
Thomas Schwarz

Naive Bayes
and

Gaussian Bayesian Inference

Conditional Probability
• Given two events and , we define the conditional

probability as

"probability of A given B"

• Write also as:

A B

P(A |B) =
P(A ∩ B)

P(B)

P(A ∩ B) = P(A |B)P(B)

Conditional Probability
• Bayes' Theorem: An observation of extreme importance

• Giving rise to a new way of statistics

Theorem:

• Expresses a probability conditioned on B in one
conditioned on A

• Proof:

• Now solve for

P(A |B) =
P(B |A) ⋅ P(A)

P(B)

P(A |B)P(B) = P(A ∩ B) = P(B ∩ A) = P(B |A)P(A)

P(A |B)

Conditional Probability
• We can express a probability for one event in terms of

another event happening or not

P(A) = P(A ∩ B) + P(A ∩ B)

= P(A |B)P(B) + P(A |B)P(B)
A

B

A ∩ BA ∩ B

Conditional Probability
• We can expand Bayes by calculating as

probabilities conditioned on

P(B)
A

P(A |B) =
P(B |A) ⋅ P(A)

P(B)

=
P(B |A) ⋅ P(A)

P(B ∩ A) + P(B ∩ A)

=
P(B |A) ⋅ P(A)

P(B |A)P(A) + P(B |A)P(A)

Conditional Probability
• Example: Medical Tests

• An HIV test is positive. What is the probability that you
have HIV?

• Need some data: The quality of the test

• Type 1 error: Test is negative, but there is illness

• Type 2 error: Test is positive, but there is no illness

Conditional Probability
• Abbreviate probabilities

• T : Test is positive

• H : Person infected with HIV

• Interested in . The quality of the test is
expressed in terms of the opposite conditional
probability.

• Type I error probability:

• Type II error probability:

P(H |T)

P(T |H)

P(T |H)

Conditional Probability
• We calculate

• Assume test has 5% type I (false positive) error probability
and 1% type II (false negative) error probability:

• The probability still depends on the prevalence of HIV in
the population

P(H |T) =
P(T |H)P(H)

P(T |H)P(H) + P(T |H)P(H)

P(T |H) = 0.95

P(T |H) = 0.99

Conditional Probability

• Example: HIV rate in general population in the US is 13.3/100000
= 0.000,133

• After a positive test:

• 0.000138599 (Almost no change!)

• Example 2: HIV in a high risk group in the US is 1,753.1/100000 =
0.017531

• After a positive test:

• 0.0182557

P(H |T) =
0.99P(H)

0.99P(H) + 0.95(1 − P(H))

Conditional Probability
• With these type I and type II error rates

• the test is almost unusable at low incidence rates

Classification with Bayes
• Bayes' theorem inverts conditional probabilities

• Can use this for classification based on observations

• Idea: Assume we have observations

• We have calculated the probabilities of seeing these
observations given a certain classification

• I.e.: for each category, we know

• Probability to observe assuming that point lies in

• We use Bayes formula in order to calculate

• And then select the category with highest probability

⃗x

P(⃗x , ci)

⃗x ci

P(ci, ⃗x)

Classification with Bayes
• Document classification:

• Spam detection:

• Is email spam or ham?

• Sentiment analysis:

• Is a review good or bad

Classification with Bayes
• Bag of words method:

• Model a document by only counting words

• Restrict ourselves to non-structure = non-common
words

"I love this movie! It's sweet, but with satirical humor. The dialogs are great and the adventure scenes are fun. It
manages to be romantic and whimsical while laughing at the conventions of the fairy tale genre. I would
recommend it to just about anyone. I have seen it several times and I'm always happy to see it again"

fun 1
great 2
happy 1
humor 1
love 1
recommend 1
satirical 1
sweet 1

Classification with Bayes
• There is a whole theory about recognizing key-words

automatically

• Easy out:

• Use all words that are not common

Classification with Bayes
• Recognizing words

• Actual documents have misspelling and grammatical
forms

• Grammatical forms less common in English but
typical in other languages

• Lemmatization: Recognize the form of the word

•

•

• Usually difficult to automatize

जाओ, जाओगे, … —> जाना

went, goes —> to go

Classification with Bayes
• Recognizing words

• Stemming

• Several methods to automatically extract the stem

• English: Porter stemmer (1980)

• Other languages: Can use similar ideas

• https://www.emerald.com/insight/content/doi/
10.1108/00330330610681295/full/pdf?title=the-
porter-stemming-algorithm-then-and-now

Classification with Bayes
• Need to calculate the probability to observe a set of

keywords given a classification

• This is too specific:

• There are too many sets of keywords

• First reduction:

• Only use existence of words.

Classification with Bayes
• Want:

• The probability to find a certain word in documents of a
certain category depends on the existence of other
words.

