p = {(x ∈ ℝn |λ(x) + b > 0}

Mathematics
• Learning task:

• Find a hyperplane such that

• All feature vectors of one category are in

• All feature vectors of the other category are in

• The best hyperplane

• (and most likely to achieve good results)

• Maximizes distance of feature vectors from the plane

H−
c,p

H+
c,p

Mathematics
• How do we determine the distance of a point from the

hyper-plane?

• Distance is length of a line between point and closest
point on the hyperplane

• This line needs to be orthogonal to the hyperplane

• (Otherwise can find something closer

Mathematics

not orthogonal

Mathematics

Hyperplane

Point

Normal

90o Distance of a point from a

hyperplane is the length of

a normal of the hyperplane

through the point.

Mathematics
• Let be a point on the hyperplane

• Hyperplane defined by

• Write

• , with

• Multiply with

• since

x

Hw,b = {(x ∈ ℝn |w ⋅ x + b = 0}

x − p = αw + βv w ⋅ v = 0

w

w ⋅ (x − p) = αw ⋅ w + βw ⋅ v = α
w ⋅ w = |w |2 = 1

Mathematics
• Therefore

• Projection of on normal is

• This is the distance between and the hyperplane:

x − p w w ⋅ (x − p) .

p

dist(p, Hw,b) = |α | = |w ⋅ (x − p) |

= |w ⋅ x − w ⋅ p | = | − b − w ⋅ p | = |b + w ⋅ p |

Mathematics
• Summary:

• Want all the feature vectors of first category in

•

• Want all the feature vectors of the second category in

•

H−
w,b = {(x ∈ ℝn |w ⋅ x + b < 0}

H+
w,b = {(x ∈ ℝn |w ⋅ x + b > 0}

Mathematics
• First category gets label -1 , second category gets label +1

• Condition becomes:

•

• In addition:

•

• where we maximize over all normals of length 1 and
all scalars

• All data points contribute to the optimization

label(xi)(w ⋅ xi + b) > 0

min
i∈I

{label(xi)(w ⋅ xi + b)} → max

w
b

{xi | i ∈ I}

Mathematics
• Allow normals to have length other than 1

• Replace with

• Optimization becomes

•

• The points where the minima are attained are called the
support vectors.

b |w |b

min
i∈I

{label(xi)(w ⋅ xi + b)/ |w |} → max

xi

Mathematics

Hyperplane

Support Vector

Normal

margin

Support Vector

Support Vector

Mathematics
• This even works if the two categories are not linearly

separable

Mathematics
• Problem:

• Support vectors: is minimum

• Can multiply and with a scalar

• Set scalar to

• Then:

•

• Distance of to hyperplane is

• All other feature vectors:

min
i∈I

{
label(xi)(w ⋅ xi + b)

|w |
} → max

label(x)(w ⋅ x + b)/ |w |

w b

s = (label(x)(w ⋅ x + b))−1

(label(x)(w ⋅ x + b)) = 1

x 1/ |w |

label(x)(w ⋅ x + b) ≥ 1

Mathematics
• Can now reformulate optimization problem

subject to

min
w,b

{
|w |2

2
} → min

∀i ∈ I : label(xi)(wxi + b) ≥ 1

Mathematics
• Solve with Lagrange multiplier, traditionally called

• Solve subject to constraints

• ,

•

α

∀i ∈ I : αi(label(xi)(wxi + b) − 1) = 0 αi ≥ 0.

L =
|w |2

2
− ∑

i∈I

αi(label(xi)(wxi + b) − 1) → min

Mathematics
• Take partial derivatives with respect to and

• Since

• We obtain

•

•

w b

δ
δwi (1

2

n

∑
i=1

w2
i) = wi

δ
δw

L = w −
n

∑
i=1

αilabel(xi)xi

δ
δb

L =
n

∑
i=1

αilabel(xi)

Mathematics
• Setting them to zero for the minimum, we get

•

• and therefore

•

w =
n

∑
i=1

αilabel(xi)xi

w =
n

∑
i=1

αilabel(xi)xi

Mathematics

• implies

• is a linear combination of features

w =
n

∑
i=1

αilabel(xi)xi

w

Mathematics
• Use in our optimization problem

•

• Use

|w |2

2
=

w ⋅ w
2

L =
|w |2

2
− ∑

i∈I

αi(label(xi)(wxi + b) − 1) → min

−∑
i∈I

αi(label(xi)(wxi + b) − 1)

= − w ⋅ (
n

∑
i=1

αilabel(xi)) −
n

∑
i=1

αilabel(xi)b +
n

∑
i=1

αi

= − w ⋅ w +
n

∑
i=1

αi

Mathematics
• Function is now simplified:

•

L

L = −
1
2

w ⋅ w +
n

∑
i=1

αi

Mathematics
• Plugging in again

•

• we obtain

•

• which we want to maximize subject to constraints

• and

w =
n

∑
i=1

αilabel(xi)xi

L =
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjlabel(xi)label(xj)xi ⋅ xj

∀i ∈ I : αi ≥ 0
n

∑
i=1

αilabel(xi) = 0

Mathematics
• This is the "dual" optimization problem, but it is quadratic

in the alphas.

