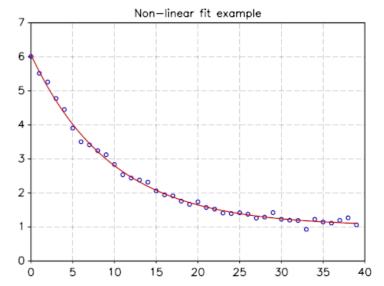
Minimization and Curve Fitting with SciPy

Thomas Schwarz, SJ

Why is this important

- Mathematical optimization underlies many machine learning algorithms
 - Need to know how to do deal with exceptionally circumstances
- Provides techniques for data exploration

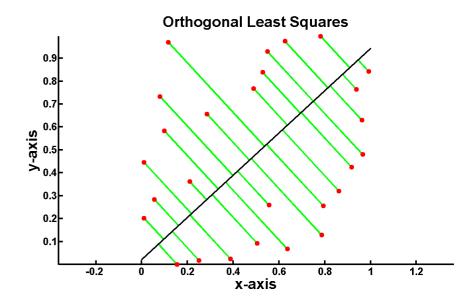
- Want to construct a curve (mathematical function) that best fits a series of data points
 - First, need to select a model: what type of curve?



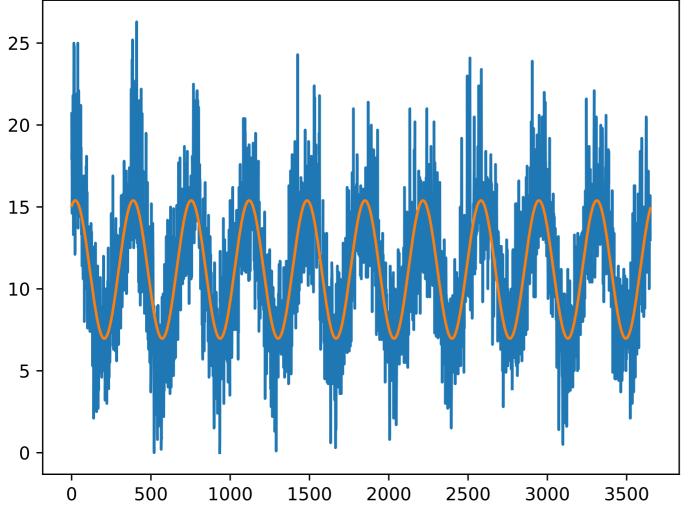
- Then, need to determine how we measure fit
 - Examples:
 - y-values:

$$L(y, \hat{y}) = \sum_{\nu=1}^{n} (y_i - \hat{y}(i))^2 \to \min$$

orthogonal least squares

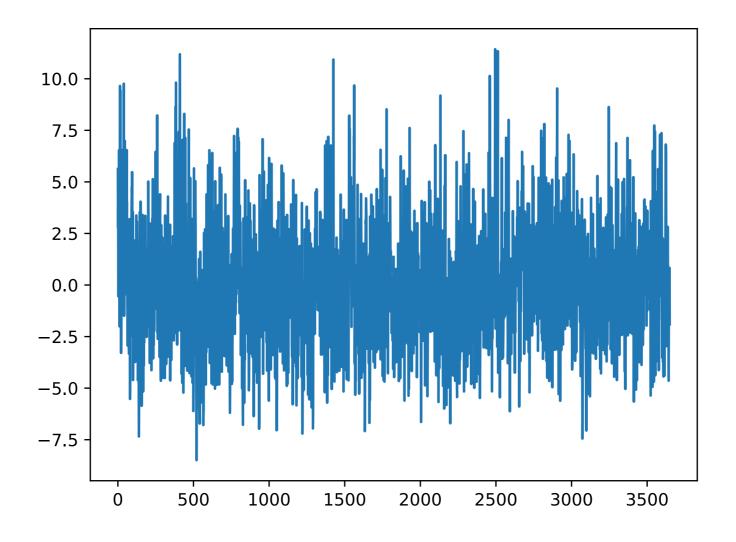


- Example: Fit a sine curve to meteorological data
 - Minimum daily temperatures in Melbourne

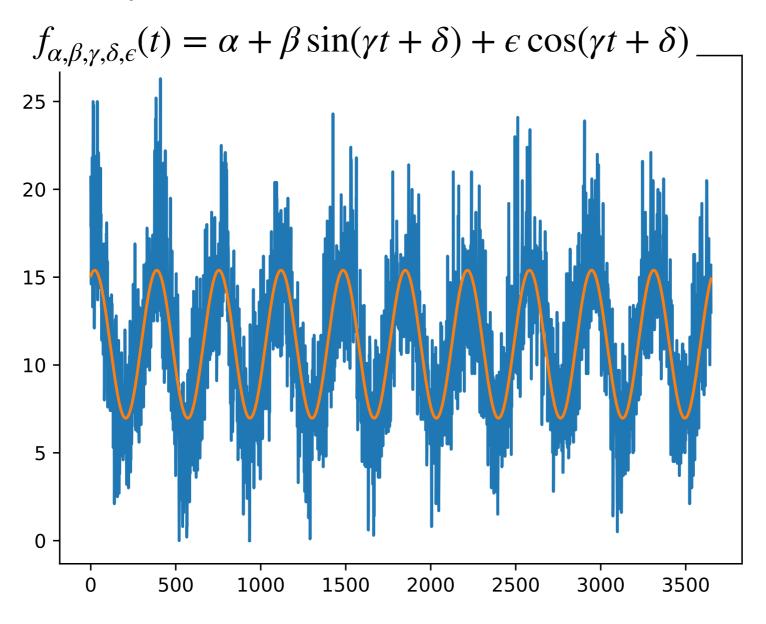


$$f_{\alpha,\beta,\gamma,\delta}(t) = \alpha + \beta \sin(\gamma t + \delta)$$

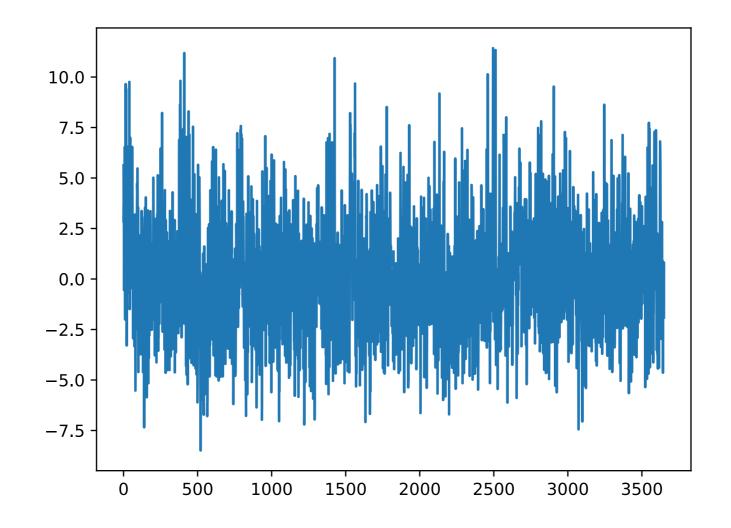
 The data after removing the sine curve shows a seemingly random time series with just a little bit of seasonality



 We can do better by including a cos (which is just a second sine)



- Residual:
 - Looks slightly better?

