Repetition

Loops

* The foo-bang problem
* Print a list of all numbers between 1 and 100

* Whenever the number is divisible by 3, print "foo"
afterwards

* Whenever the number is divisible by 5, print "bang"”
e |f both conditions are set, print "foo-bang"”

 This is a version of a well-known easy programming
interview question

Loops

deft foo bang(n):
for 1 1n range(l, n+1):

1f 1%3 == 0 and 1%5 ==
print (1, 'foobang')

elif 133 == 0 and 1%5 != 0:
print (1, 'foo')

elif 1%3 !'= 0 and 1%5 ==
print (1, 'bang')

elif 1353 !'= 0 and 1%5 != 0:
print (1)

else:

print (f'With {i}: Logic error 1n program')

Loops

e A use case for continue

e Find all numbers x between 1 and 10000 that satisfy
the following conditions simultaneously:

e X is not a square

e x> + 2 is divisible by 4

e (x—1)(x+ 1) is not divisible by 7
e (x+2)(x + 3) is divisible by 5

Loops

1

n
1
Find the smallest number n such that Z > > \/5 |

10
i=1

Loops

 Each letter stands for a different digit.

e Solve:

SEND
+MORE

MONEY

Loops

e Each letter stands for a different digit

e Solve

o
S1X
+ six
+ si1x

nine
+nine

Loops

e Solve:

nine
+seven
+seven
+seven

thirty

Classes and Object 1

Thomas Schwarz, SJ
Marquette University

Classes and Objects

* |Imperative programming manipulates the state of memory
 Breaks up tasks through procedures and functions

* QObject Oriented Programming
e Creates objects that interact with each other

 Objects are defined with a user-defined data type

Classes and Objects

e Each object maintains its own state

e Objects manipulate themselves and other objects
through methods

Classes and Objects

* Running Example:
e Complex Numbers
e Complex numbers live in the complex plane
 Two canonical way of representing them:
* Via coordinates (the real and the imaginary part)

* Via length and angle to x-axis

Complex Numbers

Im(X) ---------------- T

Re (x)

e Complex numbers are poiqts in the Gaussian plane

e Can be represented as pairs (a,b)

* ais called the real part, b is called the imaginary part

e Written as a+ib, the “algebraic notation”

Complex Numbers

r 1s the length
a 1s the phase 1n
radians

a

 Polar form
e Given by angle @ with x-axis and a length r

e Writtenas r - e'?¢

40

%= § Complex Numbers

e Complex numbers allow various operations such as
addition, multiplication, exponentiation,

* The have a length, a real part, and imaginary part, and a
phase

* They have a transpose

e And so much more

OOP in Python

 We define the type of an object as a class
 QObjects have fields and methods
 Fields are like variables

e Methods are like functions

e A complex number has two fields: the real and the imaginary
part

A method would be the calculation of the length

 Another standard method would be a string describing the
number

OOP in Python

* There are two types of fields and methods:
* Those that belong to the class:
e (Class variables (aka Class fields), Class methods

* And those that belong to an object

e Object variables, Object methods

OOP in Python

* To create an object of type class, “instantiation”: we
define and use an initializer called init ()

* The initializer can have arguments.

e |f we create object variables and methods, we use the
(quasi-)keyword self to refer to the object.

OOP in Python

The double underscore before and after
make this a reserved method name.

class Complex () :

def 1nit (self, real, imaginary):
self.re = real
self.im = 1maglnary

def str (self) :

return "{}+1{}".format (self.re, self.im)

1f name == " main ":
a = Complex (-2, 3)
b = Complex (1, 2)

print (a, b)

They are called dunder methods.

OOP in Python

The “self” is required. It renders this is an
instance method

class Complex () :

def 1nit (self, real, imaginary):
self.re = real
self.im = 1maglnary

def str (self) :

return "{}+1{}".format (self.re, self.im)

1if name == " main ":
a = Complex (-2, 3)
b = Complex (1, 2)

print (a, b)

OOP in Python

class Complex () :
def init

1f

(self,

self.re
self.im
def str

return

name

= real

= 1lmaglnary

(self) :

The real and imaginary are parameters

real, 1maginary) :

"{}+1{}".format (self.re, self.im)

" main

a = Complex (-2, 3)
b = Complex (1, 2)

print (a,

D)

" .