• This means that it can be solved using Kuhn Tucker

Mathematics: Soft Margin
SVM

• The preceding works if the data set is linearly separable

• If not, we introduce slack variables

•

• They measure the violation of the separation condition

• If zero: separation condition is fulfilled and the point lies

 away from the hyperplane

• If : point lies inside the margin, but point is
classified

• If , point is mis-classified

label(xi)(w ⋅ xi + b) ≥ 1 − ξi

≥
1

|w |

0 < ξi < 1

ξi ≥ 1

Mathematics
• Choosing an optimization function is no longer straight-

forward

• Do we want a hyperplane with a few violations or do we
want to minimize the total amount of violations

Mathematics
• One possibility:

•

• subject to

•

•

min
w,b,ξi (

|w |2

2
+ C

n

∑
i=1

ξk
i)

∀i ∈ I : label(xi)(w ⋅ xi + b) ≥ 1 − ξi

∀i ∈ I : ξi ≥ 0

Mathematics
• The power k in

•

• describes our policy:

• k=1: Hinge loss

• k=2: Quadratic losss

• C describes the trade-off between large margins and loss
minimization

min
w,b,ξi (

|w |2

2
+ C

n

∑
i=1

ξk
i)

Mathematics
• Much research has been spent on optimizing for each

case

• Luckily, we do not have to use them

SVM with Scikit-Learn
• Has a whole module svm

• from sklearn import svm

SVM with Scikit-Learn
• Generate data

d_a = np.random.multivariate_normal(
 mean = [1,3],
 cov = [[.1,.02], [.02,.1]],
 size=100)
d_b = np.random.multivariate_normal(
 mean = [3,4],
 cov = [[.2,.005], [.005,.2]],
 size=100)

SVM with Scikit-Learn
• Data are the feature, target are the labels

• Now fit the whole data set

data = np.concatenate((d_a, d_b), axis=0)
target = np.concatenate((np.zeros(100), np.ones(100)))

clf = svm.SVC(kernel='linear', C=3)
clf.fit(data, target)

SVM with Scikit-Learn
• Now print stuff:

• To see the coefficient, we needed to use the linear
kernel

print(clf.support_vectors_)
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(1.5, 2.25)
yy = a * xx - (clf.intercept_[0]) / w[1]
print('w',w)
print(a)

SVM with Scikit-Learn
• Support vectors

• Normal and intercept:

[[1.83311697 3.13576805]
 [1.49922547 3.41011599]
 [1.80136907 3.32299734]
 [2.10066171 3.82740692]
 [2.16113553 3.35389843]
 [2.48658474 2.79743539]]

w [2.63976203 0.98909858]
-2.6688563564106373

SVM with Scikit-Learn
• Draw the data and the hyperplane

plt.figure(1)
plt.plot(d_a[:,0], d_a[:,1], 'b.')
plt.plot(d_b[:,0], d_b[:,1], 'r.')
plt.plot(xx, yy, 'k:')
plt.show()

SVM with Scikit-Learn

SVM with Scikit-Learn

SVM with Scikit-Learn
• New points are evaluated only using the support vectors

• This makes SVM more efficient

SVM with Scikit-Learn
• Example with non-separable data sets

SVM with Scikit-Learn
• In this case, the C-value does not change much

C=3 C=0.5

SVM with Scikit-Learn
• This is a very difficult set to classify without

transformation

SVM with Scikit-Learn

SVM with Scikit-Learn
• If we try with several kernels, results are not so good

• Import some stuff

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn import metrics
from sklearn.model_selection import train_test_split
np.random.seed(12)

SVM with Scikit-Learn
• Generate data set

d_a = np.random.multivariate_normal(
 mean = [2,2],
 cov = [[.2,.15], [.15,.2]],
 size=150)
d_b = np.random.multivariate_normal(
 mean = [2,2],
 cov = [[3,1], [1,3]],
 size=220)

one = np.array([x for x in d_b if
 np.linalg.norm(x-[2,2])<1.5])
two = np.array([x for x in d_b if
 np.linalg.norm(x-[2,2])>2])

SVM with Scikit-Learn
• Split dataset into training and test set (70% training)

X_train, X_test, y_train, y_test =
 train_test_split(
 data,
 target,
 test_size=0.3)

SVM with Scikit-Learn
• Train

clf = svm.SVC(kernel = 'sigmoid')
clf.fit(X_train, y_train)

SVM with Scikit-Learn
• Predict and get accuracy:

y_pred = clf.predict(X_test)

print("Accuracy:",
 metrics.accuracy_score(y_test, y_pred))

SVM with Scikit-Learn
Accuracy: linear 0.62
Accuracy: poly 0.7666666666666667
Accuracy: rbf 1.0
Accuracy: sigmoid 0.34

SVM with Scikit-Learn
• Could use a custom kernel

def my_kernel(X, Y):
 return np.dot((X-[2,2])**2,((Y-[2,2])**2).T)

clf = svm.SVC(kernel = my_kernel)
clf.fit(X_train, y_train)

SVM with Scikit-Learn
• Not surprisingly, this works completely

Accuracy: 1.0

SVM with Scikit-Learn
• Radial basis function kernel

• K(x, y) = exp (−
| |x − y | |2

2σ2)