• E.g.: "Malicious Compliance"

• We make now a big assumptions:

• The probabilities of a keyword showing up are
independent of each other

• That's why this method is called "Naïve Bayes"

P(w1, w2, w3, …, wn |ci)

Classification with Naïve
Bayes

• Want:

• Can estimate this from a training set:

• E.g. a set of movie reviews classified with the sentiment

• Algorithm:

P(w1, w2, w3, …, wn |ci) = P(w1 |ci) × P(w2 |ci) × P(w3 |ci) × …P(wn |ci)

for document in set:
 sentiment = document.sentiment
 for word in document:
 count[word]+=1
 if sentiment=='positive':
 countPos[word]+=1
 else:
 countNeg[word]+=1
 return countPos/count, countNeg/count

Classification with Naïve
Bayes

• This algorithm has a problem:

• It can return a probability as zero

• Because we use multiplication in our estimator:

• Would create zero probabilities

• Solution: start all counts at 1

• No more zero probabilities

P(w1, w2, w3, …, wn |ci) = P(w1 |ci) × P(w2 |ci) × P(w3 |ci) × …P(wn |ci)

Classification with Naïve
Bayes

• Result: Simple classifier

• Example: Two categories I and II

• Use the data set to determine and

• Calculate

•

•

• Select the larger one as the classification

• As the denominators are the same, just compare and

P(feature |CI) P(feature |CII)

P(CI | feature) =
P(feature |CI)P(CI)

P(feature |CI)P(CI) + P(feature |CI)P(CI)

P(CII | feature) =
P(feature |CII)P(CII)

P(feature |CII)P(CII) + P(feature |CII)P(CII)

P(feature |CI)P(CI)
P(feature |CII)P(CII)

Classification with Naïve
Bayes

• Example: Use NLTK, a natural language processor

• NLTK has several corpus (which you might have to
download separately)

import nltk
from nltk.corpus import movie_reviews
import random

Classification with Naïve
Bayes

• First step: Get the documents

documents = [(list(movie_reviews.words(fileid)), category)
 for category in movie_reviews.categories()
 for fileid in movie_reviews.fileids(category)]
random.shuffle(documents)
train_set, test_set = featuresets[500:], featuresets[:500]

Classification with Naïve
Bayes

• Second step: Get all "features" (important words)

• Strategy: Get a list of all words, then order it, then select
the frequent ones with exception of the most frequent
ones.

• Here is all_words:

• FreqDist({',': 77717, 'the': 76529, '.': 65876, 'a': 38106,

'and': 35576, 'of': 34123, 'to': 31937, "'": 30585, 'is':
25195, 'in': 21822, …})

• Therefore, just drop the first ones.

all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = list(all_words)[200:2000]

Classification with Naïve
Bayes

• Create a bag of words for each document

def document_features(document):
 document_words = set(document)
 features = {}
 for word in word_features:
 features['contains({})'.format(word)] = (word in
document_words)
 return features

featuresets = [(document_features(d), c) for (d,c) in documents]
train_set, test_set = featuresets[500:], featuresets[:500]

Classification with Naïve
Bayes

• Use NLTK Naive Bayes Classifier

classifier = nltk.NaiveBayesClassifier.train(train_set)

print(nltk.classify.accuracy(classifier, test_set))

Classification with Naïve
Bayes

• Results: 80.2% sentiments classified correctly

• Can see how the classifier works

•

>>> classifier.show_most_informative_features(5)
Most Informative Features
 contains(segal) = True neg : pos = 11.3 : 1.0
 contains(outstanding) = True pos : neg = 8.6 : 1.0
 contains(wasted) = True neg : pos = 7.3 : 1.0
 contains(mulan) = True pos : neg = 7.2 : 1.0
 contains(wonderfully) = True pos : neg = 6.3 : 1.0

Classification with Gaussian
Bayes

• Continuous features

• Assumption: Features are
distributed normally

• Example: Look again at Iris
set

• All features look normally
distributed

Classification with Gaussian
Naïve Bayes

• Possibility one: Disregard correlation —> Naïve

• For each feature:

• Calculate sample mean and sample standard
deviation

• Use these as estimators of the population mean and
deviation

• For a given feature value x, calculate the probability
density assuming that is in a category

•

μ
σ

x c

P(x |c) ∼ 𝒩(μc, σc)

Classification with Gaussian
Naïve Bayes

• Estimate the probability for observation as
the product of the densities

• Then use Bayes formula to invert the conditional
probabilities

• This means estimating the prevalence of the categories

•

(x1, x2, …, xn)

P((x1, …, xn) |cj) ∼ 𝒩(x1, σ1,cj
, μ1,cj

) ⋅ … ⋅ 𝒩(xn, σn,cj
, μ1,cj

)

P(cj | (x1, …, xn)) =
P((x1, …, xn) |cj)P(cj)

P((x1, …, xn))