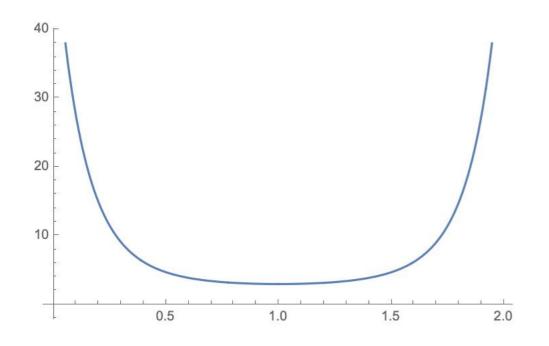


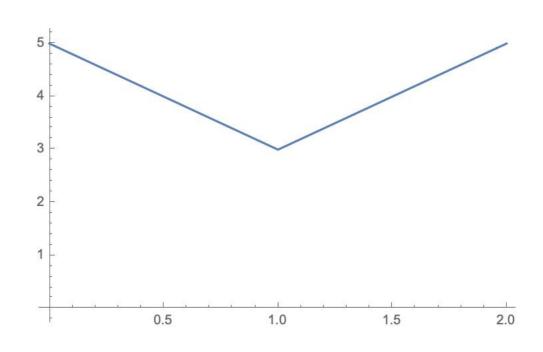
- Find the parameters that minimize the squared difference between function and model
 - This is a minimization problem
- Too general a model:
 - Optimization can be very difficult and lengthy
 - Overfit: The result matches the test set, but not the future
- Not general a model
 - Fit is not good, therefore no strong predictions either

Program

- Need to learn about minimization
 - One dimensional methods: Minimization along a line
 - Gradient Descent Methods
 - Minimization for Sums of Squares
 - Curve-fitting

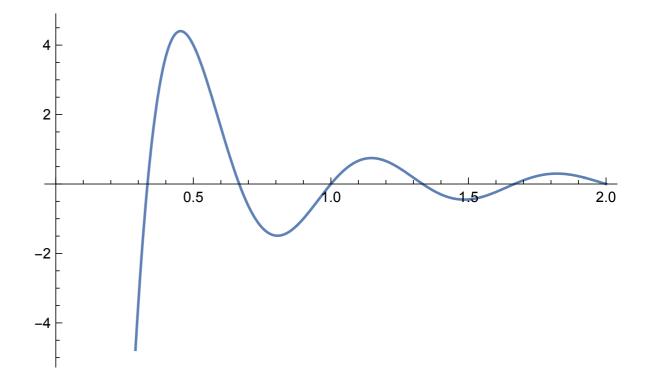
Functions can be smooth and non-smooth





- Given a function $\mathcal{R}^n \to \mathcal{R}$
 - Find a minimum

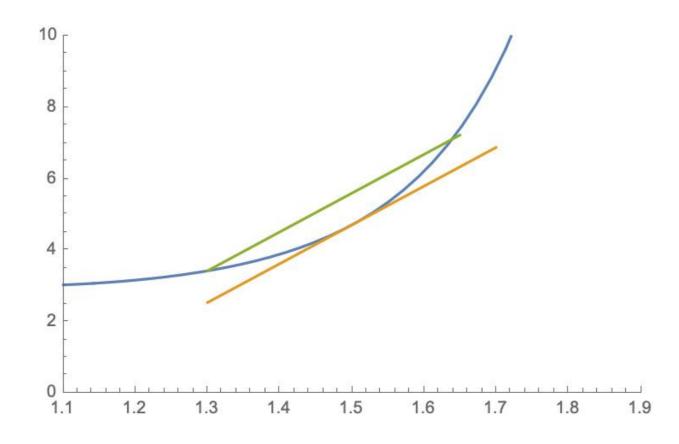
- Potential problems:
 - Minimum might not exist
 - Minimum might be local



• Convex functions: For $t \in [0,1]$:

•
$$f(\overrightarrow{a} + t(\overrightarrow{b} - \overrightarrow{a})) \le f(\overrightarrow{a}) + t(f(\overrightarrow{b}) - f(\overrightarrow{a}))$$

- Tends to be easy
- Relative minimum is unique



- Minimum implies derivatives vanish
 - Can use the derivatives to guide us to the minimum
 - Can be done by using bisection:
 - Find two points a, b such that f(a) and f(b) have different signs
 - Then there is a zero between a, b
 - Can evaluate function at $\frac{a+b}{2}$
 - Can be done using the secant method
 - Find two points a,b such that $f(a) \neq f(b)$, but both values have the same sign
 - Use the slope in order to guess a zero
 - Brent's method combines both with quadratic interpolation

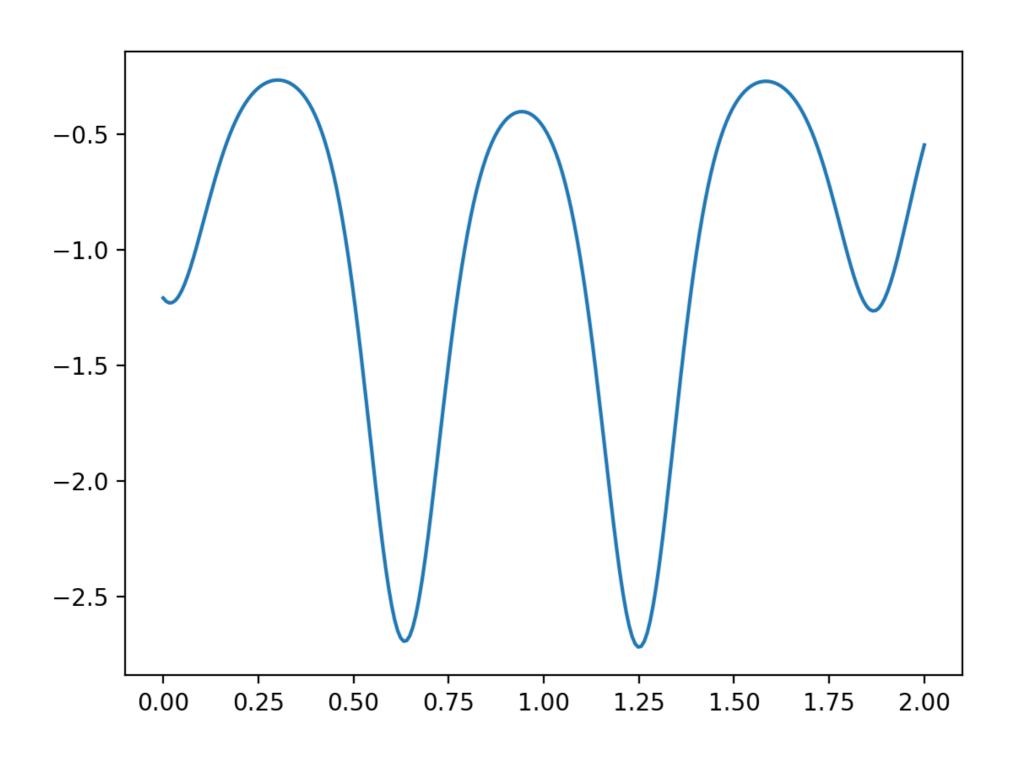
- Brent's method is the default for scipy:
 - Optimizing a curvy function

```
from scipy import optimize
import numpy as np
from matplotlib import pyplot as plt

def f2(x):
    return -np.exp(-(x-.9)**2+0.1*x+np.cos(10*x))
```

