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Introduction
• Recall Decision Trees


• Use the features in order to make recursively decisions


• End up with a classification
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Introduction
• Decision trees are a type of supervised learning


• Limited by using only a single feature



Introduction
• KNN — k nearest neighbors


• Supervised learning 


• to classify a feature point:


• we look at all elements in the training set


• Drawback: Not scalable if training set is large



Introduction
• SVM:


• Uses any hyperplane to separate sets

Decision tree boundaries are 
parallel to axes

SVM boundaries can be 
any hyper-planes



Introduction
• SVM:


• Can encode the hyper-plane using a few data points:


• The support vectors

Hyperplane

Support Vector

Normal

margin

Support Vector

Support Vector



Introduction
• SVM:


• Can solve classification even if the data set is not 
linearly separable



Introduction
• Use a (non-linear transform of the data)


• Kernel function:  (x, y) ↦ (x, (x − 2)2 + (y − 2)2)



Mathematics of SVM
• Hyper-plane through the origin is an  -dimensional 

subspace of 


• 


•  is a "normal" vector, usually of length 1


• Dot is the dot product


• Can also use the matrix product


•

n − 1
ℝn

H = {x ∈ ℝn |c ⋅ x = 0}

c

H = {x ∈ ℝn |ct ⋅ x}



Mathematics

Hyperplane defined  
by normal vector (2,3,1)  
through the point (1,1,0).

H = {x ∈ ℝn |c ⋅ x = 0}



Mathematics
• Task: Find 


• Orthogonal to vector  


• Passing through a point 

Hc,p

c

p



Mathematics
•  


• if and only if  is orthogonal to 


•

x ∈ Hc,p

(x − p) c

(x − p) ⋅ c = 0

c
p

x
x-p



Mathematics
• Hyperplane given by 


•          


•                 


• Defined by a linear functional 


•

Hc,p = {x ∈ ℝn |x ⋅ c − c ⋅ p = 0}

= {x ∈ ℝn |x ⋅ c + b = 0}

λ : ℝn ⟶ ℝ

Hc,p = {(x ∈ ℝn |λ(x) = b}



Mathematics
• Hyperplane separates space into two halves:


• 


•

H−
c,p = {(x ∈ ℝn |λ(x) + b < 0}

H+
c,p = {(x ∈ ℝn |λ(x) + b > 0}



Mathematics
• Learning task:


• Find a hyperplane such that 


• All feature vectors of one category are in 


• All feature vectors of the other category are in 


• The best hyperplane 


• (and most likely to achieve good results)


• Maximizes distance of feature vectors from the plane

H−
c,p

H+
c,p



Mathematics
• How do we determine the distance of a point from the 

hyper-plane?


• Distance is length of a line between point and closest 
point on the hyperplane


• This line needs to be orthogonal to the hyperplane 


• (Otherwise can find something closer



Mathematics

not orthogonal



Mathematics

Hyperplane

Point

Normal

90o Distance of a point from a 

hyperplane is the length of 

a normal of the hyperplane 

through the point.



Mathematics
• Let  be a point on the hyperplane


• Hyperplane defined by 



• Write


• , with 


• Multiply with 


•  since 

x

Hw,b = {(x ∈ ℝn |w ⋅ x + b = 0}

x − p = αw + βv w ⋅ v = 0

w

w ⋅ (x − p) = αw ⋅ w + βw ⋅ v = α
w ⋅ w = |w |2 = 1



Mathematics
• Therefore 


• Projection of  on normal  is 


• This is the distance between  and the hyperplane:





x − p w w ⋅ (x − p) .

p

dist(p, Hw,b) = |α | = |w ⋅ (x − p) |

= |w ⋅ x − w ⋅ p | = | − b − w ⋅ p | = |b + w ⋅ p |



Mathematics
• Summary:


• Want all the feature vectors of first category in 


• 


• Want all the feature vectors of the second category in 


•

H−
w,b = {(x ∈ ℝn |w ⋅ x + b < 0}

H+
w,b = {(x ∈ ℝn |w ⋅ x + b > 0}



Mathematics
• First category gets label -1 , second category gets label +1


• Condition becomes:


• 


• In addition:


• 


• where we maximize over all normals  of length 1 and 
all scalars 


• All data points  contribute to the optimization

label(xi)(w ⋅ xi + b) > 0

min
i∈I

{label(xi)(w ⋅ xi + b)} → max

w
b

{xi | i ∈ I}



Mathematics
• Allow normals to have length other than 1


• Replace  with 


• Optimization becomes


•      


• The points  where the minima are attained are called the 
support vectors. 