Classification with Gaussian
Naïve Bayes

• The denominator does not depend on the category

• So, we just leave it out:

•

• We calculate

• And select the highest value

cj

P(cj | (x1, …, xn)) ∼ P((x1, …, xn) |cj)P(cj)

P((x1, …, xn) |cj)P(cj)

Classification with Gaussian
Naïve Bayes

• Implemented in sklearn.naive_bayes

• Example with Iris data-set

from sklearn import datasets
from sklearn.naive_bayes import GaussianNB

iris = datasets.load_iris()
model = GaussianNB()
model.fit(iris.data, iris.target)
print('means', model.theta_)
print('stds', model.sigma_)

for x,t, p in zip(iris.data, iris.target, model.predict(iris.data)):
 print(x, t, p)

Classification with Gaussian
Naïve Bayes

means [[5.006 3.428 1.462 0.246]
 [5.936 2.77 4.26 1.326]
 [6.588 2.974 5.552 2.026]]
stds [[0.121764 0.140816 0.029556 0.010884]
 [0.261104 0.0965 0.2164 0.038324]
 [0.396256 0.101924 0.298496 0.073924]]
[5.1 3.5 1.4 0.2] 0
[4.9 3. 1.4 0.2] 0
[4.7 3.2 1.3 0.2] 0
[4.6 3.1 1.5 0.2] 0
[5. 3.6 1.4 0.2] 0
[5.4 3.9 1.7 0.4] 0

Classification with Gaussian
Naïve Bayes

• There are a few errors:

• Caution: We did not divide the data set into a training and
verification set.

[6.9 3.1 4.9 1.5] 1 2
[5.9 3.2 4.8 1.8] 1 2
[6.7 3. 5. 1.7] 1 2
[4.9 2.5 4.5 1.7] 2 1
[6. 2.2 5. 1.5] 2 1
[6.3 2.8 5.1 1.5] 2 1

Classification with
Not-So-Naïve Gaussian Bayes
• We did not use correlation between features

• If we do, use the multi-variate probability density

• Need to estimate correlation coefficients:

• Then use the multi-variate normal probability density

normμ,Σ(x) =
1

(2π)d |Σ |
exp (−

(x − μ)TΣ−1(x − μ)
2)

σk,l =
1

|Cj | ∑
x∈Cj

(xk − μk)(xl − μl)

Classification with
Not-So-Naïve Gaussian Bayes
• Luckily, implemented in scipy.stats

• Estimate means and correlations

• Similarly to before, estimate category by looking at the
multi-variate normal density for each category and
updating

from scipy.stats import multivariate_normal

def diagnose(tupla):
 return np.argmax(
 [multivariate_normal.pdf(tupla,mean=Gl.mu_setosa, cov=Gl.sigma_setosa),
 multivariate_normal.pdf(tupla,mean=Gl.mu_ver, cov=Gl.sigma_ver),
 multivariate_normal.pdf(tupla,mean=Gl.mu_vgc, cov=Gl.sigma_vgc)])

Classification with
Not-So-Naïve Gaussian Bayes
• This works slightly better: three mis-classifications

• Example:

• Virginica features:

• Versicolor and virginica probs are similar

>>> get_probs((6.3, 2.8, 5.1, 1.5))
setosa 6.551299963143457e-116
versicolor 0.3895029363227387
virginica 0.25720254045708846

Classification with
Not-So-Naïve Gaussian Bayes
• This works slightly better: three mis-classifications

• Example:

• Versicolor features:

• Versicolor and virginica probs are somewhat
similar

>>> get_probs((6.0, 2.7, 5.1, 1.6))
setosa 3.4601607892612445e-119
versicolor 0.09776449471242309
virginica 0.56568607797792

Scipy.learn
• A more modern set of tools in scipy

• Running example:

• How to predict the newsgroup from the contents

• Data set:

• from sklearn.datasets import
fetch_20newsgroups

Scipy.learn
• A set of 18846 newsgroup contributions from way back

• Split 2/3 : 1/3 into a training set (before a certain date)
and a test set (after a certain date)

data = fetch_20newsgroups()
print(data.target_names)

['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles',
'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt',
'sci.electronics', 'sci.med', 'sci.space',
'soc.religion.christian', 'talk.politics.guns',
'talk.politics.mideast', 'talk.politics.misc',
'talk.religion.misc']

Scipy.learn
• We do not want all of them:

• Split into training and test sets

categories = [‘talk.religion.misc',
 'soc.religion.christian','alt.atheism',
 'sci.space', 'comp.graphics']

train = fetch_20newsgroups(subset='train', categories = categories)
test = fetch_20newsgroups(subset='test', categories = categories)

Scipy.learn
• Bag Of Words uses CountVectorizer

• We extract the Bag of Words

• To display, we make the result into a Pandas Dataframe

from sklearn.feature_extraction.text import CountVectorizer

vec = CountVectorizer()
X = vec.fit_transform(train.data)
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names())