• Show:

```
def show(f):
    x = np.linspace(0,2,251)
    y = f(x)
    plt.plot(x,y)
    plt.show()
```



Brent's method is the default

```
from scipy import optimize

result = optimize.minimize_scalar(f2)

>>> result>>> result
    fun: -2.7191461357325406

message: 'Solution found.'
    nfev: 12
    status: 0
    success: True
        x: 1.2506211193351628
```

Bounded Brent method

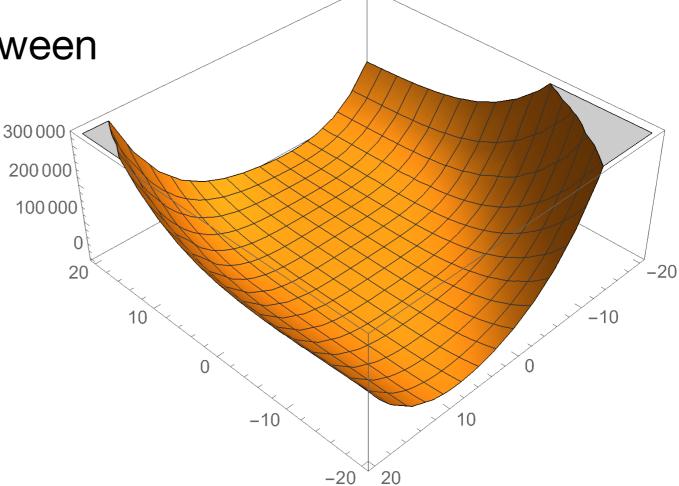
```
result = optimize.minimize_scalar(f2, bounds=(0,2),
method='bounded')
```

```
>>> result
    fun: -2.7191461357325406
message: 'Solution found.'
    nfev: 12
    status: 0
success: True
    x: 1.2506211193351628
```

- Smooth functions are (usually) easier than non-smooth functions
 - Exception: Linear systems with constraints —> Linear Programming

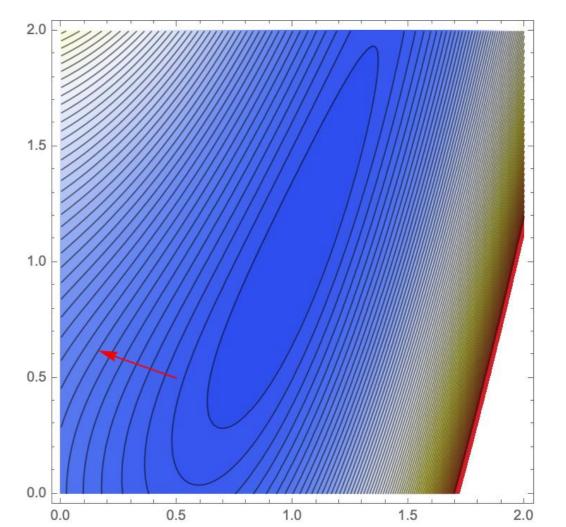
- Minimization is easier for convex functions
 - Take a line segment [a, b]
 - Values are higher on the end points

Than on points in between



• Gradient $\nabla f=(\frac{df}{dx_1},\frac{df}{dx_2},\frac{df}{dx_3},...,\frac{df}{dx_n})$ is always in the direction of greatest increase of a function

- Example: Rosenbrock Function
 - $f(x, y) = 1.2(y x^2)^2 + 1.1(1 x)^2$
 - Gradient is $(-2.2(1-x)-4.8x(-x^2+y),2.4(-x^2+y)$
 - Contour graph is



- Descent Methods:
 - 1. Choose a starting point $x_0 \in \mathcal{R}^n$
 - 2. If $\|\nabla f(x_k)\| < \epsilon$ declare victory and return x_k
 - 3. Pick a search direction $d_k \in \mathcal{R}^n$ s.t. $\nabla f(x_k) \cdot d_k < 0$
 - 4. Choose a step size $\alpha_k > 0$ s.t. $f(x_k + \alpha_k d_k) < f(x_k)$
 - 5. Set $x_{k+1} = x_k + \alpha_k d_k$. Go to 2

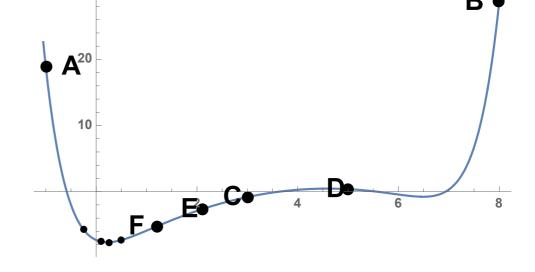
- This algorithm leaves two things open:
 - Selecting the step length α_k
 - Selecting the search direction d_k

- Finding minimum along line:
 - Finding minimum of function $t \mapsto f(x_k + td_k)$
 - Use derivative is usually dangerous:
 - Often function too flat
 - Better bracketing

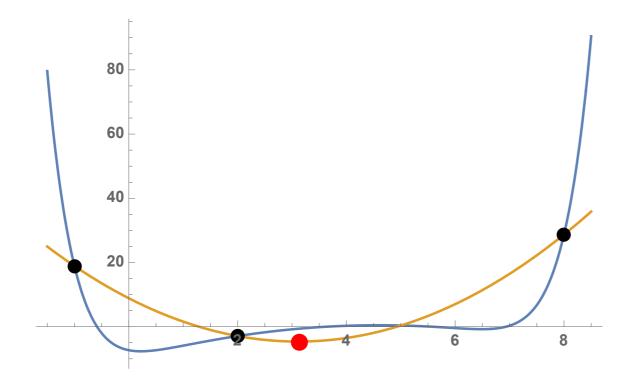
- Can use bracketing
 - Three points A < C < B such that f(A) > f(C) < f(B)
 - Thus, minimum guaranteed to exist
 - Now find another point D between A and C or C and

