Minimization and Curve
Fitting with SciPy

Thomas Schwarz, SJ

Why is this important

* Mathematical optimization underlies many machine
learning algorithms

* Need to know how to do deal with exceptionally
circumstances

* Provides techniques for data exploration

Curve Fitting

Non—linear fit example

e Want to construct a curve (mathematical
function) that best fits a series of data points

(o2}

(o4

(&3]

* First, need to select a model: what type of o
curve? | e

0 5 10 15 20 25 30 35 40

e Then, need to determine how we measure fit
e Examples:

e y-values:

L(y,9) =), (= $@)* » min 3
v=1

Orthogonal Least Squares

e orthogonal least squares

1 1 @ 1 1 1 1
-0.2 0 0.2 04 .06 0.8 1 1.2
X-axIs

Curve Fitting

e Example: Fit a sine curve to meteorological data

e Minimum daily temperatures in Melbourne

e Joprs() = a+ psin(yt + 5)
20 A

15 -

10 -

0 500 1000 1500 2000 2500 3000 3500

Curve Fitting

* The data after removing the sine curve shows a seemingly
random time series with just a little bit of seasonality

10.0 A

7.5 A

5.0 1

2.5 1

0.0 1

_25 -

—5.0 -

—7.5 -

0 500 1000 1500 2000 2500 3000 3500

Curve Fitting

 \We can do better by including a cos (which is just a
second sine)

Japyset) =a+ psin(yt+06) +ecos(yr+6) __

25 -
20 A
15 -

10 -

0 500 1000 1500 2000 2500 3000 3500

Curve Fitting

e Residual:

e Looks slightly better?

10.0 A

7.5 A

5.0 -

2.5 -

0.0

—2.5 1

—5.0 -

—7.5 -

0 500 1000 1500 2000 2500 3000 3500

Curve Fitting

 Find the parameters that minimize the squared difference
between function and model

e This is a minimization problem
* Too general a model:
e QOptimization can be very difficult and lengthy

e Qverfit: The result matches the test set, but not the
future

* Not general a model

* Fitis not good, therefore no strong predictions either

Program

* Need to learn about minimization
 One dimensional methods: Minimization along a line
 Gradient Descent Methods
e Minimization for Sums of Squares

e Curve-fitting

Minimization

e Functions can be smooth and non-smooth

40 sl

30 4\/
L 3;
20 - i
I oL
10 + i
1L

0.5 1.0 1.5 2.0

11111111111111111111

Minimization

e Given a function A" - X

* Potential problems:

* Find a minimum of /\
: o e N /-\ Dt |
: 0.5 \/0 S~ 2.0

e Minimum might not exist

e Minimum might be local

Minimization
e Convex functions: Fort € [0,1] :
c (@ +1(b — @) <A@)+1(f(b)—[a)

 Jends to be easy

e Relative minimum is unique

| /
7

4% /

B mnt

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 19

Scalar Minimization

e Minimum implies derivatives vanish
e Can use the derivatives to guide us to the minimum

e Can be done by using bisection:
e Find two points a, b such that f(a) and f(b) have different signs

e Then there is a zero between a, b

a+b

. Can evaluate function at

e Can be done using the secant method

e Find two points a, b such that f(a) # f(b), but both values have the
same sign

e Use the slope in order to guess a zero

 Brent's method combines both with quadratic interpolation

Scalar Minimization

 Brent's method is the default for scipy:
 Optimizing a curvy function
from sclpy 1mport optimize

import numpy as np
from matplotlib import pyplot as plt

def f2 (x):
return —np.exp(-(x-.9)**2+0.1*x+np.cos (10*x))

Scalar Minimization

e Show:
def show (f) :
X = np.linspace(0,2,251)
y = f£(x)

plt.plot (x, V)
plt.show()

Scalar Minimization

ANANAY

—1.5 -

—2.0 -

SV

0.00 025 050 075 1.00 1.25 150 1.75 2.00

Scalar Minimization

e Brent’s method is the default

from sclpy i1mport optimize

result = optimize.minimilize scalar (f£2)

>>> result>>> result
fun: -2.71914613573254060

message: 'Solution found.'
nfev: 12
status: O

success: True
x: 1.25002111933510628

Scalar Minimization

e Bounded Brent method

result = optimize.minimize scalar (f2, bounds=(0,2),
method="bounded')

>>> result

fun: -2.71914613573254006
message: 'Solution found.'
nfev: 12
status: O
success: True
x: 1.2506211193351628

Minimization
e Smooth functions are (usually) easier than non-smooth

functions

 Exception: Linear systems with constraints —> Linear
Programming

Minimization
e Minimization is easier for convex functions

e Take a line segment [a, D]

e \alues are higher on the end points

* Than on points in between

2000004
100000

-20

Minimization

df df df df
dx, dx, dx; dx,
direction of greatest increase of a function

, Gradient Vf = (

) is always in the

Minimization
 Example: Rosenbrock Function

o flx,y)=12(y— x>+ 1.1(1 — x)?
o Gradientis (—2.2(1 — x) — 4.8x(—x? + y),2.4(—x> + y)

