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Conditional Probability
• Given two events  and , we define the conditional 

probability as 





"probability of A given B"


•    Write also as:


A B

P(A |B) =
P(A ∩ B)

P(B)

P(A ∩ B) = P(A |B)P(B)



Conditional Probability
• Bayes' Theorem: An observation of extreme importance 


• Giving rise to a new way of statistics


Theorem:        


• Expresses a probability conditioned on B in one 
conditioned on A


• Proof:  



• Now solve for 

P(A |B) =
P(B |A) ⋅ P(A)

P(B)

P(A |B)P(B) = P(A ∩ B) = P(B ∩ A) = P(B |A)P(A)

P(A |B)



Conditional Probability
• We can express a probability for one event in terms of 

another event happening or not





        

P(A) = P(A ∩ B) + P(A ∩ B)

= P(A |B)P(B) + P(A |B)P(B)
A

B

A ∩ BA ∩ B



Conditional Probability
• We can expand Bayes by calculating  as 

probabilities conditioned on 


 





P(B)
A

P(A |B) =
P(B |A) ⋅ P(A)

P(B)

=
P(B |A) ⋅ P(A)

P(B ∩ A) + P(B ∩ A)

=
P(B |A) ⋅ P(A)

P(B |A)P(A) + P(B |A)P(A)



Conditional Probability
• Example: Medical Tests


• An HIV test is positive. What is the probability that you 
have HIV?


• Need some data:  The quality of the test


• Type 1 error:  Test is negative, but there is illness


• Type 2 error:  Test is positive, but there is no illness



Conditional Probability
• Abbreviate probabilities


• T : Test is positive


• H : Person infected with HIV


• Interested in . The quality of the test is 
expressed in terms of the opposite conditional 
probability. 


• Type I error probability:   


• Type II error probability: 

P(H |T)

P(T |H)

P(T |H)



Conditional Probability
• We calculate





• Assume test has 5% type I (false positive) error probability 
and 1% type II (false negative) error probability: 








• The probability still depends on the prevalence of HIV in 
the population

P(H |T) =
P(T |H)P(H)

P(T |H)P(H) + P(T |H)P(H)

P(T |H) = 0.95

P(T |H) = 0.99



Conditional Probability



• Example: HIV rate in general population in the US is 13.3/100000 
= 0.000,133


• After a positive test:


• 0.000138599  (Almost no change!)


• Example 2: HIV in a high risk group in the US is 1,753.1/100000 = 
0.017531


• After a positive test:


• 0.0182557

P(H |T ) =
0.99P(H)

0.99P(H) + 0.95(1 − P(H))



Conditional Probability
• With these type I and type II error rates 


• the test is almost unusable at low incidence rates



Classification with Bayes
• Bayes' theorem inverts conditional probabilities


• Can use this for classification based on observations


• Idea:  Assume we have observations 


• We have calculated the probabilities of seeing these 
observations given a certain classification


• I.e.: for each category, we know 


• Probability to observe  assuming that point lies in 


• We use Bayes formula in order to calculate 


• And then select the category with highest probability

⃗x

P( ⃗x , ci)

⃗x ci

P(ci, ⃗x )



Classification with Bayes
• Document classification:


• Spam detection: 


• Is email spam or ham?


• Sentiment analysis:


• Is a review good or bad



Classification with Bayes
• Bag of words method:


• Model a document by only counting words


• Restrict ourselves to non-structure = non-common 
words

"I love this movie! It's sweet, but with satirical humor. The dialogs are great and the adventure scenes are fun. It 
manages to be romantic and whimsical while laughing at the conventions of the fairy tale genre. I would 
recommend it to just about anyone. I have seen it several times and I'm always happy to see it again"

fun          1 
great        2 
happy        1 
humor        1 
love         1 
recommend    1 
satirical    1 
sweet        1



Classification with Bayes
• There is a whole theory about recognizing key-words 

automatically


• Easy out:  


• Use all words that are not common



Classification with Bayes
• Recognizing words


• Actual documents have misspelling and grammatical 
forms


• Grammatical forms less common in English but 
typical in other languages


• Lemmatization: Recognize the form of the word


•  


•  


• Usually difficult to automatize

जाओ, जाओगे, …  —> जाना

went, goes —> to go



Classification with Bayes
• Recognizing words


• Stemming


• Several methods to automatically extract the stem


• English: Porter stemmer (1980)


• Other languages: Can use similar ideas


• https://www.emerald.com/insight/content/doi/
10.1108/00330330610681295/full/pdf?title=the-
porter-stemming-algorithm-then-and-now



Classification with Bayes
• Need to calculate the probability to observe a set of 

keywords given a classification


• This is too specific:


• There are too many sets of keywords


• First reduction: 


• Only use existence of words.



Classification with Bayes
• Want:  


• The probability to find a certain word in documents of a 
certain category depends on the existence of other 
words.