B

Get a new bracket



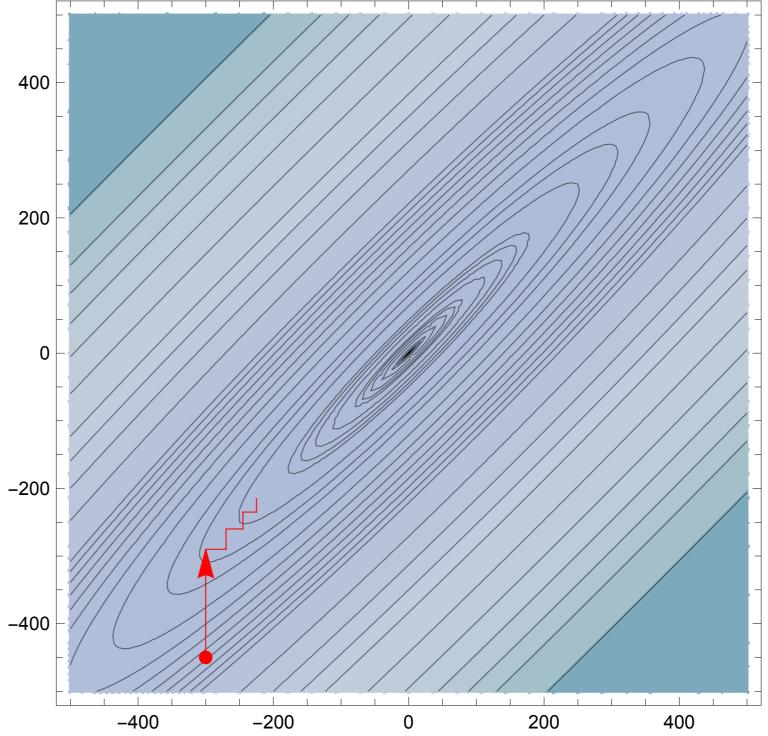
- One possibility: golden ratio: $\frac{|A-C|}{|A-B|} = \frac{|B-C|}{|A-C|}$
- Other possibility: parabolic approximation
- Or a combination of both



- Determining direction:
 - Can use coordinates



- Using coordinates 400
 - Make little progress per iteration



- Better use orthogonal directions:
 - otherwise we partially undo the previous steps
- Possibilities
 - Canonical Directions
 - Steepest Descent (Cauchy)
 - badly affected by round-off errors and subject to zigzagging
 - Powell: Change set of directions every so often

- Selecting the step length
 - Finding the best step length is laborious
 - Often do better by guessing
 - Many machine learning algorithms use a steadily declining α
 - Trying out several guesses

- Newton Methods:
 - Repeatedly replace condition $\nabla f(x) = 0$ by a sequence of linear problems
 - Newton-Raphson:
 - apply exact Newton steps
- possibly does not converge
- works best for convex functions
 - Use linear-search descent, then switch to Newton

- Numerical minimization of a cost function of the parameters
 - Various minimization methods
 - Line methods
 - Minimize along a particular line

- Instead of line searches: Trust Region Methods
 - Idea: for each iteration: replace f with a quadratic model function
 - Quadratic model function approximates f in the "trust region"
 - And quadratic model functions are easy to minimize!
 - The proposed solution can or cannot have a smaller value for f
 - Many different ways of defining the model

Minimization with SciPy

- Can use a number of method for finding a local minimum
 - Some need the Jacobian and some need in addition the Hessian
 - Can be calculated numerically but results are better with exact functions

Jacobian
$$\mathbf{J}(f) = \frac{df}{dx} = (\frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta x_2}, ..., \frac{\delta f}{\delta x_n})$$

• Hessian
$$\mathbf{H}(f) = \left(\frac{\delta^2 f}{\delta x_i \delta x_j}\right)_{i,j}$$

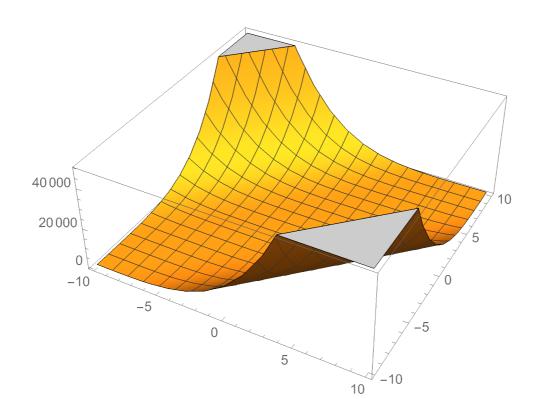
- Use scipy.optimize.minimize
 - Needs a function that is a one-dimensional np.array
 - Specify a starting point, options, and method

Importing the optimizer:

```
import numpy as np
from scipy.optimize import minimize
```

- Defining a function to be minimized
 - Needs to be in "standard form", i.e. numpy array of one dimension

```
def func(x): return np.sin(x[0]*x[1])+(x[0]+x[1]-1)**2+(x[0]-x[1]+1)**4
```



Sometimes need to give Jacobian

```
def jacob(x):
    return np.array(
        (4*(1+x[0]-x[1])**3 +
        2*(x[0]+x[1]-1)+
        x[1]*np.cos(x[0]*x[1]),
        -4*(1+x[0]-x[1])**3 +
        2*(x[0]+x[1]-1)+
        x[0]*np.cos(x[0]*x[1])))
```

• We pick (5,5) as the starting point

Success: (but with lots of function evaluations)

```
Optimization terminated successfully.

Current function value: -0.295490

Iterations: 84

Function evaluations: 164

[-0.37249737 1.18821832]
```

```
Optimization terminated successfully.

Current function value: -0.295490

Iterations: 10

Function evaluations: 12

Gradient evaluations: 47

Hessian evaluations: 0

[-0.37249737 1.18821832]
```

```
Optimization terminated successfully.

Current function value: -0.295490

Iterations: 5

Function evaluations: 139

[-0.37249969 1.18821518]
```

```
Optimization terminated successfully.

Current function value: -0.295490

Iterations: 15

Function evaluations: 84

Gradient evaluations: 21

[-0.37249848 1.18821848]
```

- For curve fitting, we want to optimize polynomials of degree 2 in several variables
 - Allows using special methods

- Want to minimize a sum of squares
 - $f: \mathcal{R}^n \to \mathcal{R}^m$

$$f(\overrightarrow{x}) = \frac{1}{2} \sum_{j=1}^{m} r_j^2(\overrightarrow{x})$$

(Factor of 1/2 to make derivatives look nicer)

• With this special form, we can calculate the Jacobian of $(r_1(\overrightarrow{x}), r_2(\overrightarrow{x}), ..., r_m(\overrightarrow{x}))^T$ more easily

$$\mathbf{J}^{T} = \begin{pmatrix} \frac{\delta r_{1}}{\delta x_{1}} & \frac{\delta r_{2}}{\delta x_{1}} & \dots & \frac{\delta r_{m}}{\delta x_{1}} \\ \frac{\delta r_{1}}{\delta x_{2}} & \frac{\delta r_{2}}{\delta x_{2}} & \dots & \frac{\delta r_{m}}{\delta x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta r_{1}}{\delta x_{n}} & \frac{\delta r_{2}}{\delta x_{n}} & \dots & \frac{\delta r_{m}}{\delta x_{n}} \end{pmatrix} = \begin{pmatrix} \frac{\delta r_{j}}{\delta x_{i}} \end{pmatrix}$$

Then

$$\nabla f(\overrightarrow{x}) = \mathbf{J}(\overrightarrow{x})^T \mathbf{r}(x)$$

$$\nabla^2 f(\overrightarrow{x}) = \mathbf{J}(\overrightarrow{x})^T \mathbf{J}(\overrightarrow{x}) + \sum_{i=1}^m r_i(\overrightarrow{x}) \nabla^2 r_i(\overrightarrow{x})$$