20F

- // I
// 7/ i
//// i
'Y/, /l /
I /},. & i |
'/ // r'J/ :,1
/ ‘// / /// I A:
P& /

1.5

e Contour graph is

1.0 -/

05 -

00 _I 1 1 1 1 | 1 ! 1 1 | ! 1 ! 1 | 1 ! 1 1 l—
0.0 0.5 1.0 1.5 2.0

Minimization
 Descent Methods:
1. Choose a starting point x, € X"
2. If || Vf(x)|| < e declare victory and return x;

3. Pick a search directiond, € X" s.t. Vf(x,) -d, <0

4. Choose a step size a;, > 0 s.t. f(x, + a;dy) < f(x;)

5. Set xk_l_l — xk akdk GO to 2

Minimization
e This algorithm leaves two things open:

o Selecting the step length a;,

o Selecting the search direction d,

Minimization
* Finding minimum along line:

o Finding minimum of function ¢ — f(x;, + td})

e Use derivative is usually dangerous:
e Often function too flat

* Better bracketing

Minimization
e Can use bracketing

e Three points A < C < B such that f(A) > f(C) < f(B)

 Thus, minimum guaranteed to exist

e Now find another point D between A and C or C and
B 30 B

e Get a new bracket \Azo

\

Minimization

A-C

. One possibility: golden ratio:

A—-—B
e Other possibility: parabolic approximation

e Or a combination of both

80

60 -

Minimization
e Determining direction:

e (Can use coordinates

Minimization

Mlnlmlzatlon

e Using coordinates 4o

e Make little %
progress per 200 -
iteration i

-200

~400 -

Minimization
e Better use orthogonal directions:
e otherwise we partially undo the previous steps
* Possibilities
 (Canonical Directions

o Steepest Descent (Cauchy)

 badly affected by round-off errors and subject to
Zigzagging

* Powell: Change set of directions every so often

Minimization
e Selecting the step length
* Finding the best step length is laborious

e Often do better by guessing

e Many machine learning algorithms use a steadily
declining o

* Trying out several guesses

Minimization
e Newton Methods:

e Repeatedly replace condition Vf(x) = 0 by a sequence
of linear problems

* Newton-Raphson:
 apply exact Newton steps
* possibly does not converge
e works best for convex functions

e Use linear-search descent, then switch to Newton

Minimization
e Numerical minimization of a cost function of the
parameters
e \arious minimization methods

e Line methods

* Minimize along a particular line

Minimization
* |nstead of line searches: Trust Region Methods

 Idea: for each iteration: replace f with a quadratic
model function

e Quadratic model function approximates fin the
"trust region”

 And gquadratic model functions are easy to minimize!

 The proposed solution can or cannot have a smaller
value for f

 Many different ways of defining the model

Minimization with SciPy

e Can use a number of method for finding a local minimum

e Some need the Jacobian and some need in addition
the Hessian

e Can be calculated numerically but results are better
with exact functions

. Jacobian.](f)=ﬁ=(5f o . 5—f

dx ox; 6x, Ox,

Hessian H(f) = (oS)
i

° OX;0X;

Minimization with SciPy

e Use scipy.optimize.minimize
* Needs a function that is a one-dimensional np.array

e Specify a starting point, options, and method

Minimization with SciPy

* |Importing the optimizer:

import numpy as np
from scipy.optimize i1mport minimize

Minimization with SciPy

e Defining a function to be minimized

* Needs to be in "standard form”, i.e. numpy array of one
dimension

def func(x):
return np.sin(x[0]1*x[1])+(x[0]+x[1]-1)**2+(x[0]-x[1]+1)**4

Minimization with SciPy

e Sometimes need to give Jacobian

def jacob (x) :

return np.array (
(4* (1+x[0]-x[1
2% (x[0]+x[1]-
X[1l]*np.cos (x
—4* (1+x[0]-x]
2% (x[0]+x[1]-
Xx[0]*np.cos (x

*3 4

11),

1)*
1)+
[0 *x[1]
1]1)**3 +
1)+
[0]

*x[1]1)))

Minimization with SciPy

e We pick (5,5) as the starting point

res = minimize (func,
[o,2],
method = 'nelder-mead’',
options = {'xatol': 1e-9, 'disp':True}

)

print (res.x)

Minimization with SciPy

e Success: (but with lots of function evaluations)

Optimization terminated successfully.
Current function wvalue: -0.295490
Iterations: 84

Function evaluations: 164
[-0.37249737 1.18821832]