Scipy.learn
• The result is a matrix

• Columns by words that appear

• Rows by document number
>>> df.iloc[0:15, 10300:10330]
 comm command commanded ... commercialization commercialized commercially
0 0 0 0 ... 0 0 0
1 0 0 0 ... 0 0 0
2 0 0 0 ... 0 0 0
3 0 0 0 ... 0 0 0
4 0 0 0 ... 0 0 0
5 0 0 0 ... 0 0 0
6 0 0 0 ... 0 0 0
7 0 0 0 ... 0 0 0
8 0 0 0 ... 0 0 0
9 0 0 0 ... 0 0 0
10 0 0 0 ... 0 0 0
11 0 0 0 ... 0 0 0
12 0 0 0 ... 0 0 0
13 0 0 0 ... 0 0 0
14 0 0 0 ... 0 0 0

[15 rows x 30 columns]

Scipy.learn
• Get better result by dividing the words by their frequency

vec = TfidfVectorizer()
X = vec.fit_transform(train.data)
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names())

Scipy.learn
• Term Frequency

• Take raw count and divide by the number of words in
the document

• Inverse Document Frequency

• — Logarithm of (Number of Documents w. word) /
(Number of Documents)

• Term-Frequency — Inverse Document Frequency (TfIDF)

• Product of these two

Scipy.learn
• Let’s make the difference clearer

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
import pandas as pd

sample = ['in the beginning of time', 'at dawn we slept',
 'this is the story’, 'beginning and end', 'frequent beginning’,
 'beginning python']

vec = CountVectorizer()
X = vec.fit_transform(sample)
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names())
print(df)

vec = TfidfVectorizer()
X1 = vec.fit_transform(sample)
df1 = pd.DataFrame(X1.toarray(), columns=vec.get_feature_names())
print(df1)

Scipy.learn
• CountVectorizer

 and at beginning dawn end frequent ... slept story the this time we
0 0 0 1 0 0 0 ... 0 0 1 0 1 0
1 0 1 0 1 0 0 ... 1 0 0 0 0 1
2 0 0 0 0 0 0 ... 0 1 1 1 0 0
3 1 0 1 0 1 0 ... 0 0 0 0 0 0
4 0 0 1 0 0 1 ... 0 0 0 0 0 0
5 0 0 1 0 0 0 ... 0 0 0 0 0 0

[6 rows x 16 columns]

Scipy.learn
• TfIdfVectorizer

 and at beginning dawn ... the this time we
0 0.000000 0.0 0.295730 0.0 ... 0.408763 0.000000 0.498483 0.0
1 0.000000 0.5 0.000000 0.5 ... 0.000000 0.000000 0.000000 0.5
2 0.000000 0.0 0.000000 0.0 ... 0.427903 0.521823 0.000000 0.0
3 0.652057 0.0 0.386839 0.0 ... 0.000000 0.000000 0.000000 0.0
4 0.000000 0.0 0.510227 0.0 ... 0.000000 0.000000 0.000000 0.0
5 0.000000 0.0 0.510227 0.0 ... 0.000000 0.000000 0.000000 0.0

[6 rows x 16 columns]

Scipy.learn
• CountVectorizer and TfidfVectorizer generate sparse

matrices

• Storage is compressed

Scipy.learn
• Multinomial Bayes is in sklearn

•

• sklearn has a pipeline constructor

• Combines feature extraction with training multinomial
NB

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import make_pipeline

model = make_pipeline(TfidfVectorizer(), MultinomialNB())
model.fit(train.data, train.target)
labels = model.predict(test.data)

Scipy.learn
• To measure success:

• Use a confusion matrix

• For the test set: Show how often group elements are
predicted to belong to another group

• Fictitious example: Can a NN distinguish cats and
dogs

actual
dog cat

predicted dog 1023 245
predicted cat 134 1183

Scipy.learn
• Can find confusion matrix

• Import pyplot and seaborn

from sklearn.metrics import confusion_matrix

import seaborn as sns
import matplotlib.pyplot as plt

mat = confusion_matrix(test.target, labels)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
 xticklabels=train.target_names,
 yticklabels=train.target_names)
plt.xlabel('true label')
plt.ylabel('predicted label')
plt.show()

Scipy.learn

Dimensionality
Reduction
Thomas Schwarz, SJ

Introduction
• Real life problems need to learn from many features

• This can cause problem

• Excursion

• Why our intuition is wrong about high dimensional
data

High-Dimensional Data
• As we increase the number of (numerical) dimensions:

• Our intuition is faulty

• Look at this using random numbers

High Dimensional Data
• Intuition 1: Random points tend to be close to the center

• Hypercube volumes

• Volume of a hypercube that stays 0.1 away from the
edge

0.8d

20 40 60 80 100
d

0.01

0.02

0.03

0.04

Vol

High-Dimensional Data
• Hyper-ball of radius r

• Volume is

• Maximum volume for dimension 5

rd(π
d
2

Γ(d
2 + 1))

