
Week 4 Practice

Numerical Integration
• How to calculate a one-dimensional integral?

•

Numerical Integration
• How to calculate a one-dimensional integral?

•

• Approximate with trapezoids

∫
b

a
f(x)dx

Numerical Integration
• We calculate the weighted average (first and last point get

half weight) of points at distance

• And multiply by

n + 1
b − a

n
(b − a)

Numerical Integration

def integral(function, low, up, nr_pts):

 delta = (up-low)/(nr_pts-1)

 func_vals = [function(low + i*delta) for i in range(nr_pts)]

 return (sum(func_vals)+sum(func_vals[1:-1]))/2*delta

Scrabble Values

Scrabble Values
• Players place tiles with letters on a board to form a word

• The word is scored by letter value

• 1 Point - A, E, I, L, N, O, R, S, T and U.

• 2 Points - D and G.

• 3 Points - B, C, M and P.

• 4 Points - F, H, V, W and Y.

• 5 Points - K.

• 8 Points - J and X.

• 10 Points - Q and Z.

Curse of
Dimensionality

Curse of Dimensionality
• As the dimensions increase, our intuition will leave us

• As the dimension increase, the volume of a unit-sphere
goes down

Simple Case Study
Thomas Schwarz, SJ

Data Analytics Process
• Discovery phase: what data do we need

• Data preparation phase: Cleaning

• Modeling planning phase: how to go about dealing with
the data

• Model building phase: build the models

• Communication phase

• Operationalization: build process into production

Data Gathering
• Use Kaggle as a source of data

• https://www.kaggle.com/paultimothymooney/denver-
crime-data/

• This is a huge file.

Understanding the Data
• Read supporting information

• Look at the first lines of the file

• There is a heading and examples

def head():

 with open('crime.csv') as infile:

 for _ in range(10):

 print(infile.readline())

Understanding the Data

Transforming the data
• We can look at the headers

• "INCIDENT_ID","OFFENSE_ID","OFFENSE_CODE"
,"OFFENSE_CODE_EXTENSION","OFFENSE_TYPE_I
D","OFFENSE_CATEGORY_ID","FIRST_OCCURRENC
E_DATE","LAST_OCCURRENCE_DATE","REPORTED_
DATE","INCIDENT_ADDRESS","GEO_X","GEO_Y",
"GEO_LON","GEO_LAT","DISTRICT_ID","PRECIN
CT_ID","NEIGHBORHOOD_ID","IS_CRIME","IS_T
RAFFIC"

Transforming the data
• Notice what we could do:

• The incidents are geo-coded

• We can use this to overlay data points on a map of
Denver

• We can determine influence of neighborhood on crimes

• We will wait with this until we understand matplotlib
better

• The incidents are time-stamped

• We can look at the relationship between time and
incidents

Transforming the data
• Dealing with time stamps

• Core Python has a datetime module that allows us to
create and calculate with dates and times

• Comes with a strptime() methods that needs a
description of the format

• This is because there are lot of different time formats

• The am/pm format is one of the worst

Transforming the data
• In our case:

• The relevant time is the first time stamp in column 6

• This took quite a while to get right

dati = datetime.strptime(contents[6], "\"%m/%d/%Y %I:%M:%S %p\"")

Transforming the data
• We can also do so 'manually':

def translate(hour, ampm):

 hour = int(hour)

 if hour == 12 and ampm == 'AM':

 return 0

 if hour == 12 and ampm == 'PM':

 return 12

 if ampm == 'PM':

 return hour

 else:

 return hour+12

Transforming the data
def getdate(astring):

 astring = astring.strip('"')

 date, time, ap = astring.split()

 month, day, year = date.split('/')

 hour, minute, second = time.split(':')

 #print(year, month, day, hour, minute, second)

 return datetime(int(year),

 int(month),

 int(day),

 translate(hour, ap),

Selecting the Data
• Assume we only want to look at traffic problems in

Denver

• First question: When do traffic accidents happen?

• Notice: Presumably winter weather (snow & ice) are
important, so we should distinguish between winter
month and the rest of the year

• We look up the offense code and find that all traffic
related incidents have codes between 15

Selecting the Data
• Write down all time stamps of traffic related incidents

def select_vehicular():

 traffic = []

 with open('crime.csv') as infile:

 infile.readline()

 for line in infile:

 contents = line.split(',')

 dati = getdate(contents[6])

 code = int(contents[2].strip('"'))

 if 5400 <= code <= 5499:

 traffic.append(dati)

 return traffic

Selecting the Data
• Determine number of accidents during a given hour at a

given week-day

• A datetime object allows us access to the week-day and
the hour

• One is a method, the other a field

• Can use the Counter object in collections

• Because there is no need to initialize a dictionary

item.weekday()

item.hour

Selecting the Data
• Create seven counters

• For each item (a datetime) in the traffic incident list:

• Update the counter

def process_traffic(traffic):

 weekdays = [Counter() for i in range(7)]

 for item in traffic:

 weekdays[item.weekday()][item.hour]+=1

 return weekdays

Displaying the Data
• From within Pyhton, use matplotlib

• Developed from matlab interface with many add-ons

•

• If you use IDLE, need to say plt.show() at the end

• This will show all plot elements that you created

import matplotlib.pyplot as plt

Displaying the Data
• Pyplot supports many different types of graphs

• We use mostly scatter and plot

• There is even support for three-dimensions

Displaying the Data
• Create a figure with plt.figure()

• Create several line-plot elements using

• plt.plot(x-data, y-data)

• Can add a legend as a named parameter

• But we need to place the legend then

• plt.legend(loc='upper left')

Displaying the Data
def show(counters):

 weekday = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',

 'Friday', 'Saturday', 'Sunday']

 f = plt.figure()

 for i, counter in enumerate(counters):

 hours = [i for i in range(24)]

 numbers = [counter[i] for i in range(24)]

 s = plt.plot(hours, numbers, label=weekday[i])

 plt.legend(loc='upper left')

 plt.show()