Minimization with SciPy

res = minimize (func,
(o5, 2],
method = 'Newton-CG',
jac = jacob,
options = {'disp':True}

)

print (res.x)

Minimization with SciPy

Optimization terminated successfully.
Current function value: -0.295490
Iterations: 10
Function evaluations: 12
Gradient evaluations: 47
Hessian evaluations: O

[-0.37249737 1.18821832]

Minimization with SciPy

res = minimize (func,

[25,2],
method = 'Powell',
options = {'disp':True}

)

print (res.x)

Minimization with SciPy

Optimization terminated successfully.
Current function wvalue: -0.295490
ITterations: 5

Function evaluations: 139
[-0.372499069 1.18821518]

Minimization with SciPy

res = minimize (func,

[25,2],
method = 'BFGS',
options = {'disp':True}

)

print (res.x)

Minimization with SciPy

Optimization terminated successfully.
Current function value: -0.295490
ITterations: 15
Function evaluations: 84
Gradient evaluations: 21

[-0.37249848 1.18821848]

Least Square Optimization

* For curve fitting, we want to optimize polynomials of
degree 2 in several variables

* Allows using special methods

Least Square Optimization

e Want to minimize a sum of squares

o 11 R > R
1 m

j=1

e (Factor of 1/2 to make derivatives look nicer)

Least Square Optimization

* With this special form, we can calculate the Jacobian of
(1 (X)), r5(X), ..., 7, (X)) more easily

or; 0r or,,

5x1 5X1 o 5X1

or; 0r or,,
;= = ... = o7,
J — 5XZ 5X2 5)C2 — _—
. . . . OX;

or; or, or,,

ox, ox, Ox

n

Least Square Optimization
e Then

VAX) =J(X) r(x)

VIAE) = J)IX) +), r(F) V2r(F)

j=1

Least Square Optimization

Now we assume that | |r(x") || is linear

e Then J is a constant

e VX(r)(X)=0

 Taylor expansion is

FT) = f) + I | (T = T+ (T = T AT I, (T = To) ..
- Taking derivatives gives

- VAX) =T JX +7)=0

 at a minimum

Least Square Optimization

e This means we can solve for the minimum since then
Ty— T..,—
J'Jx ==J'r(x)

e and so we could solve X = (J')" 1J'r

Least Square Optimization

* However, calculating the inverse is
e computationally expensive

* numerically unstable

Least Square Optimization

e Canuse
 Cholesky factorization
e QR factorisation
e Singular value decomposition of
. J7J

* which are all implemented in np.linalg

Curve Fitting

e Number of numerical methods for minimization problems
e Curve fitting:

* Given a number of points, find a smooth curve going
through it 0.75]

0.50 A

0.25 A

0.00 -

—0.25 A

—0.50 A

—0.75 A

—1.00 A

—1.25 A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Curve Fitting

e Use a cosine as the test function

def f£(t, omega, phi):
return np.cos (omega * t + phi)

Fitting with scipy

np.linspace (0, 3, 50)
f(x, 1.5, 1) + .l*np.random.normal (s1ze=50)

X

Fitting with scipy

 Now fit using scipy.optimize

params, params cov = optimize.curve fit(f, x, V)
print (params)

Fitting with scipy
e Can almost recover parameters

y = f(x, 1.5, 1) + .l*np.random.normal (size=50)

[1.51854577 0.92065541]

Fitting with scipy

0.75 -

0.50 -

0.25 -

0.00 -

—0.25 ~

—0.50 A

—0.75 A

—1.00 -

—1.25 -

X

KX

X

X

3.0

Fitting with scipy
e Could also fit with a quadratic

def g(t, a, b, c):
return a*t**2+b*t+c

params, params cov = optimize.curve fit(g, x, V)

Fitting with scipy

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fitting with scipy

0.5 A X X
X
\X
0.0 A X
X
_05 -
\\ x
X XX
~1.0 - X '
X
X
X
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fitting with scipy

Could also try a higher level polynomial

0.751

0.50 - X o

0.25 -

0.00 - X y
\ £

~0.25 - \ x »

~0.50 -

~0.75 - | x XX K

~1.00 - X —

—1.25 A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fitting with scipy

 And if we try with a polynomial with as many degrees as
there are points, we would get perfect fit

 And absolutely no insights!

Example

* Macro-economic data from Longley
 Can download from jbrownlee's github site
 GNP.deflator: GNP implicit price deflator (1954=100)
* GNP: Gross National Product.
* Unemployed: number of unemployed.
* Armed.Forces: number of people in the armed forces.

* Population: ‘noninstitutionalized’ population = 14 years of
age.

e Year: the year (time).

* Employed: number of people employed.