• E.g.: "Malicious Compliance"


• We make now a big assumptions:


• The probabilities of a keyword showing up are 
independent of each other


• That's why this method is called "Naïve Bayes"

P(w1, w2, w3, …, wn |ci)



Classification with Naïve 
Bayes

• Want: 





• Can estimate this from a training set:


• E.g. a set of movie reviews classified with the sentiment


• Algorithm: 

P(w1, w2, w3, …, wn |ci) = P(w1 |ci) × P(w2 |ci) × P(w3 |ci) × …P(wn |ci)

for document in set: 
   sentiment = document.sentiment 
   for word in document: 
      count[word]+=1 
      if sentiment=='positive': 
          countPos[word]+=1 
      else: 
          countNeg[word]+=1 
   return countPos/count, countNeg/count 



Classification with Naïve 
Bayes

• This algorithm has a problem:


• It can return a probability as zero


• Because we use multiplication in our estimator:





• Would create zero probabilities


• Solution: start all counts at 1


• No more zero probabilities

P(w1, w2, w3, …, wn |ci) = P(w1 |ci) × P(w2 |ci) × P(w3 |ci) × …P(wn |ci)



Classification with Naïve 
Bayes

• Result: Simple classifier


• Example: Two categories I and II


• Use the data set to determine  and 


• Calculate 


• 


• 


• Select the larger one as the classification


• As the denominators are the same, just compare  and  

P(feature |CI) P(feature |CII)

P(CI | feature) =
P(feature |CI)P(CI)

P(feature |CI)P(CI) + P(feature |CI)P(CI)

P(CII | feature) =
P(feature |CII)P(CII)

P(feature |CII)P(CII) + P(feature |CII)P(CII)

P(feature |CI)P(CI)
P(feature |CII)P(CII)



Classification with Naïve 
Bayes

• Example: Use NLTK, a natural language processor


• NLTK has several corpus (which you might have to 
download separately)

import nltk 
from nltk.corpus import movie_reviews 
import random



Classification with Naïve 
Bayes

• First step: Get the documents

documents = [(list(movie_reviews.words(fileid)), category) 
              for category in movie_reviews.categories() 
              for fileid in movie_reviews.fileids(category)] 
random.shuffle(documents) 
train_set, test_set = featuresets[500:], featuresets[:500]



Classification with Naïve 
Bayes

• Second step:  Get all "features" (important words)


• Strategy:  Get a list of all words, then order it, then select 
the frequent ones with exception of the most frequent 
ones. 


• Here is all_words:

• FreqDist({',': 77717, 'the': 76529, '.': 65876, 'a': 38106, 

'and': 35576, 'of': 34123, 'to': 31937, "'": 30585, 'is': 
25195, 'in': 21822, …}) 

• Therefore, just drop the first ones.  

all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words()) 
word_features = list(all_words)[200:2000] 



Classification with Naïve 
Bayes

• Create a bag of words for each document

def document_features(document): 
    document_words = set(document) 
    features = {} 
    for word in word_features: 
        features['contains({})'.format(word)] = (word in 
document_words) 
    return features 

featuresets = [(document_features(d), c) for (d,c) in documents] 
train_set, test_set = featuresets[500:], featuresets[:500]



Classification with Naïve 
Bayes

• Use NLTK Naive Bayes Classifier

classifier = nltk.NaiveBayesClassifier.train(train_set) 

print(nltk.classify.accuracy(classifier, test_set))



Classification with Naïve 
Bayes

• Results:  80.2% sentiments classified correctly


• Can see how the classifier works


•

>>> classifier.show_most_informative_features(5) 
Most Informative Features 
        contains(segal) = True               neg : pos    =     11.3 : 1.0 
   contains(outstanding) = True              pos : neg    =      8.6 : 1.0 
        contains(wasted) = True              neg : pos    =      7.3 : 1.0 
         contains(mulan) = True              pos : neg    =      7.2 : 1.0 
   contains(wonderfully) = True              pos : neg    =      6.3 : 1.0 



Classification with Gaussian 
Bayes

• Continuous features


• Assumption: Features are 
distributed normally


• Example:  Look again at Iris 
set


• All features look normally 
distributed



Classification with Gaussian 
Naïve Bayes

• Possibility one: Disregard correlation —> Naïve


• For each feature:


• Calculate sample mean  and sample standard 
deviation 


• Use these as estimators of the population mean and 
deviation


• For a given feature value x, calculate the probability 
density assuming that  is in a category 


•

μ
σ

x c

P(x |c) ∼ 𝒩(μc, σc)



Classification with Gaussian 
Naïve Bayes

• Estimate the probability for observation  as 
the product of the densities





• Then use Bayes formula to invert the conditional 
probabilities


• This means estimating the prevalence of the categories


•

(x1, x2, …, xn)

P((x1, …, xn) |cj) ∼ 𝒩(x1, σ1,cj
, μ1,cj

) ⋅ … ⋅ 𝒩(xn, σn,cj
, μ1,cj

)

P(cj | (x1, …, xn)) =
P((x1, …, xn) |cj)P(cj)

P((x1, …, xn))