OOP in Python

class Complex () :

def 1nit (self, real, imaginary):
self.re = real
self.im = 1maglnary

def str (self) :

return "{}+1{}".format (self.re, self.im)

1if name == " main ":
a = Complex (-2, 3)
b = Complex (1, 2) This is the creation of an instance of the
print (a, b) class. “self” is hidden, -2 is real and 3 is
Imaginary

OOP in Python

This defines an instance field called “re”

class Complex () :

def 1nit (self, 1eal, imaginary):
self.re = real
self.im = 1maglnary

def str (self) :

return "{}+1{}".format (self.re, self.im)

1if name == " main ":
a = Complex (-2, 3)
b = Complex (1, 2)

print (a, b)

OOP in Python

This defines an instance field called “im”

class Complex () :

def 1nit (self, real, 1maginary):
self.re = real
self.im = 1maglnary

def str (self) :

return "{}+1{}".format (self.re, self.im)

1if name == " main ":
a = Complex (-2, 3)
b = Complex (1, 2)

print (a, b)

OOP in Python

Assigning self.whatever anywhere in the
definition of the class will create an
iInstance object

class Complex () :

def 1nit (self. Leal, 1maginary):
self.re = real
self.im = 1maglnary

def str (self) :

return "{}+1{}".format (self.re, self.im)

1if name == " main ":
a = Complex (-2, 3)
b = Complex (1, 2)

print (a, b)

OOP in Python

class Complex () :
def init

1f

self.re
self.im
def str

return

name

(self, recal,
= Ye ..
= 1maglnary
(self) :

The two underscores before and after
denotes str as areserved name.

imaglinary) :

"{}+1{}".format (self.re, self.im)

" main

a = Complex (-2, 3)
b = Complex (1, 2)

print (a,

D)

" .

OOP in Python

str__ takes the instance and creates a
string. The string should reflect the
contents of the object.

class Complex () :

def 1nit (self, real, imaginary):
self.re = real
self.im = 1maglnary

def str (self) :

return "{}+1{}".format (self.re, self.im)

1if name == " main ":
a = Complex (-2, 3)
b = Complex (1, 2)

print (a, b)

OOP in Python

When print is called on objects of type complex,
then Python looks first for a __str method and then
fora_ _repr__ method. The _ repr__ method is
supposed to give more details for debugging.

class Complex () :

def 1nit (self, real, imaginary):
self.re = real
self.im = 1maglnary

def str (self):
return "{}+1{}".format (self.re, self.im)

a = Complex (-2, 3)
b = Complex (1, 2)
print (a, b)

OOP in Python

 Adding Methods

 Every complex number has a length:

la+ bi| =Va? + b?

* Jo create a method calculating the length:

 \We need one argument: the object (the complex
number) itself

e Thisargumentis called self

class Complex () :
def init (self, real, 1maginary) :

self.re = real The one argument is self
self.im = 1maginary -
def str (self):
1f self.re==0 and self.im==0:
return "0O" il
1f self.re==0 and self.im>0;y}f"
return "i{}".format(seiffim)
if self.re==0 and self.im<0:
return "-i{}".format (-self.im)
if self.im<0: e
return "{}—i{bﬁ
if self.im>0: ”rfx
return "{}+i{}".format (self.re, self.im)
return str(self.re)
def length (self):
return math.sqrt (self.re*self.re+self.im*self.im)

 format (self.re, -self.im)

1f name == " main ":

a = Complex (-2, 3)
print(a.length())

class Complex () :
def 1nit (self, real, 1magilnary):
self.re = real
self.im = 1maginary
def str (self):
1f self.re==0 and self.im==0:
return "0O"
1f self.re==0 and self.im>0:
return "i{}".format (self.im)
1f self.re==0 and self.im<O0:
return "-i{}".format (-self.im)
1f self.im<0:
return "{}-1{}".format(self.re, -self.im)
1f self.im>0:
return "{}+i{}".format(self.re, self.im)
return str(self.re)
def length(self):

return math.sqrt (self.re*self.re+self.im*self.im)