0 10 20 30 40 50
d0

1

2

3

4

5

6
Vol

0 2 4 6 8 10
d0

1

2

3

4

5

6
Vol

High-Dimensional Data
• Proportion of points in a unit hyper-ball that are 0.1 away

from the edge is

0.4d

0.5d

20 40 60 80 100
d

0.2

0.4

0.6

0.8

Vol

High-Dimensional Data
• Surface Area of the hypersphere in dimension d

rd−1(2π
d
2

Γ(d
2))

10 20 30 40 50
d

5

10

15

20

25

30

Vol

High-Dimensional Data
• Hypersphere inscribed a hypercube

• Ratio of volume of hypersphere over
volume of hypercube goes quickly to
zero

0 20 40 60 80 100
d0

1

2

3

4

5

6
Vol

High-Dimensional Data
• Volume of a thin shell of width

ε is

• with ϵ

1 − (1 −
ϵ
r

)d

lim
d→∞

(1 − (1 −
ϵ
r

)d = 1

High-dimensional Data
• Assume a multi-variate normal distribution centered

around the origin and without covariances

• Probability density is given by

• Peak density is

f(x) =
1

2π
d exp(−

x T x
2)

f(0) =
1

2π
d

High-dimensional Data
• Set of points with α of the peak density is given by

• Since follows a χ2 distribution, we can calculate
the probability of a random point being within α of the
peak density to be

f(x)

f(0)
≥ α ⇔ exp(−

x T x
2

) ≥ α ⇔
x T x

2
≤ − loge(α)

x T x

Fχ2
d
(−2 ln α)

High Dimensional Data
• This proportion goes quickly to zero. Mass of the

probability distribution migrates to the tail region

5 10 15 20
d

0.2

0.4

0.6

0.8

1.0

Proportion

α = 0.5

α = 0.1

Consequences
• Almost all of the data is close to a boundary

• Almost all of the data is in a corner, whereas the center is
empty

• I.e. there are no more "typical" data points by looking
at typical values in a random world

Consequences
• K-means algorithm

• Determine the category of a new data point by
choosing the closest k points to the new data point

• Assign the majority of the categories of these k points
to the new point

• Very simple but quite effective at learning categories

• But in high dimensions, all data points tend to be wide
apart.

Consequences
• Naive or not naive Bayes

• Estimate the distribution of points in a category with a
multi-variate normal distribution (with or without
correlations)

• Categorize a new point according to the probabilities
according these distributions

• The category for which the probability of the point is the
highest

• Tends to be quite good until all probabilities are low

• High dimensionality: expect many more close decisions
(that have a higher failure quota)

Consequences
• Luckily, real world data does not look like random data

• But we still need to reduce dimensionality

Introduction
• Feature selection

• Data sets contain often large numbers of features

• Some of the features depend on each other

• Selecting features

• makes current classification fast

• can generalize better from training to general data

• This even works with Neural Networks

Introduction
• Feature Combination:

• Generate artificial features by combining features

• Then do away with (some of the) old features

Introduction
• Clustering:

• Automatic clustering

• Groups similar data points

• Often allows fewer features to be used

Introduction
• Automatic dimensionality

reduction:

• Project 2-dimensional data
set on a single line

• Projections separates the
two data sets

• Can use a single,
combined feature for
classification

• Linear Discriminant
Analysis

Introduction
• Two-dimensional data set

• Spread around one dimension

• Combine the two features (x, y)
into one that has almost all the
variance

• Principal component
analysis

Principal Component
Analysis

• Goal:

• Find the one direction in which the data sets varies
most

Principal Component
Analysis

• Given a set of of data points with numerical
attributes

• Write as an matrix

U d

n × d

D =

x1,1 x1,2 … x1,d
x2,1 x2,2 … x2,d
x3,1 x3,2 … x3,d

…
xn,1 xn,2 … xn,d

Principal Component
Analysis

• Each data point is a linear combination of standard basis

• Dimensionality reduction:

• Replace standard basis with another orthogonal
matrix

• Weight of data should be concentrated in a few
dimensions

xi =
d

∑
j=1

xi,jej

Principal Component
Analysis

• Assume is such a basis

• Then

• Actually, any vectors of length one with this property
are a basis

 Proof: If , then

(ui | i ∈ {1,…, d})

ui ⋅ uj = δi,j

d

d

∑
i=1

αiui = 0

0 = uj ⋅
d

∑
i=1

αiui = αj

Principal Component
Analysis

• Write the vectors in an orthonormal basis as column
vectors of a matrix

Then: implies:

U =
| | … |

u1 u2 … ud

| | … |

ut
iuj = δi,j

UTU = 1d

Principal Component
Analysis

A feature vector is a linear combination .

