
Minimization and Curve
Fitting with SciPy

Thomas Schwarz, SJ

Curve Fitting
• Want to construct a curve (mathematical

function) that best fits a series of data points

• First, need to select a model: what type of
curve?

• Then, need to determine how we measure fit

• Examples:

• y-values:

• orthogonal least squares

L(y, ̂y) =
n

∑
ν=1

(yi − ̂y(i))2 → min

Curve Fitting
• Example: Fit a sine curve to meteorological data

• Minimum daily temperatures in Melbourne

fα,β,γ,δ(t) = α + β sin(γt + δ)

Curve Fitting
• The data after removing the sine curve shows a seemingly

random time series with just a little bit of seasonality

Curve Fitting
• We can do better by including a cos

fα,β,γ,δ,ϵ(t) = α + β sin(γt + δ) + ϵ cos(γt + δ)

Curve Fitting
• Residual:

• Looks slightly better?

Curve Fitting
• Find the parameters that minimize the squared difference

between function and model

• This is a minimization problem

• Too general a model:

• Optimization can be very difficult and lengthy

• Overfit: The result matches the test set, but not the
future

• Not general a model

• Fit is not good, therefore no strong predictions either

Program
• Need to learn about minimization

• One dimensional methods: Minimization along a line

• Gradient Descent Methods

• Minimization for Sums of Squares

• Curve-fitting

Minimization
• Functions can be smooth and non-smooth

Minimization
• Given a function

• Find a minimum

• Potential problems:

• Minimum might not exist

• Minimum might be local

ℛn → ℛ

0.5 1.0 1.5 2.0

-4

-2

2

4

Minimization
• Convex functions: For

•

• Tends to be easy

• Relative minimum is unique

t ∈ [0,1] :

f(⃗a + t(⃗b − ⃗a)) ≤ f(⃗a) + t(f(⃗b) − f(⃗a)

Scalar Minimization
• Can be done without using derivatives:

• Brent’s method

• Standard method for scipy.optimize.minimize_scalar

Scalar Minimization
• Example:

• A curvy function

from scipy import optimize
import numpy as np
from matplotlib import pyplot as plt

def f2(x):
 return -np.exp(-(x-.9)**2+0.1*x+np.cos(10*x))

Scalar Minimization
• Show:

def show(f):
 x = np.linspace(0,2,251)
 y = f(x)
 plt.plot(x,y)
 plt.show()

Scalar Minimization

Scalar Minimization
• Brent’s method is the default

result = optimize.minimize_scalar(f2)

>>> result>>> result
 fun: -2.7191461357325406
 message: 'Solution found.'
 nfev: 12
 status: 0
 success: True
 x: 1.2506211193351628

Scalar Minimization
• Bounded Brent method

result = optimize.minimize_scalar(f2, bounds=(0,2),
method='bounded')

>>> result
 fun: -2.7191461357325406
 message: 'Solution found.'
 nfev: 12
 status: 0
 success: True
 x: 1.2506211193351628

Minimization
• Minimization is easier for convex functions

Minimization
• Smooth functions are (usually) easier than non-smooth

functions

• Exception: Linear systems with constraints —> Linear
Programming

Minimization

• Gradient is always in the

direction of greatest increase of a function

∇f = (
df

dx1
,

df
dx2

,
df

dx3
, …,

df
dxn

)

Minimization
• Example: Rosenbrock Function

•

• Gradient is

• Contour graph is

f(x, y) = 1.2(y − x2)2 + 1.1(1 − x)2

(−2.2(1 − x) − 4.8x(−x2 + y),2.4(−x2 + y)

Minimization
• Descent Methods:

1. Choose a starting point

2. If declare victory and return

3. Pick a search direction s.t.

4. Choose a step size s.t.

5. Set . Go to 2

x0 ∈ ℛn

∥∇f(xk)∥ < ϵ xk

dk ∈ ℛn ∇f(xk) ⋅ dk < 0

αk > 0 f(xk + αkdk) < f(xk)

xk+1 = xk + αkdk

Minimization
• This algorithm leaves two things open:

• Selecting the step length

• Selecting the search direction

αk

dk

Minimization
• Finding minimum along line:

• Finding minimum of function

• Use derivative is usually dangerous:

• Often function too flat

• Better bracketing

t ↦ f(xk + tdk)

Minimization
• Can use bracketing

• Three points A < C < B such that

• Thus, minimum guaranteed to exist

• Now find another point D between A and C or C and
B

• Get a new bracket

f(A) > f(C) < f(B)