1f __name == "__main__": T — :
a = Complex (-2, 3) Here is how this function is '
print(a.length()) ... called: The object is followed

by a period

class Complex () :
def 1nit (self, real, 1magilnary):
self.re = real
self.im = 1maginary
def str (self):
1f self.re==0 and self.im==0:
return "0O"
1f self.re==0 and self.im>0:
return "i{}".format (self.im)
1f self.re==0 and self.im<O0:
return "-i{}".format (-self.im)
1f self.im<0:
return "{}-1{}".format(self.re, -self.im)
1f self.im>0:
return "{}+i{}".format(self.re, self.im)
return str(self.re)
def length(self):

return math.sqrt (self.re*self.re+self.im*self.im)

1f __name == "__main__": T — :
a = Complex (-2, 3) So, this method is really a '
print(a.length()) ... function of one argument,

even if it does not look like it.

class Complex () :
def 1nit (self, real, 1magilnary):
self.re = real
self.im = 1maginary
def str (self):
1f self.re==0 and self.im==0:
return "0O"
1f self.re==0 and self.im>0:
return "i{}".format (self.im)
1f self.re==0 and self.im<O0:
return "-i{}".format (-self.im)
1f self.im<0:
return "{}-1{}".format(self.re, -self.im)
1f self.im>0:
return "{}+i{}".format(self.re, self.im)
return str(self.re)
def length(self):

return math.sqrt (self.re*self.re+self.im*self.im)

1f name == " mailn ". . T

2 = Complex (-2, 3) Here we are referring to an
print(a.length()) iinstance field.

Self Test:

Stop the presentation and fire up IDLE

* The phase of a complex number is defined by

arctan(%) ifa>0
arctan(%) +7 ifa<O0and b >0

arctan(%) —n ifa<O0Oand b <0

% ifa=0and b >0

—% ifa=0and b <0

undefined ifx=0andb=0

arg(a + bi) =

* Raise a ValueError in the last case, the arctan in the math library is
called atan.

class Compl
def arg

1f

1f

1f

1f

1f

1f

if name

a = Complex (0
)

print (a

ex () :
(self) :
self.re

== (0 and self.im == O0:

ralse ValueError

self.re
return
self.re
return
self.re
return
self.re
return
self.re
return

> 0
math.atan(self.im/self.re)
< 0 and self.im >= 0O:

math.atan(self.im/self.re)+math.pi

< 0 and self.im < O:
math.atan(self.im/self.re)
== (0 and self.im > O:
math.pi/2

== (0 and self.im < O:
-math.pi/2

== " main ":

)

.arg (

0)

- math.pi

OOP in Python

e Methods can of course return other objects

 The conjugate of a complex number is obtained by
reflecting around the y-axis

a+ bi = a— bi

OOP in Python

class Complex () :
def conjugate (self) :
return Complex(self.re, —-self.im)

1f name == " mailin ":

a = Complex (2, 3)
print (a.conjugate())

OOP

e Python knows “operator overloading”

* |nstead of adding two complex numbers by saying
something like c=add (a, b)

e We can say c=a+b

 Python knows a number of such overloads and
associates them by reserving function names

class Complex () :
def add (self, other):
return Complex(self.retother.re, self.imtother.im)

if name == " main ":
a = Complex (2, 3) =
b — COmpleX(3, _5) OO OO OO
print (a+b) We need to return a complex

‘number

Self Test

e Qverload the subtraction

e The reserved method nameis sub

e (Two underscores before and after)

Solution

class Complex () :
def sub (self, other):
return Complex (self.re-other.re, self.im-other.im)

== " main ":

if name
a = Complex (2, 3)

b = Complex (3, -5)
suma = atb

dif = a-b

print (a, b, suma, dif)

OOP in Python

 We can define comparisons via overloading

 For equality, the reserved method nameis __eq__

OOP in Python

* Resolving operators

e QOperator overloading does not have to happen
between objects of the same type

e |f there is an expression a==b

 Python first looks into the class definition of a for an

__eqg__ method that has second parameter the type
of b

e |f that fails, Python then looks into the class
definition of b for an __eq__method