 Write:

 Then or equivalently

x x =
d

∑
i=1

αiui

a = (α1, α2, …, αn)

x = a ⋅ Ut xt = U ⋅ at

Principal Component
Analysis

 is

an orthonormal basis of

Matrix is

U = (
1

2
,0,

−1

2
), (

1

6
,

2

3
,

1

6
), (

1

3
,

−1

3
,

1

3
)

ℝ3

U =

1

2

1

6

1

3

0
2

3

−1

3

−1

2

1

6

1

3

Principal Component
Analysis

Column vector is a linear combination of the column vectors of .

 Use

Multiply with

Obtain:

(2,1,3)t U

(
2
1
3) = U ⋅ at

Ut

1

2
0 −1

2

1

6

2

3

1

6
1

3

−1

3

1

3

⋅ (
2
1
3) = Ut ⋅ U ⋅ a = at

(−
3

2
+ 2,2

2
3

+
3
2

,
1

3
+ 3) = a

Principal Component Analysis:
Projection on Subspace

Write a data point as

Assume that we have ordered the basis by importance

We select only the first components:

 Write:

 Then set

x =
d

∑
i=1

αiui .

r

Ur =
| | … |

u1 u2 … ur

| | … |

πr(x) =
r

∑
i=1

αiui = Ur ⋅ (α1, α2, …, αr)t

Principal Component Analysis:
Projection on Subspace

Since , it follows and

 is called the projection matrix since

 (a)

 (b)

at = Ut ⋅ x πr(at) = Ut
rxt

πr(xt) = Urπr(at) = UrUt
rxt

Πr = UrUt
r

Πr ⋅ Πr = UrUt
rUrUt

r = UrUt
r

Πt
r = (UrUt

r)t = Ut
r
tUt = UrUt

rΠr = UrUt
r

Principal Component Analysis:
Projection on Subspace

Example (continued): Project on the first two coordinates
with respect to

U

Ur =

1

2

1

6

0
2

3

− 1

2

1

6

Principal Component Analysis:
Projection on Subspace

Then we calculate the projection matrix

Π2 = U2Ut
2 =

2
3

1
3

−1
3

1
3

2
3

1
3

−1
3

1
3

2
3

Principal Component Analysis:
Projection on Subspace

Projection of is

xt = (2,1,3)

Π2((
2
1
3)) =

2
3
7
3
5
3

Principal Component Analysis:
Projection on Subspace

• Now we know how to project

• Need to find the best orthonormal matrix for the
projection

Single Principal Component
Analysis

• There are infinitely many choices of orthonormal bases

• Start out with reduction to a single dimension

• First step: Center the data set

• By subtracting the mean of the data set

• Therefore: The mean of the data set is now zero

Single Principal Component
Analysis

• If we reduce to a single dimension, than the partial basis
is given by a single vector .

• Optimality criterion: Projection maximizes the variance

u

Single Principal Component
Analysis

var({utxi | i ∈ {1,…, n}}) =
1
n

n

∑
i=1

(utxi − ut(x))2

=
1
n

n

∑
i=1

(utxi)2 (Average is zero)

=
1
n

n

∑
i=1

(utxi)(utxi)t

=
1
n

n

∑
i=1

utxixt
iu

= ut (
n

∑
i=1

xixt
i) u = utΣu

Single Principal Component
Analysis

• Therefore: subject to

• Use Lagrange multiplier and now maximize

• So, we differentiate:

utΣu ⟶ max utu = 1

λ

J(u) := utΣu − λ(utu − 1)

δ
δu

J(u) = 2Σu − 2λ

Single Principal Component
Analysis

• Result: Maximum obtained if

• With other words: has to be an eigenvector of with
eigenvalue .

• And to maximize, we want the eigenvector with the
largest eigenvalue

•

Σu = λu

u Σ
λ

Single Principal Component
Analysis

• Turns out that finding the maximum eigenvector and
eigenvalue is quite simple:

• Write any non-zero vector as a combination of eigen-
vectors

• Then repeatedly apply the matrix, but always normalize
the product

• The coefficient corresponding to the largest eigenvalue
gets more and more magnified

• And in the limit, the product will be the eigenvector
corresponding to the largest eigenvalue

Single Principal Component
Analysis

• Another goodness criterion:

• Minimize the sum of squares of the differences
between projected values and original values of the
feature vector

• Error is

 | |x − Π1(x) | |2 = (x − Π1(x))t(x − Π1(x))

Single Principal Component
Analysis

n

∑
i=1

| |xi − Π1(x − i) | |2

=
n

∑
i=1

(xi − Π1(xi)t(xi − Π1(xi))

=
n

∑
i=1

(| |xi | |2 − 2xt
iΠ1(xi) + Π1(x)tΠ1(x))

=
n

∑
i=1

(| |xi | |2 − 2(utxi)(xt
iu) + (utxi)(utxi)utu)