Classification with Gaussian 
Naïve Bayes

• The denominator does not depend on the category 


• So, we just leave it out:


• 


• We calculate  


• And select the highest value

cj

P(cj | (x1, …, xn)) ∼ P((x1, …, xn) |cj)P(cj)

P((x1, …, xn) |cj)P(cj)



Classification with Gaussian 
Naïve Bayes

• Implemented in sklearn.naive_bayes


• Example with Iris data-set

from sklearn import datasets 
from sklearn.naive_bayes import GaussianNB 

iris = datasets.load_iris() 
model = GaussianNB() 
model.fit(iris.data, iris.target) 
print('means', model.theta_) 
print('stds', model.sigma_) 

for x,t, p in zip(iris.data, iris.target, model.predict(iris.data)): 
    print(x, t, p)



Classification with Gaussian 
Naïve Bayes

means [[5.006 3.428 1.462 0.246] 
 [5.936 2.77  4.26  1.326] 
 [6.588 2.974 5.552 2.026]] 
stds [[0.121764 0.140816 0.029556 0.010884] 
 [0.261104 0.0965   0.2164   0.038324] 
 [0.396256 0.101924 0.298496 0.073924]] 
[5.1 3.5 1.4 0.2] 0 
[4.9 3.  1.4 0.2] 0 
[4.7 3.2 1.3 0.2] 0 
[4.6 3.1 1.5 0.2] 0 
[5.  3.6 1.4 0.2] 0 
[5.4 3.9 1.7 0.4] 0



Classification with Gaussian 
Naïve Bayes

• There are a few errors:


• Caution: We did not divide the data set into a training and 
verification set.

[6.9 3.1 4.9 1.5] 1 2 
[5.9 3.2 4.8 1.8] 1 2 
[6.7 3.  5.  1.7] 1 2 
[4.9 2.5 4.5 1.7] 2 1 
[6.  2.2 5.  1.5] 2 1 
[6.3 2.8 5.1 1.5] 2 1



Classification with  
Not-So-Naïve Gaussian Bayes
• We did not use correlation between features


• If we do, use the multi-variate probability density


• Need to estimate correlation coefficients:


• Then use the multi-variate normal probability density 

normμ,Σ(x) =
1

( 2π)d |Σ |
exp (−

(x − μ)TΣ−1(x − μ)
2 )

σk,l =
1

|Cj | ∑
x∈Cj

(xk − μk)(xl − μl)



Classification with  
Not-So-Naïve Gaussian Bayes
• Luckily, implemented in scipy.stats


• Estimate means and correlations


• Similarly to before, estimate category by looking at the 
multi-variate normal density for each category and 
updating 

from scipy.stats import multivariate_normal

def diagnose(tupla): 
    return np.argmax( 
   [multivariate_normal.pdf(tupla,mean=Gl.mu_setosa, cov=Gl.sigma_setosa), 
    multivariate_normal.pdf(tupla,mean=Gl.mu_ver, cov=Gl.sigma_ver),  
    multivariate_normal.pdf(tupla,mean=Gl.mu_vgc, cov=Gl.sigma_vgc)])



Classification with  
Not-So-Naïve Gaussian Bayes
• This works slightly better: three mis-classifications


• Example:


• Virginica features:


• Versicolor and virginica probs are similar

>>> get_probs((6.3, 2.8, 5.1, 1.5)) 
setosa 6.551299963143457e-116 
versicolor 0.3895029363227387 
virginica 0.25720254045708846



Classification with  
Not-So-Naïve Gaussian Bayes
• This works slightly better: three mis-classifications


• Example:


• Versicolor features:


• Versicolor and virginica probs are somewhat 
similar

>>> get_probs((6.0, 2.7, 5.1, 1.6)) 
setosa 3.4601607892612445e-119 
versicolor 0.09776449471242309 
virginica 0.56568607797792



Scipy.learn
• A more modern set of tools in scipy


• Running example:


• How to predict the newsgroup from the contents


• Data set: 


• from sklearn.datasets import 
fetch_20newsgroups



Scipy.learn
• A set of 18846 newsgroup contributions from way back


• Split 2/3 : 1/3 into a training set (before a certain date) 
and a test set (after a certain date)

data = fetch_20newsgroups() 
print(data.target_names)

['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 
'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 
'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 
'sci.electronics', 'sci.med', 'sci.space', 
'soc.religion.christian', 'talk.politics.guns', 
'talk.politics.mideast', 'talk.politics.misc', 
'talk.religion.misc']



Scipy.learn
• We do not want all of them:


• Split into training and test sets

categories = [‘talk.religion.misc', 
              'soc.religion.christian','alt.atheism', 
              'sci.space', 'comp.graphics']

train = fetch_20newsgroups(subset='train', categories = categories) 
test = fetch_20newsgroups(subset='test', categories = categories)



Scipy.learn
• Bag Of Words uses CountVectorizer


• We extract the Bag of Words


• To display, we make the result into a Pandas Dataframe

from sklearn.feature_extraction.text import CountVectorizer

vec = CountVectorizer() 
X = vec.fit_transform(train.data) 
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names())