b |w |b

min
i∈I

{label(xi)(w ⋅ xi + b)/ |w |} → max

xi



Mathematics
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Mathematics
• This even works if the two categories are not linearly 

separable



Mathematics
• Problem:  


• Support vectors:  is minimum


• Can multiply  and  with a scalar


• Set scalar to 


• Then:   


• 


• Distance of  to hyperplane is 


• All other feature vectors:  

min
i∈I

{
label(xi)(w ⋅ xi + b)

|w |
} → max

label(x)(w ⋅ x + b)/ |w |

w b

s = (label(x)(w ⋅ x + b))−1

(label(x)(w ⋅ x + b)) = 1

x 1/ |w |

label(x)(w ⋅ x + b) ≥ 1



Mathematics
• Can now reformulate optimization problem





subject to 


min
w,b

{
|w |2

2
} → min

∀i ∈ I : label(xi)(wxi + b) ≥ 1



Mathematics
• Solve with Lagrange multiplier, traditionally called 


• Solve subject to constraints


•  , 


•

α

∀i ∈ I : αi(label(xi)(wxi + b) − 1) = 0 αi ≥ 0.

L =
|w |2

2
− ∑

i∈I

αi(label(xi)(wxi + b) − 1) → min



Mathematics
• Take partial derivatives with respect to  and 


• Since 


• We obtain


• 


•

w b

δ
δwi ( 1

2

n

∑
i=1

w2
i ) = wi

δ
δw

L = w −
n

∑
i=1

αilabel(xi)xi

δ
δb

L =
n

∑
i=1

αilabel(xi)



Mathematics
• Setting them to zero for the minimum, we get


•   


• and therefore


•  

w =
n

∑
i=1

αilabel(xi)xi

w =
n

∑
i=1

αilabel(xi)xi



Mathematics

•   implies


•  is a linear combination of features

w =
n

∑
i=1

αilabel(xi)xi

w



Mathematics
• Use  in our optimization problem


• 


• Use 


 





|w |2

2
=

w ⋅ w
2

L =
|w |2

2
− ∑

i∈I

αi(label(xi)(wxi + b) − 1) → min

−∑
i∈I

αi(label(xi)(wxi + b) − 1)

= − w ⋅ (
n

∑
i=1

αilabel(xi)) −
n

∑
i=1

αilabel(xi)b +
n

∑
i=1

αi

= − w ⋅ w +
n

∑
i=1

αi



Mathematics
• Function  is now simplified:


•

L

L = −
1
2

w ⋅ w +
n

∑
i=1

αi



Mathematics
• Plugging in again 


• 


• we obtain


• 


• which we want to maximize subject to constraints 


•  and 

w =
n

∑
i=1

αilabel(xi)xi

L =
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjlabel(xi)label(xj)xi ⋅ xj

∀i ∈ I : αi ≥ 0
n

∑
i=1

αilabel(xi) = 0



Mathematics
• This is the "dual" optimization problem, but it is quadratic 

in the alphas.


• This means that it can be solved using Kuhn Tucker



Mathematics: Soft Margin 
SVM

• The preceding works if the data set is linearly separable


• If not, we introduce slack variables


• 


• They measure the violation of the separation condition


• If zero: separation condition is fulfilled and the point lies 

 away from the hyperplane


• If : point lies inside the margin, but point is 
classified


• If , point is mis-classified

label(xi)(w ⋅ xi + b) ≥ 1 − ξi

≥
1

|w |

0 < ξi < 1

ξi ≥ 1



Mathematics
• Choosing an optimization function is no longer straight-

forward


• Do we want a hyperplane with a few violations or do we 
want to minimize the total amount of violations



Mathematics
• One possibility:


• 


• subject to 


• 


•

min
w,b,ξi (

|w |2

2
+ C

n

∑
i=1

ξk
i )

∀i ∈ I : label(xi)(w ⋅ xi + b) ≥ 1 − ξi

∀i ∈ I : ξi ≥ 0



Mathematics
• The power k in


•   


• describes our policy: 


•  k=1: Hinge loss


•  k=2: Quadratic losss


•  C describes the trade-off between large margins and loss 
minimization

min
w,b,ξi (

|w |2

2
+ C

n

∑
i=1

ξk
i )