OOP

e |n fact, there is a default comparison between two objects
e |tis based on IDENTITY NOT EQUALITY
e |dentity: Two objects are stored at the same location

e Equality: Two objects have the same fields

class Complex () :
def eq (self, other):
1f isinstance (other, Complex):
return self.re==other.re and self.im==other.im
return NétImplemented
def ne (sélf, other) :
if isinsﬁance(other,Complex):
retuﬁh self.rel!l=other.re or self.im!=other.im
return NotImplemented

1f name @ == " main ":
a = Complex (2, 3)
b = Complex (3, -5)
print (a==b, a!=b)

print (==Comp1§x(2,3), a!=Complex(2,3))

‘We only want to compare two
complex numbers

class Complex () :
def eq (self, other):
1f isinstance (other, Complex):
return self.re==other.re and self.im==other.im
return NotImplemented |
def ne (self, other):
1f isinstance (other,Complex):
return self.re!=other.re or self.im!=other.im
return NotImplemented |

if name == " main ":
a = Complex (2, 3)
b = Complex (3, -5)
print (a==b, a'!=Db)

print (a==Complex (2, 3), a!=Complex§2,3))

Two complex numbers are equal if they
Ehave the same real and imaginary parts

class Complex () :
def eq (self, other):
1f isinstance (other, Complex):
return self.re==other.re and self.im==other.im
return NotImplemented
def ne (self, other):
1f isinstance (other,Complex) :
return self.rel!=other.re or self.im!=other.im

return NotImplemen?ed

"w.

1f name == " mailn

a = Complex (2, 3)

b = Complex (3, -5)

print (a==b, al!=b) =

print (==Complex(2,3)gEa!=Complex(2,3))

‘complex number then we want to return the
constant NotImplemented

Classes and Objects

e (Classes usually define objects, but they can also used in
ISolation

e Assume that you want to use a number of global
variables

 This is dangerous, since you might be reusing the
same name

e Solution: Use a class that contains all these variables

A Globals Class

e We call the class Gl — class Gl:
short for global grzgr = 0.06479831
dr2gr = 1.7718451953125
e Store constants as class 0z2gr = 28.349523125
variables lb2gr = 453.59237
st2gr = 6350.29318

e Easy to identify in program

def translate (number, measure) :

1f measure == "gr":

return "{0:.3f} {1}".format (number*Gl.gr2gr, "gram")
1f measure == "dr":

return "{0:.3f} {1}".format (number*Gl.dr2gr, "gram")
1f measure == "oz":

return "{0:.3f} {1}".format (number*Gl.oz2gr, "gram")
1f measure == "1lb":

return "{0:.3f} {1}".format (number*Gl.1lb2gr, "gram")
1f measure == "st":

return "{0:.3f} {1}".format (number*Gl.st2gr/1000, "kg")
ralse ValueError

Class and Instance
Variables

e Class variable

* belong to the class

* shared by all objects

e defined without prefix in the class
* |nstance variable

* belong to the instance

* not shared by objects

* defined by using an object or self prefix

e |dentify the type of the bold-faced variables in the
following code

import math

class Example:
exlsts = False
def 1nit (self, x, y):
self.radius = math.sgrt (x*x+y+y)
self.x = x
self.y = vy
Example.exists = True

print (Example.exists)
e = Example (2, 3)
print (e.x)

print (Example.exists)
print (e.radius)

import math

class Example:
exlsts False
def 1nit (self,
self.radius
self.x X
self.y Y%
Example.e.si1sts

print (Example.exists)
e Example {2,
print (e.x)

print (Example.exists)

print (e.radius)

DN\

~ 7

Ancwer

X, V) :
math.sgrt (x*x+y+vy)

True

This is an instance variable. It belongs
to the (one and only) object of type
Example.

It happens to be defined in __init__.
However, it is defined with the self
prefix.

Ancwer

import math

class Example:
exlsts = False
def 1nit (self, x, y):
self.radius math.sgrt (x*x+y+vy)

self.x = ~
self.y = vy
Example.exists = True

print (Example.exists)

This is a class variable. It is specified

e = Example (2, 3) by using the class name “Example.”

print (e.x)

print (Example.exists)

print (e.radius) It is defined without a prefix within the

class.