Scipy.learn
• The result is a matrix


• Columns by words that appear


• Rows by document number
>>> df.iloc[0:15, 10300:10330] 
    comm  command  commanded  ...  commercialization  commercialized  commercially 
0      0        0          0  ...                  0               0             0 
1      0        0          0  ...                  0               0             0 
2      0        0          0  ...                  0               0             0 
3      0        0          0  ...                  0               0             0 
4      0        0          0  ...                  0               0             0 
5      0        0          0  ...                  0               0             0 
6      0        0          0  ...                  0               0             0 
7      0        0          0  ...                  0               0             0 
8      0        0          0  ...                  0               0             0 
9      0        0          0  ...                  0               0             0 
10     0        0          0  ...                  0               0             0 
11     0        0          0  ...                  0               0             0 
12     0        0          0  ...                  0               0             0 
13     0        0          0  ...                  0               0             0 
14     0        0          0  ...                  0               0             0 

[15 rows x 30 columns]



Scipy.learn
• Get better result by dividing the words by their frequency

vec = TfidfVectorizer() 
X = vec.fit_transform(train.data) 
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names())



Scipy.learn
• Term Frequency


• Take raw count and divide by the number of words in 
the document


• Inverse Document Frequency


• — Logarithm of (Number of Documents w. word) / 
(Number of Documents)


• Term-Frequency — Inverse Document Frequency (TfIDF)


• Product of these two



Scipy.learn
• Let’s make the difference clearer

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer 
import pandas as pd 

sample = ['in the beginning of time', 'at dawn we slept',  
 'this is the story’, 'beginning and end', 'frequent beginning’, 
 'beginning python'] 

vec = CountVectorizer() 
X = vec.fit_transform(sample) 
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names()) 
print(df) 

vec = TfidfVectorizer() 
X1 = vec.fit_transform(sample) 
df1 = pd.DataFrame(X1.toarray(), columns=vec.get_feature_names()) 
print(df1) 



Scipy.learn
• CountVectorizer

   and  at  beginning  dawn  end  frequent  ...  slept  story  the  this  time  we 
0    0   0          1     0    0         0  ...      0      0    1     0     1   0 
1    0   1          0     1    0         0  ...      1      0    0     0     0   1 
2    0   0          0     0    0         0  ...      0      1    1     1     0   0 
3    1   0          1     0    1         0  ...      0      0    0     0     0   0 
4    0   0          1     0    0         1  ...      0      0    0     0     0   0 
5    0   0          1     0    0         0  ...      0      0    0     0     0   0 

[6 rows x 16 columns]



Scipy.learn
• TfIdfVectorizer

        and   at  beginning  dawn  ...       the      this      time   we 
0  0.000000  0.0   0.295730   0.0  ...  0.408763  0.000000  0.498483  0.0 
1  0.000000  0.5   0.000000   0.5  ...  0.000000  0.000000  0.000000  0.5 
2  0.000000  0.0   0.000000   0.0  ...  0.427903  0.521823  0.000000  0.0 
3  0.652057  0.0   0.386839   0.0  ...  0.000000  0.000000  0.000000  0.0 
4  0.000000  0.0   0.510227   0.0  ...  0.000000  0.000000  0.000000  0.0 
5  0.000000  0.0   0.510227   0.0  ...  0.000000  0.000000  0.000000  0.0 

[6 rows x 16 columns]



Scipy.learn
• CountVectorizer and TfidfVectorizer generate sparse 

matrices


• Storage is compressed



Scipy.learn
• Multinomial Bayes is in sklearn


•  


• sklearn has a pipeline constructor


• Combines feature extraction with training multinomial 
NB

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

model = make_pipeline(TfidfVectorizer(), MultinomialNB()) 
model.fit(train.data, train.target) 
labels = model.predict(test.data)



Scipy.learn
• To measure success:


• Use a confusion matrix


• For the test set:  Show how often group elements are 
predicted to belong to another group


• Fictitious example: Can a NN distinguish cats and 
dogs

actual
dog cat

predicted dog 1023 245
predicted cat 134 1183



Scipy.learn
• Can find confusion matrix


• Import pyplot and seaborn

from sklearn.metrics import confusion_matrix

import seaborn as sns 
import matplotlib.pyplot as plt 

mat = confusion_matrix(test.target, labels) 
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False, 
            xticklabels=train.target_names, 
            yticklabels=train.target_names) 
plt.xlabel('true label') 
plt.ylabel('predicted label') 
plt.show() 



Scipy.learn



Dimensionality 
Reduction
Thomas Schwarz, SJ



Introduction
• Real life problems need to learn from many features


• This can cause problem


• Excursion


• Why our intuition is wrong about high dimensional 
data



High-Dimensional Data
• As we increase the number of (numerical) dimensions:


• Our intuition is faulty


• Look at this using random numbers



High Dimensional Data
• Intuition 1:  Random points tend to be close to the center