- Now we assume that $||\mathbf{r}(\overrightarrow{x})||$ is linear
 - Then **J** is a constant
 - $\nabla^2(r_j)(\overrightarrow{x}) = 0$
 - Taylor expansion is

$$f(\overrightarrow{x}) = f(x_0) + \mathbf{J}(f(x))|_{\overrightarrow{x}_0} (\overrightarrow{x} - \overrightarrow{x}_0) + \frac{1}{2} (\overrightarrow{x} - \overrightarrow{x}_0)^T \mathbf{H}(f(\overrightarrow{x}))|_{\overrightarrow{x}_0} (\overrightarrow{x} - \overrightarrow{x}_0) + \dots$$

- Taking derivatives gives
- $\nabla f(\overrightarrow{x}) = \mathbf{J}^T(\mathbf{J}\overrightarrow{x} + \overrightarrow{r}) = 0$
- at a minimum

- This means we can solve for the minimum since then $\mathbf{J}^T \mathbf{J} \overrightarrow{x} = \mathbf{J}^T \mathbf{r}(\overrightarrow{x})$
- and so we could solve $\overrightarrow{x} = (\mathbf{J}^T \mathbf{J})^{-1} \mathbf{J}^T \mathbf{r}$

- However, calculating the inverse is
 - computationally expensive
 - numerically unstable

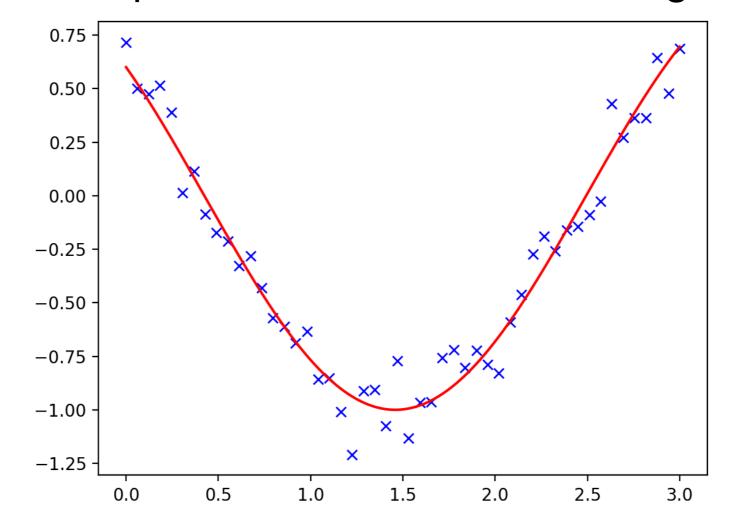
- Can use
 - Cholesky factorization
 - QR factorisation
 - Singular value decomposition of
 - $\mathbf{J}^T \mathbf{J}$
 - which are all implemented in np.linalg

Curve Fitting

- Number of numerical methods for minimization problems
- Curve fitting:

Given a number of points, find a smooth curve going

through it



Curve Fitting

Use a cosine as the test function

```
def f(t, omega, phi):
    return np.cos(omega * t + phi)
```

Create sample data

```
x = np.linspace(0, 3, 50)

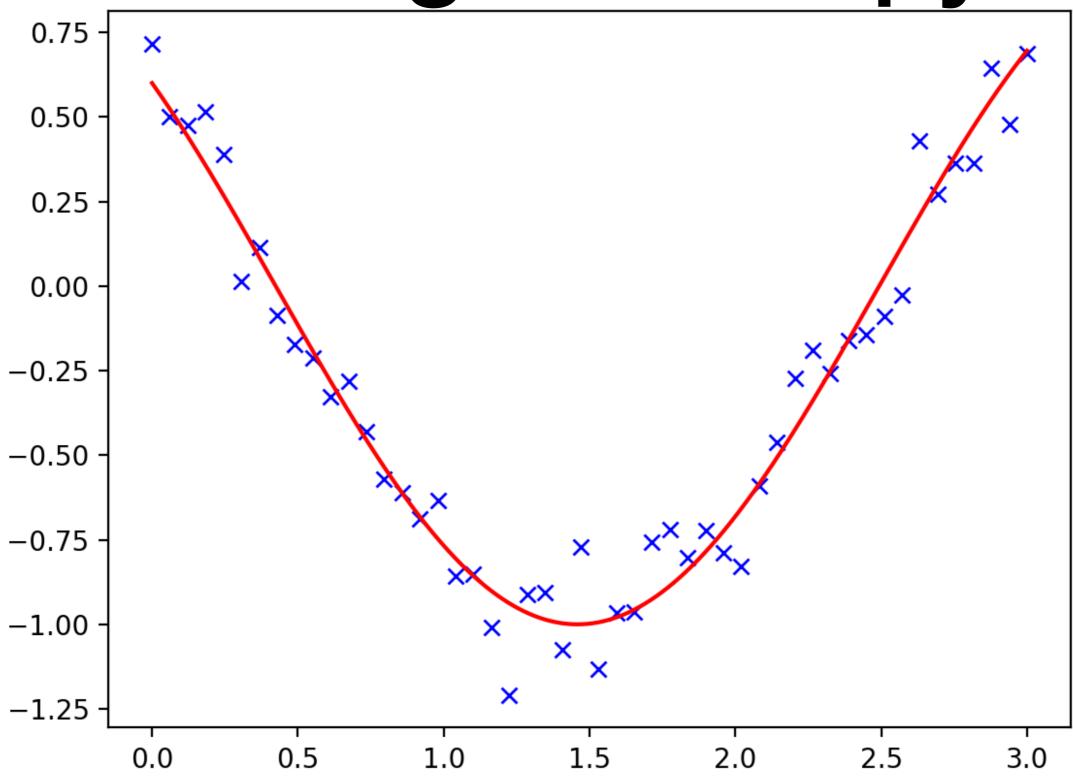
y = f(x, 1.5, 1) + .1*np.random.normal(size=50)
```

Now fit using scipy.optimize

```
params, params_cov = optimize.curve_fit(f, x, y)
print(params)
```