Ancwer

import math

class Example:
ex1sts = False
def 1nit (self, x, y):
self.radius = math.sqgrt (x*x+y+vy)

self.x = X
self.y = vy
Example.exists = True

print (Example.exists)
e = Example (2, 3)
print (e.x)

print (Example.exists) This is an instance variable. It is

. . defined with the prefix self.
print (e.radius)
It is used by referring to an object e.

Class and Instance
Methods

 The same distinction can be made for methods
e Methods are functions related to an object

* A class method depends only on the class.
e |t is defined in the class, but has no argument self
e |t is called by giving the class-name

* An instance method depends on an instance

e |tis defined in the class with first argument self

e |tis called by prefacing it with an instance.

* The instance is called the implicit argument

Class and Instance
Methods

class Example:
def fool():
print ("foo")
def 1init (self):
pass
def bar(self):
print ("bar")

Example.foo ()
e = Example ()
e.pbar ()

A method definition
without argument self:
Class Method

It is called using the
class-name to call it

Class and Instance
Methods

class Example: A method definition with
argument self:

def fOC? () : Instance Method
print ("foo")

def 1init (self):
pass
def bar(self) :
print ("bar")
It is called using the

Example.foo () Instance.
e = Example () Without an object e, we

e.bar () cannot call it.

e |dentify the type of methods in the following code

import math
class Vector3D:
def 1nit (self, x, y, z):
self.x = x
self.y = vy
self.z = z
zeroes () :
return Vector3D(0,0,0)
ones () :
return Vector3D(1l,1,1)
__add (self, other):
return Vector3D(self.x+other.x,
self.y+other.y,
self.z+other.z)

str (self):

return "({}, {}, {})".format(self.x, self.y, self.z)
length(self) :
return math.sqgrt(self.x**2+self.y**24+self.z*¥*2)

Answers

Dunder (double under) method:

import math Hard to tell

class Vector3D:

def 1nit (self, x, y, z):
self.x = X
self.y = vy
self.z = z

def zeroes|():
return Vector3D(0,0,0)
def ones () :
return Vector3D(1l,1,1)
def add (self, other):
return Vector3D(self.x+other.x,
self.y+other.vy,
self.z+other.z)
def str (self):
return " ({}, {}, {})".format(self.x, self.y, self.z)
def length(self) :

return math.sqgrt(self.x**2+self.y**2+self.z**2)

Answers

import math
class Vector3D:

def 1nit (self, x, y, z):
Seﬁ S Class Method, even though it
sert-y = Y generates an object
self.z = z

def zeroes|():

return Vector3D(0,0,0)
def ones () :
return Vector3D(1l,1,1)
def add (self, other):
return Vector3D(self.x+other.x,
self.y+other.vy,
self.z+other.z)
def str (self):
return " ({}, {}, {})".format(self.x, self.y, self.z)
def length(self) :

return math.sqgrt(self.x**2+self.y**2+self.z**2)

Answers

import math
class Vector3D:

def 1nit (self, x, y, z):
self.x = X
self.y = vy
self.z = z

def zeroes () : Class Method, even though it

return Vector3D(0,0,0) generates an object
def ones|() :

return Vector3D(1l,1,1)
def add (self, other):

return Vector3D(self.x+other.x,
self.y+other.vy,
self.z+other.z)

def str (self):

return " ({}, {}, {})".format (self.x, self.y, self.z)
def length(self) :

return math.sqgrt(self.x**2+self.y**2+self.z**2)

Answers

import math
class Vector3D:

def

def

def

def

def

def

__1nit (self, x, y, z):

self.x = X

self.y =y

self.z = z

zeroes () :

return Vector3D(0,0,0)

ones () :

return Vector3D(1,1,1) Instance method
add (self, other):

return Vector3D(self.x+other.x,
self.y+other.vy,
self.z+other.z)

__str (self):
return " ({}, {}, {})".format(self.x, self.y,
length (self) :

self.z)

return math.sqgrt(self.x**2+self.y**2+self.z**2)