• Hypercube volumes


• Volume of a hypercube that stays 0.1 away from the 
edge

0.8d
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Vol



High-Dimensional Data
• Hyper-ball of radius r 


• Volume is 


• Maximum volume for dimension 5

rd( π
d
2

Γ( d
2 + 1) )
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High-Dimensional Data
• Proportion of points in a unit hyper-ball that are 0.1 away 

from the edge is

0.4d
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High-Dimensional Data
• Surface Area of the hypersphere in dimension d

rd−1( 2π
d
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High-Dimensional Data
• Hypersphere inscribed a hypercube


• Ratio of volume of hypersphere over 
volume of hypercube goes quickly to 
zero
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High-Dimensional Data
• Volume of a thin shell of width 

ε is 


• with ϵ

1 − (1 −
ϵ
r

)d

lim
d→∞

(1 − (1 −
ϵ
r

)d = 1



High-dimensional Data
• Assume a multi-variate normal distribution centered 

around the origin and without covariances


• Probability density is given by 


• Peak density is 

f( x ) =
1

2π
d exp( −

x T x
2 )

f( 0 ) =
1

2π
d



High-dimensional Data
• Set of points with α of the peak density is given by


• Since              follows a χ2 distribution, we can calculate 
the probability of a random point being within α of the 
peak density to be  

f( x )

f( 0 )
≥ α ⇔ exp(−

x T x
2

) ≥ α ⇔
x T x

2
≤ − loge(α)

x T x

Fχ2
d
(−2 ln α)



High Dimensional Data
• This proportion goes quickly to zero.  Mass of the 

probability distribution migrates to the tail region
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Consequences
• Almost all of the data is close to a boundary


• Almost all of the data is in a corner, whereas the center is 
empty


• I.e. there are no more "typical" data points by looking 
at typical values in a random world



Consequences
• K-means algorithm


• Determine the category of a new data point by 
choosing the closest k points to the new data point


• Assign the majority of the categories of these k points 
to the new point


• Very simple but quite effective at learning categories


• But in high dimensions, all data points tend to be wide 
apart.



Consequences
• Naive or not naive Bayes


• Estimate the distribution of points in a category with a 
multi-variate normal distribution (with or without 
correlations)


• Categorize a new point according to the probabilities 
according these distributions


• The category for which the probability of the point is the 
highest


• Tends to be quite good until all probabilities are low


• High dimensionality: expect many more close decisions 
(that have a higher failure quota)



Consequences
• Luckily, real world data does not look like random data


• But we still need to reduce dimensionality



Introduction
• Feature selection


• Data sets contain often large numbers of features


• Some of the features depend on each other


• Selecting features 


• makes current classification fast


• can generalize better from training to general data


• This even works with Neural Networks



Introduction
• Feature Combination:


• Generate artificial features by combining features


• Then do away with (some of the) old features



Introduction
• Clustering:


• Automatic clustering 


• Groups similar data points


• Often allows fewer features to be used 



Introduction
• Automatic dimensionality 

reduction:


• Project 2-dimensional data 
set on a single line


• Projections separates the 
two data sets


• Can use a single, 
combined feature for 
classification


• Linear Discriminant 
Analysis



Introduction
• Two-dimensional data set 


• Spread around one dimension


• Combine the two features (x, y) 
into one that has almost all the 
variance


• Principal component 
analysis



Principal Component 
Analysis 

• Goal:


• Find the one direction in which the data sets varies 
most



Principal Component 
Analysis 

• Given a set of   of data points with  numerical 
attributes


• Write as an  matrix 


                              

U d

n × d

D =

x1,1 x1,2 … x1,d
x2,1 x2,2 … x2,d
x3,1 x3,2 … x3,d

…
xn,1 xn,2 … xn,d



Principal Component 
Analysis 

• Each data point is a linear combination of standard basis


                             


• Dimensionality reduction: 


• Replace standard basis with another orthogonal 
matrix


• Weight of data should be concentrated in a few 
dimensions

xi =
d

∑
j=1

xi,jej



Principal Component 
Analysis 

• Assume   is such a basis


• Then     


• Actually, any  vectors of length one with this property 
are a basis


         Proof:  If , then 


                    

(ui | i ∈ {1,…, d})

ui ⋅ uj = δi,j

d

d

∑
i=1

αiui = 0

0 = uj ⋅
d

∑
i=1

αiui = αj



Principal Component 
Analysis 

• Write the vectors in an orthonormal basis as column 
vectors of a matrix


               


Then:  implies:


                     

U =
| | … |

u1 u2 … ud

| | … |

ut
iuj = δi,j

UTU = 1d



Principal Component 
Analysis 

A feature vector    is a linear combination  .


    Write:  


    Then   or equivalently 

x x =
d

∑
i=1

αiui

a = (α1, α2, …, αn)

x = a ⋅ Ut xt = U ⋅ at



Principal Component 
Analysis 

 is 

an orthonormal basis of 


Matrix is   
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Principal Component 
Analysis 

Column vector   is a linear combination of the column vectors of  .