Can almost recover parameters

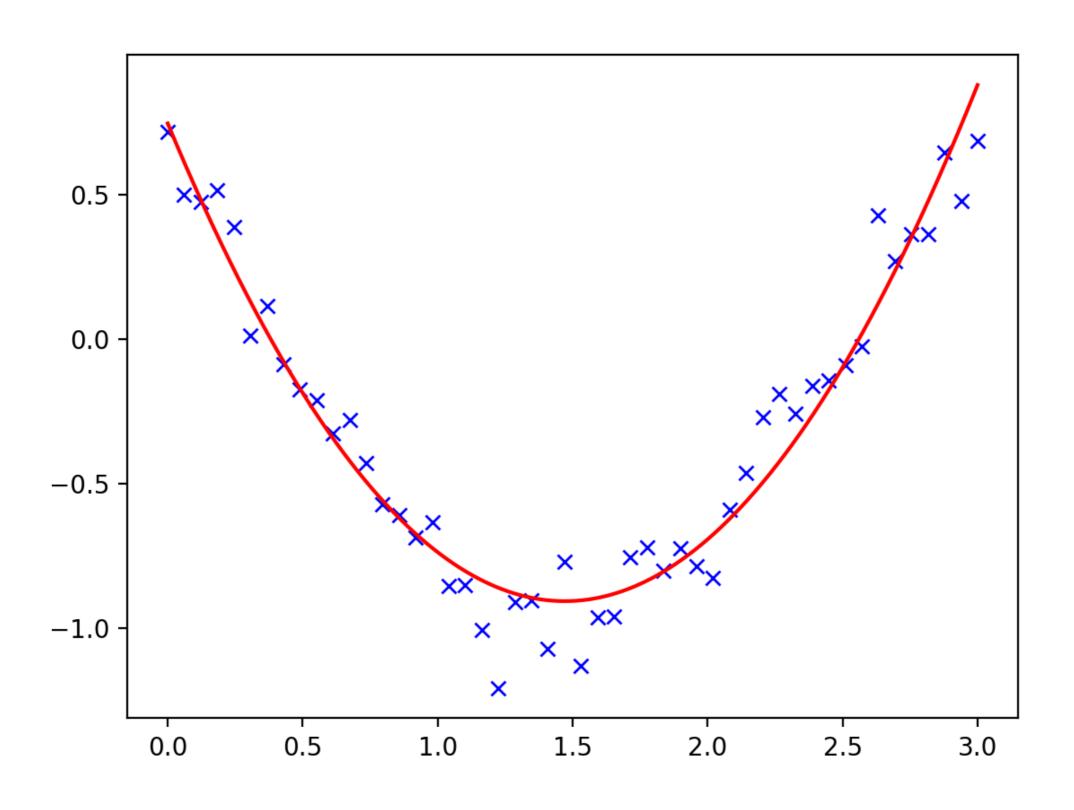
```
y = f(x, 1.5, 1) + .1*np.random.normal(size=50)
[1.51854577 0.92665541]
```

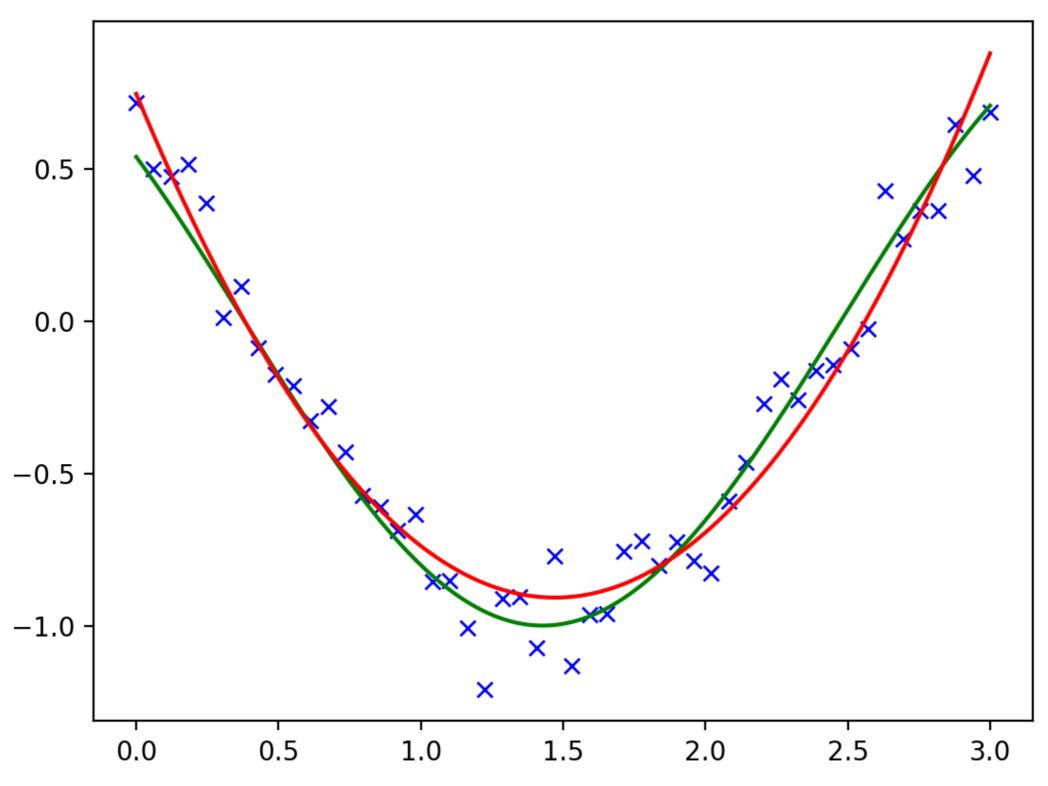


Could also fit with a quadratic

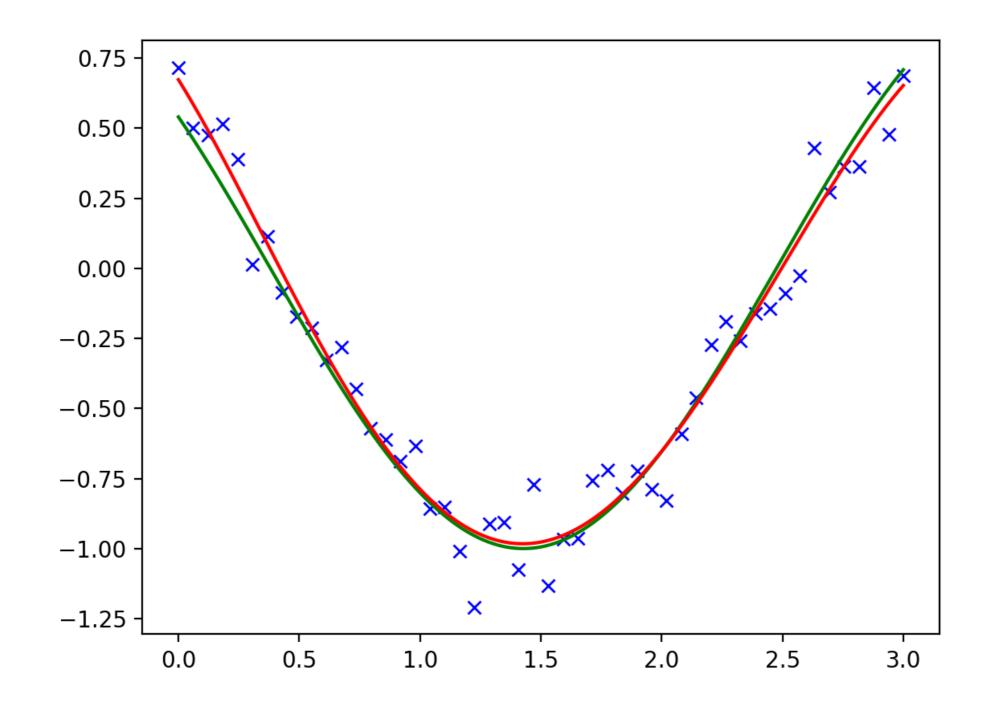
```
def g(t, a, b, c):
    return a*t**2+b*t+c

params, params_cov = optimize.curve_fit(g, x, y)
```





Could also try a higher level polynomial



- And if we try with a polynomial with as many degrees as there are points, we would get perfect fit
 - And absolutely no insights!