2 4 6 8

10

20

30

A

B

C D
EF

Minimization

• One possibility: golden ratio:

• Other possibility: parabolic approximation

• Or a combination of both

|A − C |
|A − B |

=
|B − C |
|A − C |

2 4 6 8

20

40

60

80

Minimization
• Determining direction:

• Can use coordinates

Minimization

-2 0 2 4 6 8 10
-2

0

2

4

6

8

10

Minimization
• Using coordinates

• Make little
progress per
iteration

-400 -200 0 200 400

-400

-200

0

200

400

Minimization
• Better use orthogonal directions:

• otherwise we partially undo the previous steps

• Possibilities

• Canonical Directions

• Steepest Descent (Cauchy)

• badly affected by round-off errors and subject to
zigzagging

• Powell: Change set of directions every so often

Minimization
• Selecting the step length

• Finding the best step length is laborious

• Often do better by guessing

• Many machine learning algorithms use a steadily
declining

• Trying out several guesses

α

Minimization
• Newton Methods:

• Repeatedly replace condition by a sequence
of linear problems

• Newton-Raphson:

• apply exact Newton steps

• possibly does not converge

• works best for convex functions

• Use linear-search descent, then switch to Newton

∇f(x) = 0

Minimization
• Numerical minimization of a cost function of the

parameters

• Various minimization methods

• Line methods

• Minimize along a particular line

Minimization
• Instead of line searches: Trust Region Methods

• Idea: for each iteration: replace with a quadratic
model function

• Quadratic model function approximates in the
"trust region"

• And quadratic model functions are easy to minimize!

• The proposed solution can or cannot have a smaller
value for

• Many different ways of defining the model

f

f

f

Minimization with SciPy
• Can use a number of method for finding a local minimum

• Some need the Jacobian and some need in addition
the Hessian

• Can be calculated numerically but results are better
with exact functions

• Jacobian

• Hessian

J(f) =
df
dx

= (
δf
δx1

,
δf
δx2

, …,
δf
δxn

)

H(f) = (δ2f
δxiδxj)

i,j

Minimization with SciPy
• Use scipy.optimize.minimize

• Needs a function that is a one-dimensional np.array

• Specify a starting point, options, and method

Minimization with SciPy
• Importing the optimizer:

import numpy as np
from scipy.optimize import minimize

Minimization with SciPy
• Defining a function to be minimized

• Needs to be in "standard form", i.e. numpy array of one
dimension

def func(x):
 return np.sin(x[0]*x[1])+(x[0]+x[1]-1)**2+(x[0]-x[1]+1)**4

Minimization with SciPy
• Sometimes need to give Jacobian

• def jacob(x):
 return np.array(
 (4*(1+x[0]-x[1])**3 +
 2*(x[0]+x[1]-1)+
 x[1]*np.cos(x[0]*x[1]),
 -4*(1+x[0]-x[1])**3 +
 2*(x[0]+x[1]-1)+
 x[0]*np.cos(x[0]*x[1])))

Minimization with SciPy
• We pick (5,5) as the starting point

res = minimize(func,
 [5,5],
 method = 'nelder-mead',
 options = {'xatol': 1e-9, 'disp':True}
)

print(res.x)

Minimization with SciPy
• Success: (but with lots of function evaluations)

Optimization terminated successfully.
 Current function value: -0.295490
 Iterations: 84
 Function evaluations: 164
[-0.37249737 1.18821832]

Minimization with SciPy
res = minimize(func,
 [5,5],
 method = 'Newton-CG',
 jac = jacob,
 options = {'disp':True}
)
print(res.x)

Minimization with SciPy

Optimization terminated successfully.
 Current function value: -0.295490
 Iterations: 10
 Function evaluations: 12
 Gradient evaluations: 47
 Hessian evaluations: 0
[-0.37249737 1.18821832]

Minimization with SciPy

res = minimize(func,
 [5,5],
 method = 'Powell',
 options = {'disp':True}
)
print(res.x)

Minimization with SciPy

Optimization terminated successfully.
 Current function value: -0.295490
 Iterations: 5
 Function evaluations: 139
[-0.37249969 1.18821518]

Minimization with SciPy

res = minimize(func,
 [5,5],
 method = 'BFGS',
 options = {'disp':True}
)
print(res.x)

Minimization with SciPy

Optimization terminated successfully.
 Current function value: -0.295490
 Iterations: 15
 Function evaluations: 84
 Gradient evaluations: 21
[-0.37249848 1.18821848]