         Use 


Multiply with 


 


Obtain: 

(2,1,3)t U

(
2
1
3) = U ⋅ at

Ut

1

2
0 −1

2

1

6

2

3

1

6
1

3

−1

3

1

3

⋅ (
2
1
3) = Ut ⋅ U ⋅ a = at

(−
3

2
+ 2,2

2
3

+
3
2

,
1

3
+ 3) = a



Principal Component Analysis: 
Projection on Subspace

Write a data point as 


Assume that we have ordered the basis by importance


We select only the first  components:


        Write:   


 Then set 

x =
d

∑
i=1

αiui .

r

Ur =
| | … |

u1 u2 … ur

| | … |

πr(x) =
r

∑
i=1

αiui = Ur ⋅ (α1, α2, …, αr)t



Principal Component Analysis: 
Projection on Subspace

Since , it follows       and


        


  is called the projection matrix since


               (a)  


               (b)  

at = Ut ⋅ x πr(at) = Ut
rxt

πr(xt) = Urπr(at) = UrUt
rxt

Πr = UrUt
r

Πr ⋅ Πr = UrUt
rUrUt

r = UrUt
r

Πt
r = (UrUt

r)t = Ut
r
tUt = UrUt

rΠr = UrUt
r



Principal Component Analysis: 
Projection on Subspace

Example (continued):  Project on the first two coordinates 
with respect to 


  

U

Ur =

1

2

1

6

0
2

3

− 1

2

1

6



Principal Component Analysis: 
Projection on Subspace

Then we calculate the projection matrix


Π2 = U2Ut
2 =

2
3

1
3

−1
3

1
3

2
3

1
3

−1
3

1
3

2
3



Principal Component Analysis: 
Projection on Subspace

Projection of  is


                      

xt = (2,1,3)

Π2((
2
1
3)) =

2
3
7
3
5
3



Principal Component Analysis: 
Projection on Subspace

• Now we know how to project


• Need to find the best orthonormal matrix for the 
projection



Single Principal Component 
Analysis

• There are infinitely many choices of orthonormal bases


• Start out with reduction to a single dimension


• First step:  Center the data set


• By subtracting the mean of the data set


• Therefore: The mean of the data set is now zero



Single Principal Component 
Analysis

• If we reduce to a single dimension, than the partial basis 
is given by a single vector .


•  Optimality criterion: Projection maximizes the variance 

u



Single Principal Component 
Analysis




                                   


                                   


                                    


                                    

var({utxi | i ∈ {1,…, n}}) =
1
n

n

∑
i=1

(utxi − ut(x))2

=
1
n

n

∑
i=1

(utxi)2 (Average is zero)

=
1
n

n

∑
i=1

(utxi)(utxi)t

=
1
n

n

∑
i=1

utxixt
iu

= ut (
n

∑
i=1

xixt
i) u = utΣu



Single Principal Component 
Analysis

• Therefore:             subject to   


• Use Lagrange multiplier  and now maximize


                    


• So, we differentiate:


                     

utΣu ⟶ max utu = 1

λ

J(u) := utΣu − λ(utu − 1)

δ
δu

J(u) = 2Σu − 2λ



Single Principal Component 
Analysis

• Result: Maximum obtained if 


• With other words:    has to be an eigenvector of  with 
eigenvalue .


• And to maximize, we want the eigenvector with the 
largest eigenvalue


•

Σu = λu

u Σ
λ



Single Principal Component 
Analysis

• Turns out that finding the maximum eigenvector and 
eigenvalue is quite simple:


• Write any non-zero vector as a combination of eigen-
vectors


• Then repeatedly apply the matrix, but always normalize 
the product


• The coefficient corresponding to the largest eigenvalue 
gets more and more magnified


• And in the limit, the product will be the eigenvector 
corresponding to the largest eigenvalue



Single Principal Component 
Analysis

• Another goodness criterion:


• Minimize the sum of squares of the differences 
between projected values and original values of the 
feature vector


• Error is 


               | |x − Π1(x) | |2 = (x − Π1(x))t(x − Π1(x))



Single Principal Component 
Analysis

     








n

∑
i=1

| |xi − Π1(x − i) | |2

=
n

∑
i=1

(xi − Π1(xi)t(xi − Π1(xi))

=
n

∑
i=1

( | |xi | |2 − 2xt
iΠ1(xi) + Π1(x)tΠ1(x))

=
n

∑
i=1

( | |xi | |2 − 2(utxi)(xt
iu) + (utxi)(utxi)utu)









 







=
n

∑
i=1

( | |xi | |2 − 2(utxi)(xt
iu) + (utxi)(utxi))

=
n

∑
i=1

( | |xi | |2 − (utxi)(xt
iu))

=
n

∑
i=1

( | |xi | |2 ) −
n

∑
i=1

(utxixt
iu)