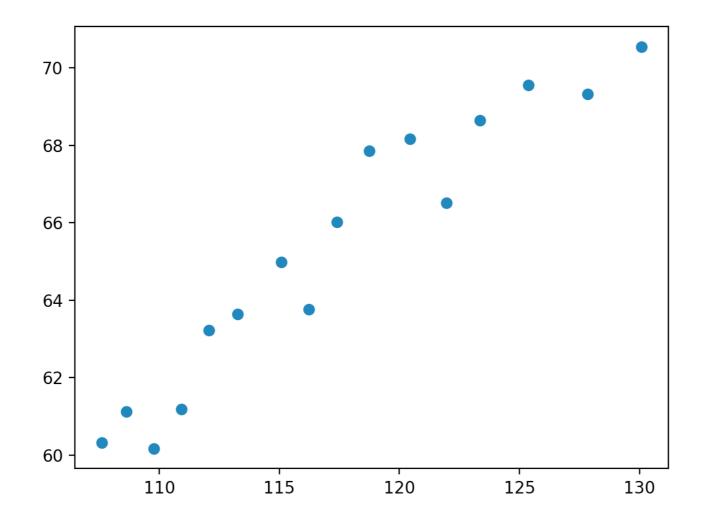
- Macro-economic data from Longley
 - Can download from jbrownlee's github site
 - GNP.deflator: GNP implicit price deflator (1954=100)
 - GNP: Gross National Product.
 - Unemployed: number of unemployed.
 - Armed.Forces: number of people in the armed forces.
 - Population: 'noninstitutionalized' population ≥ 14 years of age.
 - Year: the year (time).
 - Employed: number of people employed.

```
import scipy.optimize as opt
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

url = 'https://raw.githubusercontent.com/jbrownlee/
Datasets/master/longley.csv'
dataframe = pd.read_csv(url, header = None)
data = dataframe.values
```

Employment dependent on population

```
x, y = data[:,4], data[:,-1]
plt.scatter(x,y)
plt.show()
```



- Define a model function
 - What is the proposed dependence:
 - Linear Regression:
 - emp = α · pop+ β

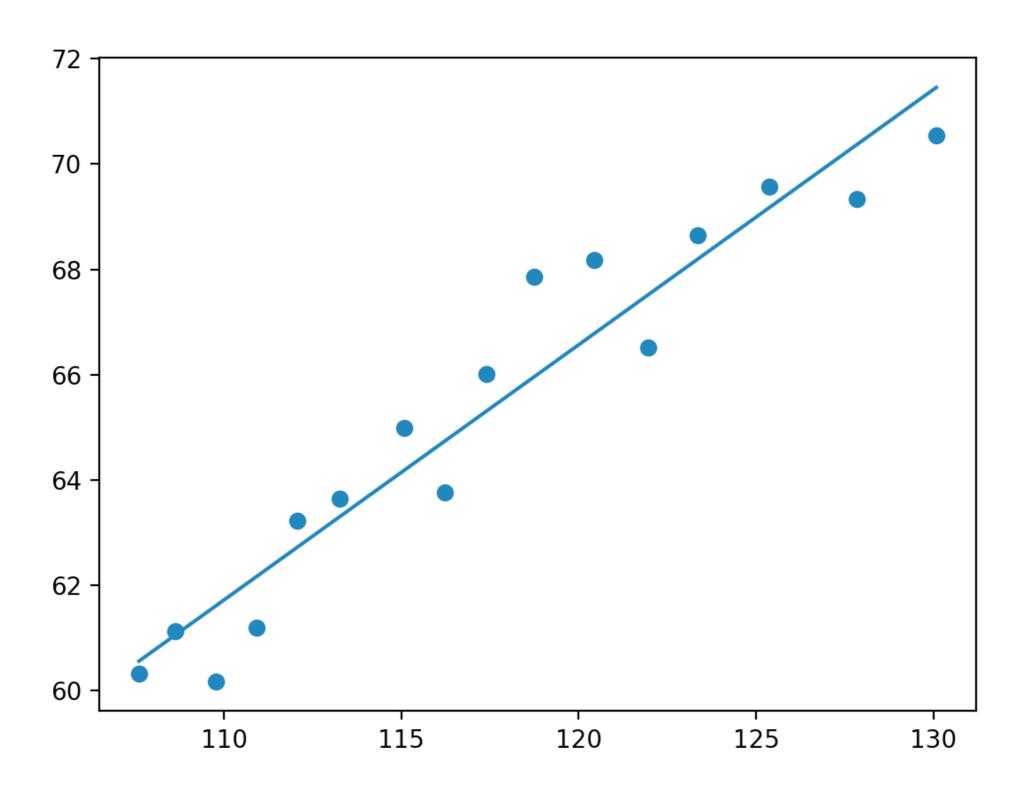
```
def model(x, alpha, beta):
    return alpha*x+beta
```

- Now we can use curve-fitting
 - scipy.optimize.curve_fit(model, xvals, yvals) returns
 - popt: optimal parameters
 - pcov: covariance matrix

```
popt, pcov = opt.curve_fit(model, x, y)
print(popt)

a, b = popt

plt.scatter(x,y)
xrange = np.linspace(np.min(x), np.max(x), 3)
plt.plot(xrange, model(xrange, a, b))
plt.show()
```