Least Square Optimization
• Want to minimize a sum of squares

•

• (Factor of 1/2 to make derivatives look nicer)

f : ℛn → ℛm

f(⃗x) =
1
2

m

∑
j=1

r2
j (⃗x)

Least Square Optimization
• With this special form, we can calculate the Jacobian of

 more easily

(r1(⃗x), r2(⃗x), …, rm(⃗x))T

JT =

δr1

δx1

δr2

δx1
…

δrm

δx1

δr1

δx2

δr2

δx2
…

δrm

δx2

⋮ ⋮ ⋱ ⋮
δr1

δxn

δr2

δxn
…

δrm

δxn

= (δrj

δxi)

Least Square Optimization
• Then

∇f(⃗x) = J(⃗x)Tr(x)

∇2f(⃗x) = J(⃗x)TJ(⃗x) +
m

∑
j=1

rj(⃗x)∇2rj(⃗x)

Least Square Optimization
• Now we assume that is linear

• Then is a constant

•

• Taylor expansion is

• Taking derivatives gives

•

• at a minimum

| |r(⃗x) | |

J

∇2(rj)(⃗x) = 0

f(⃗x) = f(x0) + J(f(x)) | ⃗x 0
(⃗x − ⃗x 0) +

1
2

(⃗x − ⃗x 0)TH(f(⃗x) | ⃗x 0
(⃗x − ⃗x 0) + …

∇f(⃗x) = JT(J ⃗x + ⃗r) = 0

Least Square Optimization
• This means we can solve for the minimum since then

• and so we could solve

JTJ ⃗x = − JTr(⃗x)

⃗x = (JTJ)−1JTr

Least Square Optimization
• However, calculating the inverse is

• computationally expensive

• numerically unstable

Least Square Optimization
• Can use

• Cholesky factorization

• QR factorisation

• Singular value decomposition of

•

• which are all implemented in np.linalg

JTJ

Least Square Optimization
• Levenberg Marquardt algorithm

• Even if is not linear:

• Assume that it is approximately

• Use the above method as an approximator

• Get results

r

Curve Fitting
• Number of numerical methods for minimization problems

• Curve fitting:

• Given a number of points, find a smooth curve going
through it

Curve Fitting
• Use a cosine as the test function

def f(t, omega, phi):
 return np.cos(omega * t + phi)

Fitting with scipy
• Create sample data

x = np.linspace(0, 3, 50)
y = f(x, 1.5, 1) + .1*np.random.normal(size=50)

Fitting with scipy
• Now fit using scipy.optimize

params, params_cov = optimize.curve_fit(f, x, y)
print(params)

Fitting with scipy
• Can almost recover parameters

[1.51854577 0.92665541]

y = f(x, 1.5, 1) + .1*np.random.normal(size=50)

Fitting with scipy

Fitting with scipy
• Could also fit with a quadratic

def g(t, a, b, c):
 return a*t**2+b*t+c

params, params_cov = optimize.curve_fit(g, x, y)

Fitting with scipy

Fitting with scipy

Fitting with scipy
• Could also try a higher level polynomial

Fitting with scipy
• And if we try with a polynomial with as many degrees as

there are points, we would get perfect fit

• And absolutely no insights!

Optimization
• Global optimizers:

• Grid search: Start out at a large number of starting
positions

• Try out several methods

• If possible, calculate the gradient and the Hessian
yourself

• Can use scipy.optimize.check_grad() to see whether
you calculated correctly

 Curve Fitting
• Need to have a good model:

• Avoids under- and over-fitting

• Find a way to measure success

• E.g. time series: You want to remove trends and have
white noise left over

Constraints
• Often need to optimize under constraints

• Easiest constraints are for box bounds:

• Variables need to be within a certain range

Constraints
• Function:

def f(x):
 return np.sqrt((x[0]-3)**2 + (x[1]-2)**2)

Constraints

Constraints
• Optimization:

• result = optimize.minimize(f, np.array([0, 0]),
bounds=((-1.5, 1.5), (-1.5, 1.5)))

Constraints
• Result:

>>> result
 fun: 1.5811388300841898
 hess_inv: <2x2 LbfgsInvHessProduct with dtype=float64>
 jac: array([-0.94868331, -0.31622778])
 message: b'CONVERGENCE:
NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
 nfev: 9
 nit: 2
 status: 0
 success: True
 x: array([1.5, 1.5])

HELP!!!!

• Get Scipy Lecture notes (for free)

• www.scipy-lectures.org