=
n

∑
i=1

( | |xi | |2 ) − ut(
n

∑
i=1

xixt
i)u

=
n

∑
i=1

( | |xi | |2 ) − ut(
n

∑
i=1

xixt
i)u

=
n

∑
i=1

( | |xi | |2 ) − nutΣu



Single Principal Component 
Analysis

• This means:


• In order to minimize the sum of squared errors, 


• Need to minimize the projected variance


• Our two criteria are the same



Dual Principal Component 
Analysis

• We can redo our calculation for two dimensions


• Calculate just as before the minimum variance


• Obtain: minimum variance is the sum of the two largest 
eigenvalues


• Need to pick the two eigenvectors with the two largest 
eigenvalues



PCA in Python
• Part of sklearn.decomposition


• Import bunch of modules


• Create random, but skewed data set

import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.decomposition import PCA

rng = np.random.RandomState(2020716) 
X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T



PCA in Python
• Here is some code to draw a vector

def draw_vector(v0, v1, ax=None): 
    ax = ax or plt.gca() 
    arrowprops=dict(arrowstyle='->', 
                    linewidth=1, 
                    shrinkA=0, shrinkB=0) 
    ax.annotate('', v1, v0, arrowprops=arrowprops)



PCA in Python
• Calculate the PCA (with two components)


• pca = PCA(n_components=2) 
pca.fit(X) 

print(pca.components_) 
print(pca.explained_variance_)



PCA in Python
• First component has almost all the variance:

[[-0.99638832 -0.08491358] 
 [-0.08491358  0.99638832]] 
[0.89143208 0.01057402]



PCA in Python
• Draw everything:


•
plt.scatter(X[:, 0], X[:, 1], s=2, c='blue') 
for length, vector in zip(pca.explained_variance_, 
pca.components_): 
    v = vector * 2.3 * np.sqrt(length) 
    draw_vector(pca.mean_, pca.mean_ + v) 
     
plt.axis('equal') 
plt.show()



PCA in Python



PCA in Python
• Can express data points in the new coordinates:


•
pca = PCA(n_components=2, whiten=True) 
pca.fit(X) 

X_pca = pca.transform(X)



PCA in Python



PCA in Python
• Sklearn has the digit data-set


• Used for learning how to recognize digits for post-
office automation, etc



PCA in Python
• Images have 64 pixels with gray values

from sklearn.datasets import load_digits 

digits = load_digits() 

>>> digits.data.shape 
(1797, 64)



PCA in Python
• Can use PCA to lower dimension to two

pca = PCA(2)  
projected = pca.fit_transform(digits.data)



PCA in Python
• And display with the Spectral colormap

plt.scatter(projected[:, 0],  
            projected[:, 1],  
            s=5, 
            c=digits.target,  
            edgecolor='none',  
            alpha=0.7, 
            cmap=plt.cm.get_cmap('Spectral', 10)) 
plt.xlabel('component 1') 
plt.ylabel('component 2') 
plt.colorbar(); 

plt.show() 



PCA in Python
• Result shows that two features already give a decent 

classification:



PCA in Python



PCA in Python
• We can calculate the complete orthonormal base


• And decide how many features we might need by 
looking at the total explained variance

pca = PCA().fit(digits.data) 
plt.plot(np.cumsum(pca.explained_variance_ratio_)) 
plt.xlabel('number of components') 
plt.ylabel('cumulative explained variance') 

plt.show()





PCA in Python
• Can also use this to filter noise:


• Data will live primarily in the most important 
components



PCA in Python
• Example:


• Use some digits from the data set



PCA in Python
• Now add some noise

np.random.seed(42) 
noisy = np.random.normal(digits.data, 4) 
plot_digits(noisy)



PCA in Python



PCA in Python
• Take the noisy set


• Use enough components to obtain 50% explained 
variance


• Need 12 components in this case

pca = PCA(0.50).fit(noisy) 
print(pca.n_components_) 



PCA in Python
• Then display the data of only the highest 12 components

components = pca.transform(noisy) 
filtered = pca.inverse_transform(components) 
plot_digits(filtered) 

plt.show()





PCA : Eigenfaces
• There is a set of faces of important people in sklearn
from sklearn.datasets import fetch_lfw_people 
sns.set() 

faces = fetch_lfw_people(min_faces_per_person=60) 
print(faces.target_names) 
print(faces.images.shape) 

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld'  
'George W Bush' 'Gerhard Schroeder' 'Hugo Chavez' 
'Junichiro Koizumi' 'Tony Blair'] 
(1348, 62, 47)



PCA : Eigenfaces
• There is a randomized version of PCA that approximates


• This is necessary because of the size of the data set

pca = PCA(n_components=150,  
          svd_solver = 'randomized',  
          whiten=True 
          ) 
pca.fit(faces.data)



pca = PCA(n_components=150, svd_solver = 'randomized', 
whiten=True) 
pca.fit(faces.data) 
components = pca.transform(faces.data) 
projected = pca.inverse_transform(components) 

fig, ax = plt.subplots(2, 10, figsize=(10, 2.5), 
    subplot_kw={'xticks':[], 'yticks':[]}, 
    gridspec_kw=dict(hspace=0.1, wspace=0.1)) 
for i in range(10): 
    ax[0, i].imshow(faces.data[i].reshape(62, 47), 
cmap='binary_r') 
    ax[1, i].imshow(projected[i].reshape(62, 47), 
cmap='binary_r') 
     
ax[0, 0].set_ylabel('full-dim\ninput') 
ax[1, 0].set_ylabel('150-dim\nreconstruction'); 

plt.show() 