Answers

import math
class Vector3D:

def

def

def

def

def

def

__1nit (self, x, y, z):
self.x = X

self.y = vy

self.z = z

zeroes () :

return Vector3D(0,0,0)
ones () :

return Vector3D(1l,1,1)

__add (self, other):

return Vector3D(self.x+other.x,
self.y+other.vy,

self.z+other.z)

Dunder instance method

__str (self):
return " ({}, {}, {})".format(self.x, self.y, self.z)
length (self) :

return math.sqgrt(self.x**2+self.y**2+self.z**2)

Answers

import math
class Vector3D:

def 1nit (self, x, y, z):
self.x = X
self.y = vy
self.z = z

def zeroes|():

return Vector3D(0,0,0)
def ones () :

return Vector3D(1l,1,1)
def add (self, other):

return Vector3D(self.x+other.x,

self.y+other.vy,

Instance method
self.z+other.z)

def str (self):

return " ({}, {}, {})"..ormat (self.x, self.y, self.z)
def length(self): -

return math.sqgrt(self.x**2+self.y**2+self.z**2)

Dunder Methods

* Python reserves special names for functions that allows
the programmer to emulate the behavior of built-in types

 For example, we can create number like objects that
allow for operations such as addition and multiplication

* These methods have special names that start out with
two underscores and end with two underscores

* Aside: If you preface a variable / function / class with a
single underscore, you indicate that it should be treated
as reserved and not used outside of the module / class

Dunder Method

e A class for playing cards:
e A card has a suit and a rank

e We define this in the constructor init

class Card:
def 1nit (self, suit, rank):
self.sult = suit
self.rank = rank

Dunder Method

e We want to print it
 Python likes to have two methods:
e repr__ for more information, e.g. errors
e str_ for the print-function

 Both return a string

class Card:

def str (self):
return self.suilit[0:2]+self.rank[0:2]
def repr (self):
return "{}-{}".format (self.suit, self.rank

Dunder Method

e _ repr__ Is used when we create an object in the terminal

>>> Card("Héart", "QUeen”)
Heart-Queen

e str_ isused within print or when we say str (card)

>>> print(Card("Heart"”, "Queen™))
HeQu

>>> str(Card("Heart"”, "Queen™))
"HeQu’

Dunder Method

e \We now create a carddeck class
e Consists of a set of cards

e (Constructor uses a list of ranks and a list of suits

class Deck:
def 1nit (self, los, lov):
self.cards = [Card(suit, rank) for suit 1in
for rank 1n

Dunder Method

* We create the string method. Remember that it needs to
return a string.

class Deck:

def 1init (self, los, lov):

self.cards = [Card(suit, rank) for suit 1in

for rank 1n

def str (self):

result = []

for card 1n self.cards:

result.append(str (card))

return " ".joln(result)

Dunder Method

* |n order to allow python to check whether a deck exists,

we want to have a length class. Besides, it is useful in
itself.

e if deck: works by checking 1en (deck)

class Deck:

def len (self):
return len(self.cards)

Dunder Method

e Given a deck, we want to be able to access the i-th
element.

* We do so by defining __getitem

class Deck:

def getitem (self, position):
return self.cards[position]

Dunder Method

e This turns out to be very powerful:

french deck = Deck(['Spade', 'Diamonds', 'Hearts', 'Clubs'],
['Ace', 'King', 'Queen', 'Jack', '10', '9",
'8', '7', '6" '5', '4', '3', '2'])

* We can print out the i-th element of the deck

>>> str(french_deck[5])
lSp9|

e But we can also slice the deck

>>> print(french_deck[6:12])
[Spade-8, Spade-7, Spade-6, Spade-5, Spade-4, Spade-3]

Dunder Method

e We can use random.choice() to select a card

>>> random.choice(french_deck)
Diamonds-9

* Only for random.sample do we need to go to the
underlying instance field

>>> random.sample(french_deck.cards, 5)

[Hearts-8, Hearts-2, Hearts-Ace, Hearts-6, Diamonds-Ace]
>>> random.sample(french_deck.cards, 5)

[Hearts-S, Clubs-Queen, Diamonds-Ace, Clubs-3, Clubs-King]

e But this is ugly and we better write a class method for
it.