 

=
n

∑
i=1

(| |xi | |2 − 2(utxi)(xt
iu) + (utxi)(utxi))

=
n

∑
i=1

(| |xi | |2 − (utxi)(xt
iu))

=
n

∑
i=1

(| |xi | |2) −
n

∑
i=1

(utxixt
iu)

=
n

∑
i=1

(| |xi | |2) − ut(
n

∑
i=1

xixt
i)u

=
n

∑
i=1

(| |xi | |2) − ut(
n

∑
i=1

xixt
i)u

=
n

∑
i=1

(| |xi | |2) − nutΣu

Single Principal Component
Analysis

• This means:

• In order to minimize the sum of squared errors,

• Need to minimize the projected variance

• Our two criteria are the same

Dual Principal Component
Analysis

• We can redo our calculation for two dimensions

• Calculate just as before the minimum variance

• Obtain: minimum variance is the sum of the two largest
eigenvalues

• Need to pick the two eigenvectors with the two largest
eigenvalues

PCA in Python
• Part of sklearn.decomposition

• Import bunch of modules

• Create random, but skewed data set

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA

rng = np.random.RandomState(2020716)
X = np.dot(rng.rand(2, 2), rng.randn(2, 200)).T

PCA in Python
• Here is some code to draw a vector

def draw_vector(v0, v1, ax=None):
 ax = ax or plt.gca()
 arrowprops=dict(arrowstyle='->',
 linewidth=1,
 shrinkA=0, shrinkB=0)
 ax.annotate('', v1, v0, arrowprops=arrowprops)

PCA in Python
• Calculate the PCA (with two components)

• pca = PCA(n_components=2)
pca.fit(X)

print(pca.components_)
print(pca.explained_variance_)

PCA in Python
• First component has almost all the variance:

[[-0.99638832 -0.08491358]
 [-0.08491358 0.99638832]]
[0.89143208 0.01057402]

PCA in Python
• Draw everything:

•
plt.scatter(X[:, 0], X[:, 1], s=2, c='blue')
for length, vector in zip(pca.explained_variance_,
pca.components_):
 v = vector * 2.3 * np.sqrt(length)
 draw_vector(pca.mean_, pca.mean_ + v)

plt.axis('equal')
plt.show()

PCA in Python

PCA in Python
• Can express data points in the new coordinates:

•
pca = PCA(n_components=2, whiten=True)
pca.fit(X)

X_pca = pca.transform(X)

PCA in Python

PCA in Python
• Sklearn has the digit data-set

• Used for learning how to recognize digits for post-
office automation, etc

PCA in Python
• Images have 64 pixels with gray values

from sklearn.datasets import load_digits

digits = load_digits()

>>> digits.data.shape
(1797, 64)

PCA in Python
• Can use PCA to lower dimension to two

pca = PCA(2)
projected = pca.fit_transform(digits.data)

PCA in Python
• And display with the Spectral colormap

plt.scatter(projected[:, 0],
 projected[:, 1],
 s=5,
 c=digits.target,
 edgecolor='none',
 alpha=0.7,
 cmap=plt.cm.get_cmap('Spectral', 10))
plt.xlabel('component 1')
plt.ylabel('component 2')
plt.colorbar();

plt.show()

PCA in Python
• Result shows that two features already give a decent

classification:

PCA in Python

PCA in Python
• We can calculate the complete orthonormal base

• And decide how many features we might need by
looking at the total explained variance

pca = PCA().fit(digits.data)
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance')

plt.show()

PCA in Python
• Can also use this to filter noise:

• Data will live primarily in the most important
components

PCA in Python
• Example:

• Use some digits from the data set

PCA in Python
• Now add some noise

np.random.seed(42)
noisy = np.random.normal(digits.data, 4)
plot_digits(noisy)

PCA in Python

PCA in Python
• Take the noisy set

• Use enough components to obtain 50% explained
variance

• Need 12 components in this case

pca = PCA(0.50).fit(noisy)
print(pca.n_components_)

PCA in Python
• Then display the data of only the highest 12 components

components = pca.transform(noisy)
filtered = pca.inverse_transform(components)
plot_digits(filtered)

plt.show()

PCA : Eigenfaces
• There is a set of faces of important people in sklearn
from sklearn.datasets import fetch_lfw_people
sns.set()

faces = fetch_lfw_people(min_faces_per_person=60)
print(faces.target_names)
print(faces.images.shape)

['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld'
'George W Bush' 'Gerhard Schroeder' 'Hugo Chavez'
'Junichiro Koizumi' 'Tony Blair']
(1348, 62, 47)