PCA : Eigenfaces
• With about 150 components, the features of the faces are 

retained



Linear Discriminant Analysis
• Idea:


• Estimate mean and variance for each category


• Assumes same covariances


• Calculates (like PCA) an affine transformation



Linear Discriminant Analysis
• Import LDA: 


• Read data & divide

from sklearn.discriminant_analysis import 
LinearDiscriminantAnalysis as LDA

iris = pd.read_csv('Iris.csv', 
index_col=0).drop(columns='Species') 
X_train, X_test, y_train, y_test = train_test_split( 
                           iris, 
                           50*[0]+50*[1]+50*[2], 
                           test_size=0.2, 
                           random_state=0)



Linear Discriminant Analysis
• Reset 


• Train with two dimensions:

sc = StandardScaler() 
X_train = sc.fit_transform(X_train) 
X_test = sc.transform(X_test)

lda = LDA(n_components=2) 
lda.fit(X_train, y_train) 

for i in range(len(X_test)): 
    print(lda.predict([X_test[i]])[0], y_test[i])



Linear Discriminant Analysis
• Results is 100%



Linear Discriminant Analysis
• Show transformation for LDA:

transX = lda.fit_transform(iris, 50*[0]+50*[1]+50*[2]) 

cmap = colors.ListedColormap(['b','r','g']) 
plt.scatter(transX[:, 0], transX[:, 1], s=3, 
            c=50*[0]+50*[1]+50*[2], cmap = cmap ) 
plt.show() 



Linear Discriminant Analysis



Final Example
• Kaggle has a penguins data set on three types of 

penguins on three islands in the antarctic ocean


• After downloading


• Read data into a Pandas Dataframe


• Need to get rid of NA columns

penguins_df = pd.read_csv('../SVM/penguins.csv') 
penguins_df.dropna(axis=0, how='any',inplace=True)



Final Example
• Let's prepare the data for SVM


• Take 'Adelie' and 'Chinstrap' as the target categories


• Restrict to only those data


• Get the labels from the species column


• Restrict to numerical columns

penguins_df = penguins_df.loc[ 
   penguins_df['species'].isin(['Adelie','Chinstrap'])]

labels = np.array(penguins_df['species'])

penguins_df=penguins_df[['bill_length_mm', 
'bill_depth_mm', 'flipper_length_mm', 
'body_mass_g']].astype(float) 



Final Example
• Make the labels numerical


• And make the features into a numpy array

labels[labels=='Adelie']=0 
labels[labels=='Chinstrap']=1 
labels = labels.astype(int)

features=np.array(penguins_df)



Final Example
• Create training and test data (70% / 30% split)

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split( 
    features, labels, test_size=0.3)



Final Example
• Use SVM (better vary C)


• Determine accuracy

clf = svm.SVC(kernel='linear', C=0.5) 
clf.fit(X_train, y_train)

from sklearn import metrics 

y_pred = clf.predict(X_test) 
print("Accuracy:",  metrics.accuracy_score(y_test, 
y_pred)) 
print(clf.coef_)



Final Example
• Result varies between 95% and 100% accuracy based on 

values for C


• C=0.5 gives the best results



Final Example
• Principal component analysis


• PCA only affects the features


• Vary the dimensions

from sklearn.decomposition import PCA 

pca = PCA(n_components=4) 
pca.fit(features) 



Final Example
• Now print out the results

pca_df = pd.DataFrame(pca.components_,   
             columns=list(penguins_df.columns)) 

print(pca.components_) 
print(pca.explained_variance_) 
print(pca_df)



Final Example
• The data frame results (for N=4):


• These results show that PCA selects basically the 
coordinates


• And body_mass followed by flipper-length are the most 
important components

   bill_length_mm  bill_depth_mm  flipper_length_mm  body_mass_g 
0        0.004003      -0.001154           0.015195     0.999876 
1       -0.319278       0.086848          -0.943542     0.015717 
2        0.941265       0.144495          -0.305190     0.001036 
3       -0.109847       0.985686           0.127891    -0.000366



Final Example
• Linear Discriminant Analysis


• Train

sc = StandardScaler() 
X_train = sc.fit_transform(X_train) 
X_test = sc.transform(X_test) 

lda = LDA(n_components=2) 
lda.fit(X_train, y_train) 



Final Example
• Display

transX = lda.fit_transform(features, labels) 

cmap = colors.ListedColormap(['b','r','g']) 
plt.scatter(transX[:, 0], transX[:, 1], s=5, 
            c=labels, cmap = cmap ) 
plt.show()



Final Example