Mathematics
• Much research has been spent on optimizing for each 

case


• Luckily, we do not have to use them



SVM with Scikit-Learn 
• Has a whole module svm


•   from sklearn import svm



SVM with Scikit-Learn 
• Generate data

d_a  =  np.random.multivariate_normal( 
          mean = [1,3],  
          cov = [ [.1,.02], [.02,.1]], 
          size=100) 
d_b  =  np.random.multivariate_normal( 
          mean = [3,4],  
          cov = [ [.2,.005], [.005,.2]], 
          size=100) 



SVM with Scikit-Learn 
• Data are the feature, target are the labels


• Now fit the whole data set

data = np.concatenate((d_a, d_b), axis=0) 
target = np.concatenate((np.zeros(100), np.ones(100)))

clf = svm.SVC(kernel='linear', C=3) 
clf.fit(data, target)



SVM with Scikit-Learn 
• Now print stuff:  


• To see the coefficient, we needed to use the linear 
kernel

print(clf.support_vectors_) 
w = clf.coef_[0] 
a = -w[0] / w[1] 
xx = np.linspace(1.5, 2.25) 
yy = a * xx - (clf.intercept_[0]) / w[1] 
print('w',w) 
print(a)



SVM with Scikit-Learn 
• Support vectors


• Normal and intercept:

[[1.83311697 3.13576805] 
 [1.49922547 3.41011599] 
 [1.80136907 3.32299734] 
 [2.10066171 3.82740692] 
 [2.16113553 3.35389843] 
 [2.48658474 2.79743539]] 

w [2.63976203 0.98909858] 
-2.6688563564106373



SVM with Scikit-Learn 
• Draw the data and the hyperplane

plt.figure(1) 
plt.plot(d_a[:,0], d_a[:,1], 'b.') 
plt.plot(d_b[:,0], d_b[:,1], 'r.') 
plt.plot(xx, yy, 'k:') 
plt.show()



SVM with Scikit-Learn 



SVM with Scikit-Learn 



SVM with Scikit-Learn 
• New points are evaluated only using the support vectors


• This makes SVM more efficient



SVM with Scikit-Learn 
• Example with non-separable data sets



SVM with Scikit-Learn 
• In this case, the C-value does not change much

C=3 C=0.5



SVM with Scikit-Learn 
• This is a very difficult set to classify without 

transformation



SVM with Scikit-Learn 



SVM with Scikit-Learn 
• If we try with several kernels, results are not so good


• Import some stuff

import numpy as np 
import matplotlib.pyplot as plt 
from sklearn import svm 
from sklearn import metrics 
from sklearn.model_selection import train_test_split 
np.random.seed(12)



SVM with Scikit-Learn 
• Generate data set

d_a  =  np.random.multivariate_normal( 
     mean = [2,2],  
     cov = [ [.2,.15], [.15,.2]], 
     size=150) 
d_b  =  np.random.multivariate_normal( 
     mean = [2,2],  
     cov = [ [3,1], [1,3]], 
     size=220) 

one = np.array( [x for x in d_b if   
      np.linalg.norm(x-[2,2])<1.5]) 
two = np.array( [x for x in d_b if   
      np.linalg.norm(x-[2,2])>2])



SVM with Scikit-Learn 
• Split dataset into training and test set (70% training)

X_train, X_test, y_train, y_test =  
    train_test_split( 
            data,  
            target,  
            test_size=0.3)



SVM with Scikit-Learn 
• Train

clf = svm.SVC(kernel = 'sigmoid') 
clf.fit(X_train, y_train)



SVM with Scikit-Learn 
• Predict and get accuracy:

y_pred = clf.predict(X_test) 

print("Accuracy:",  
       metrics.accuracy_score(y_test, y_pred))



SVM with Scikit-Learn 
Accuracy: linear 0.62 
Accuracy: poly 0.7666666666666667 
Accuracy: rbf 1.0 
Accuracy: sigmoid 0.34



SVM with Scikit-Learn 
• Could use a custom kernel

def my_kernel(X, Y): 
    return np.dot((X-[2,2])**2,((Y-[2,2])**2).T)

clf = svm.SVC(kernel = my_kernel) 
clf.fit(X_train, y_train)



SVM with Scikit-Learn 
• Not surprisingly, this works completely

Accuracy: 1.0



SVM with Scikit-Learn 
• Radial basis function kernel


• K(x, y) = exp (−
| |x − y | |2

2σ2 )