PCA : Eigenfaces
• There is a randomized version of PCA that approximates

• This is necessary because of the size of the data set

pca = PCA(n_components=150,
 svd_solver = 'randomized',
 whiten=True
)
pca.fit(faces.data)

pca = PCA(n_components=150, svd_solver = 'randomized',
whiten=True)
pca.fit(faces.data)
components = pca.transform(faces.data)
projected = pca.inverse_transform(components)

fig, ax = plt.subplots(2, 10, figsize=(10, 2.5),
 subplot_kw={'xticks':[], 'yticks':[]},
 gridspec_kw=dict(hspace=0.1, wspace=0.1))
for i in range(10):
 ax[0, i].imshow(faces.data[i].reshape(62, 47),
cmap='binary_r')
 ax[1, i].imshow(projected[i].reshape(62, 47),
cmap='binary_r')

ax[0, 0].set_ylabel('full-dim\ninput')
ax[1, 0].set_ylabel('150-dim\nreconstruction');

plt.show()

PCA : Eigenfaces
• With about 150 components, the features of the faces are

retained

Linear Discriminant Analysis
• Idea:

• Estimate mean and variance for each category

• Assumes same covariances

• Calculates (like PCA) an affine transformation

Linear Discriminant Analysis
• Import LDA:

• Read data & divide

from sklearn.discriminant_analysis import
LinearDiscriminantAnalysis as LDA

iris = pd.read_csv('Iris.csv',
index_col=0).drop(columns='Species')
X_train, X_test, y_train, y_test = train_test_split(
 iris,
 50*[0]+50*[1]+50*[2],
 test_size=0.2,
 random_state=0)

Linear Discriminant Analysis
• Reset

• Train with two dimensions:

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

lda = LDA(n_components=2)
lda.fit(X_train, y_train)

for i in range(len(X_test)):
 print(lda.predict([X_test[i]])[0], y_test[i])

Linear Discriminant Analysis
• Results is 100%

Linear Discriminant Analysis
• Show transformation for LDA:

transX = lda.fit_transform(iris, 50*[0]+50*[1]+50*[2])

cmap = colors.ListedColormap(['b','r','g'])
plt.scatter(transX[:, 0], transX[:, 1], s=3,
 c=50*[0]+50*[1]+50*[2], cmap = cmap)
plt.show()

Linear Discriminant Analysis

Final Example
• Kaggle has a penguins data set on three types of

penguins on three islands in the antarctic ocean

• After downloading

• Read data into a Pandas Dataframe

• Need to get rid of NA columns

penguins_df = pd.read_csv('../SVM/penguins.csv')
penguins_df.dropna(axis=0, how='any',inplace=True)

Final Example
• Let's prepare the data for SVM

• Take 'Adelie' and 'Chinstrap' as the target categories

• Restrict to only those data

• Get the labels from the species column

• Restrict to numerical columns

penguins_df = penguins_df.loc[
 penguins_df['species'].isin(['Adelie','Chinstrap'])]

labels = np.array(penguins_df['species'])

penguins_df=penguins_df[['bill_length_mm',
'bill_depth_mm', 'flipper_length_mm',
'body_mass_g']].astype(float)

Final Example
• Make the labels numerical

• And make the features into a numpy array

labels[labels=='Adelie']=0
labels[labels=='Chinstrap']=1
labels = labels.astype(int)

features=np.array(penguins_df)

Final Example
• Create training and test data (70% / 30% split)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
 features, labels, test_size=0.3)

Final Example
• Use SVM (better vary C)

• Determine accuracy

clf = svm.SVC(kernel='linear', C=0.5)
clf.fit(X_train, y_train)

from sklearn import metrics

y_pred = clf.predict(X_test)
print("Accuracy:", metrics.accuracy_score(y_test,
y_pred))
print(clf.coef_)

Final Example
• Result varies between 95% and 100% accuracy based on

values for C

• C=0.5 gives the best results

Final Example
• Principal component analysis

• PCA only affects the features

• Vary the dimensions

from sklearn.decomposition import PCA

pca = PCA(n_components=4)
pca.fit(features)

Final Example
• Now print out the results

pca_df = pd.DataFrame(pca.components_,
 columns=list(penguins_df.columns))

print(pca.components_)
print(pca.explained_variance_)
print(pca_df)

Final Example
• The data frame results (for N=4):

• These results show that PCA selects basically the
coordinates

• And body_mass followed by flipper-length are the most
important components

 bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
0 0.004003 -0.001154 0.015195 0.999876
1 -0.319278 0.086848 -0.943542 0.015717
2 0.941265 0.144495 -0.305190 0.001036
3 -0.109847 0.985686 0.127891 -0.000366

Final Example
• Linear Discriminant Analysis

• Train

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

lda = LDA(n_components=2)
lda.fit(X_train, y_train)

Final Example
• Display

transX = lda.fit_transform(features, labels)

cmap = colors.ListedColormap(['b','r','g'])
plt.scatter(transX[:, 0], transX[:, 1], s=5,
 c=labels, cmap = cmap)
plt.show()

Final Example