Example

import scilpy.optimize as opt
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

url = 'https://raw.githubusercontent.com/jbrownlee/
Datasets/master/longley.csv'
dataframe = pd.read csv(url, header = None)

data = dataframe.values

70 A

68

66

64 1

62 1

60

Example

e Employment dependent on population

X, V datal:, 4],
plt.scatter (x,V)
plt.show ()

data|

:,—1]

115 120

125

130

Example

* Define a model function
* What is the proposed dependence:

e Linear Regression:

e emp = a - pop+/

def model (x, alpha, beta):
return alpha*x+beta

Example

* Now we can use curve-fitting
e scipy.optimize.curve_fit(model, xvals, yvals) returns
 popt: optimal parameters

®* pCOV: covariance matrix

Example

popt, pcov = opt.curve fit (model, x, V)
print (popt)

a, b = popt
plt.scatter (x,V)
Xrange = np.linspace(np.min(x), np.max(x), 3)

plt.plot (xrange, model (xrange, a, b))
plt.show ()

[0.48487309 8.38067470]

712

70 -

68 -

66 -

64 -

62 -

60 -

125

130

Example

 Change the model by adding a quadratic component

def model (x, alpha, beta, gamma) :
return alpha*x**2+beta*x+gamma

popt, pcov = opt.curve fit (model, x, V)
print (popt)
a, b, c = popt

plt.scatter (x,V)

Xrange = np.linspace(np.min(x), np.max(x), 101)
plt.plot (xrange, model (Xxrange, a, b, c))
plt.show()

70 A

68 -

66 -

64 -

62 -

60 -

120

125

130

Optimization

e Global optimizers:

* Grid search: Start out at a large number of starting
positions

e Try out several methods

e |f possible, calculate the gradient and the Hessian
yourself

 Can use scipy.optimize.check_grad() to see whether
you calculated correctly

Curve Fitting

* Need to have a good model:
* Avoids under- and over-fitting
 Find a way to measure success

e E.g.time series: You want to remove trends and have
white noise left over

Constraints

e Often need to optimize under constraints
e Easiest constraints are for box bounds:

e Variables need to be within a certain range

Constraints

e Function:

def f(x):
return np.sqrt ((x[0]=-3)**2 + (x[1]-2)**2)

Constraints

4.8

Constraints

e Optimization:

° result = optimize.minimize (£, np.array ([0, 0]),
bounds=((-1.5, 1.5), (-1.5, 1.5)))

Constraints

e Result:

>>> result
fun: 1.5811388300841898
hess 1nv: <2x2 LbfgsInvHessProduct with dtype=float6d>

jac: array([-0.94868331, -0.31622778])
message: b'CONVERGENCE:
NORM OF PROJECTED GRADIENT <—_PGTOL'
nfev: 9
nit: 2
status: O

success: True
X: array([1.5, 1.5])

Constraints

* We can use minimize with a tuple of constraints

e Assume we want to optimize a sum of Gaussian

functions
def f(x):
return - (np.exp (- (x
np.exp(—(x
np.exp(—(x

0
1
2

F1)**2/(2.1%*2)) +
~0.3)**2/(0.8%*2))+
=2.1)**2/(1.7**2)))

By looking at the function, we know that the optimum
of -3 is reached at x[0]=1, x[1]=0.3, x[2]=2.1

Constraints

result = opt.minimize (L,
x0=np.array([0,0,0]),
method='SLSQP"',
#constraints = my constraints,
options={'maxiter':1000})

print (result)

Constraints

e With result

fun: -2.999999618260391460
jJac: array ([-8.09729099e-05, -2.40176916e-04,
7.11053610e-041])

message: 'Optimilization terminated successfully'
nfev: 34
nit: 8
njev: 8

status: 0O
success: True

x: array([-1.00017856, 0.29992313, 2.10102744])

Constraints

o SLSQP allows constraints

e Define constraints as functions

def constraint (x) :
return 1-(xX[Q]**242*x[1]**24+3*x[2]**2)

 Put them into a dictionary, and make a tuple of them

my constraints = ({'type': 'ineqg',6 'fun': constraint})

. Read:xg+2-x12+3-x22<1

Constraints

def constraint (x) :
return 1-(X[0]**242*x[1]**24+3*x[2]**2)

my constrailnts = ({'type': 'ineq',6K '"fun': constraint})

result = opt.minimize (L,
x0=np.array([0,0,0]),
method='SLSQP"',
constralnts = my constraints,
options={'maxiter':1000})

print (result)

Constraints

-0.10718537,

-0.44114104])

'Optimization terminated successfully'

e Result:
fun: -2.3352953005679837
jac: array ([0.1904493¢,
message:
nfev: 33
nit: 8
njev: 8
status: O
success: True
x: array([-0.56132919,

0.2402587

’

0.43344502])

HELP

e Get Scipy Lecture notes (for free)

e WWW.SCIpy-lectures.org