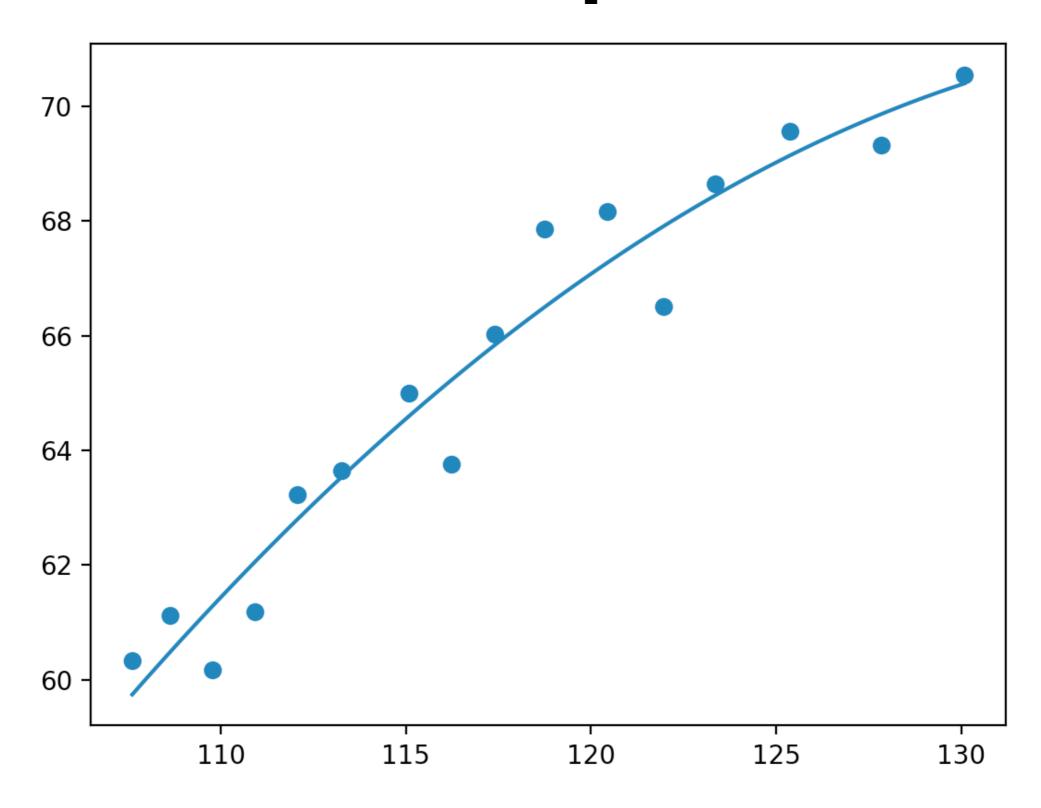


Change the model by adding a quadratic component

```
def model(x, alpha, beta, gamma):
    return alpha*x**2+beta*x+gamma

popt, pcov = opt.curve_fit(model, x, y)
print(popt)
a, b, c = popt

plt.scatter(x,y)
xrange = np.linspace(np.min(x), np.max(x), 101)
plt.plot(xrange, model(xrange, a, b, c))
plt.show()
```



Optimization

- Global optimizers:
 - Grid search: Start out at a large number of starting positions
 - Try out several methods
 - If possible, calculate the gradient and the Hessian yourself
 - Can use scipy.optimize.check_grad() to see whether you calculated correctly

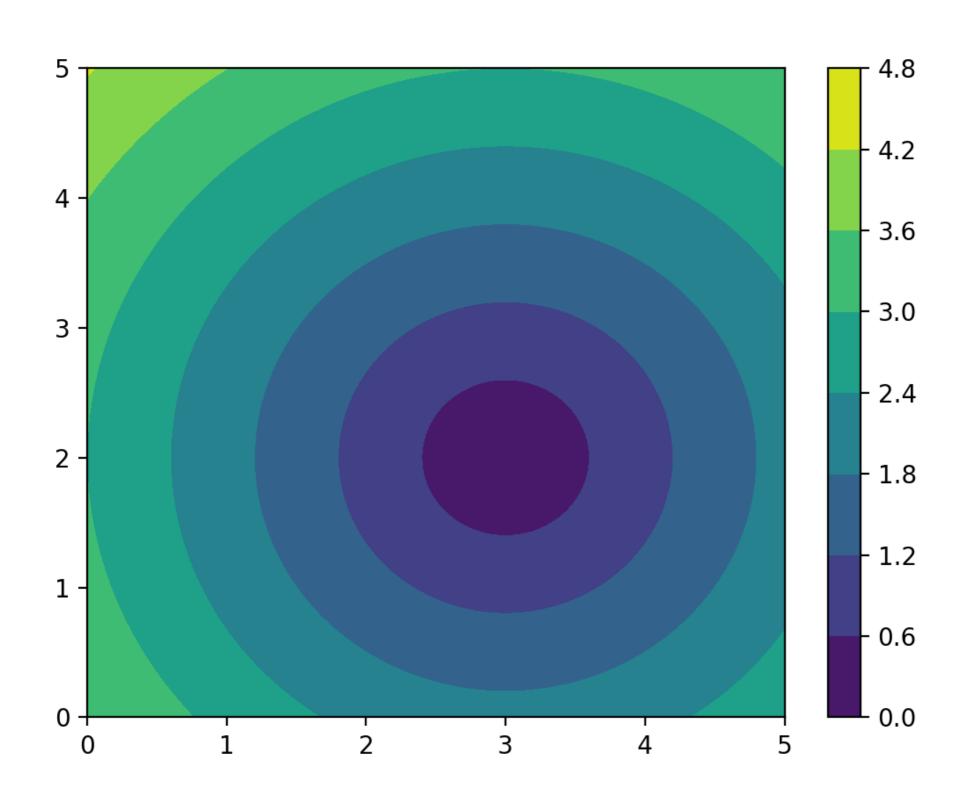
Curve Fitting

- Need to have a good model:
 - Avoids under- and over-fitting
 - Find a way to measure success
 - E.g. time series: You want to remove trends and have white noise left over

- Often need to optimize under constraints
 - Easiest constraints are for box bounds:
 - Variables need to be within a certain range

• Function:

```
def f(x):
return np.sqrt((x[0]-3)**2 + (x[1]-2)**2)
```



Optimization:

• result = optimize.minimize(f, np.array([0, 0]), bounds=((-1.5, 1.5), (-1.5, 1.5)))

Result:

```
>>> result
    fun: 1.5811388300841898
hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64>
    jac: array([-0.94868331, -0.31622778])
message: b'CONVERGENCE:
NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
    nfev: 9
    nit: 2
    status: 0
success: True
    x: array([1.5, 1.5])</pre>
```

- We can use minimize with a tuple of constraints
 - Assume we want to optimize a sum of Gaussian functions

```
def f(x):

return -(\text{np.exp}(-(x[0]+1)**2/(2.1**2))+

\text{np.exp}(-(x[1]-0.3)**2/(0.8**2))+

\text{np.exp}(-(x[2]-2.1)**2/(1.7**2)))
```

 By looking at the function, we know that the optimum of -3 is reached at x[0]=1, x[1]=0.3, x[2]=2.1

With result

```
fun: -2.9999996182639146
    jac: array([-8.09729099e-05, -2.40176916e-04,
7.11053610e-04])
message: 'Optimization terminated successfully'
    nfev: 34
    nit: 8
    njev: 8
    status: 0
success: True
    x: array([-1.00017856, 0.29992313, 2.10102744])
```

- SLSQP allows constraints
 - Define constraints as functions

```
def constraint(x):
return 1-(x[0]**2+2*x[1]**2+3*x[2]**2)
```

Put them into a dictionary, and make a tuple of them

```
my_constraints = ({'type': 'ineq','fun': constraint})
```

• Read:
$$x_0^2 + 2 \cdot x_1^2 + 3 \cdot x_2^2 < 1$$

```
def constraint(x):
    return 1-(x[0]**2+2*x[1]**2+3*x[2]**2)
my constraints = ({'type': 'ineq','fun': constraint})
result = opt.minimize(f,
                      x0=np.array([0,0,0]),
                      method='SLSQP',
                       constraints = my constraints,
                       options={'maxiter':1000})
print(result)
```

Result:

```
fun: -2.3352953005679837
    jac: array([ 0.19044936, -0.16718537, -0.44114104])
message: 'Optimization terminated successfully'
    nfev: 33
    nit: 8
    njev: 8
    status: 0
success: True
    x: array([-0.56132919,  0.2462587 ,  0.43344502])
```

HELP!!!!

- Get Scipy Lecture notes (for free)
 - www.scipy-lectures.org