
Strings in Python
Thomas Schwarz, SJ

Strings
• Basic data type in Python

• Strings are immutable, meaning they cannot be shared

• Why?

• It’s complicated, but string literals are very
frequent. If strings cannot be changed, then
multiple occurrences of the same string in a
program can be placed in a single memory
location.

• More importantly, strings can serve keys in key-
value pairs.

String Literals
• String literals are defined by using quotation marks

• Example:

• To create strings that span newlines, use the triple
quotation mark

Escapes
• Python is very good at detecting your intentions when

processing string literals

• E.g.: "It's mine"

• Still sometimes need to use the escape character

• \t, \n, \", \', \\, \r

• \xhh —> character with hex value 0xhh

• Python 3 uses machine conventions for endings

• Python 3 uses utf-8 natively

• greetings = ("शुभ प्रभात", "સુ#ભાત", "शुभ प्रभात")

Docstrings
• Doc strings

• String literals that appear as the first line of a module,
function, class, method definition

• All these items should have a docstring

• The docstring replaces the help string in Idle and
IPython/Jupyter

• Indent them under the indentation of the object they
describe

Docstrings
• Always use triple quotation marks

• Even for one-liners

Docstrings
• Example

String Methods
• Strings are classes and have many built in methods

• s.lower(), s.upper() : returns the lowercase or
uppercase version of the string

• s.strip(): returns a string with whitespace removed
from the start and end

• s.isalpha() / s.isdigit() / s.isspace()
tests if all the string chars are in the various character
classes

• s.startswith('other'), s.endswith('other')
tests if the string starts or ends with the given other string

String Methods
• There are a number of methods for strings. Most of them

are self-explaining

• s.find('other') : searches for the given other
string (not a regular expression) within s, and returns the
first index where it begins or -1 if not found

• s.replace('old', ‘new'): returns a string where
all occurrences of 'old' have been replaced by 'new'

• len(s) returns the length of a string

Strings and Characters
• Python does not have a special type for characters

• Characters are just strings of length 1.

Accessing Elements of
Strings

• We use the bracket notation to gain access to the
characters in a string

• a_string[3] is character number 3, i.e. the fourth
character in the string

String Processing
• Since strings are immutable, we process strings by

turning them into lists, then processing the list, then
making the list into a string.

• String to list: Just use the list-command

String Processing
• Turn lists into strings with the join-method

• The join-method has weird syntax

• a_string = "".join(a_list)

• The method is called on the empty string ""

• The sole parameter is a list of characters or strings

• You can use another string on which to call join

• This string then becomes the glue
gluestr.join([str1, str2, str3, str4, str5])

str1 str2 str3 str4 str5gluestr gluestr gluestr gluestr

String Processing
• Examples

String Processing
• Procedure:

• Take a string and convert to a list

• Change the list or create a new list

• Use join to recreate a new string

• Alternative Procedure:

• Build a string one by one, using concatenation (+ -operator)

• Creates lots of temporary strings cluttering up memory

• Which is bad if you are dealing with large strings.

String Processing
• Example: Given a string, change all vowels to increasing

digits.

• This is used as a (not very secure) password generator

• Examples:

• Wisconsin —> W1sc2ns3n

• AhmedabadGujaratIndia —>
1hm2d3b4dG5j6r7t8nd90

String Processing
• Implementation:

• Define an empty list for the result

• We return the result by changing from list to string

def pwd1(string):
 result = []

 return "".join(result)

String Processing
• Need to keep a counter for the digits

def pwd1(string):
 result = []
 number = 1

String Processing
• Now go through the string with a for statement

• Create the list that will be returned converted into a string

def pwd1(string):
 result = []
 number = 1
 for character in string:

#append to result here

 return "".join(result)

String Processing
• We either append the letter from the string or we append

the current integer, of course cast into a string

def pwd1(string):
 result = []
 number = 1
 for character in string:
 if character not in "aeiouAEIOU":
 result.append(character)
 else:
 result.append(str(number))
 number = (number+1)%10
 return "".join(result)

String Processing
• Argot

• A variation of a language that is not understandable to
others

• E.g. Lufardo — an argot from Buenos Aires that uses
words from Italian dialects

• Invented originally to prevent guards from
understanding the inmates

• Some words are just based on changing words

• vesre - al reves (backwards)

• chochamu - vesre for muchacho (chap)

• lorca - vesre for calor (heat)

String Processing
• Argot

• Pig Latin

• Children’s language that uses a scheme to change
English words

• Understandable to practitioners, but not to those
untrained

String Processing
• Argot:

• Efe-speech

• A simple argot from Northern Argentina no longer in
use

• Take a word: “muchacho”

• Replace each vowel with a vowel-f-vowel
combination

• “Muchacho” becomes Mufuchafachofo

• “Aires” becomes “Afaifirefes”

String Processing
• Implementing efe-speech

• Walk through the string, modifying the result list

def efe(string):
 result = []
 for character in string:
 result.append(SOMETHING)
 return "".join(result)

String Processing
• We need to be careful about capital letters

• We can use the string method lower

• Which you find with a www-search

def efe(string):
 result = []
 for character in string:

 elif character in "AEIOU":
 result.append(character+'f'+character.lower())

 return "".join(result)

String Processing
def efe(string):
 result = []
 for character in string:
 if character in "aeiou":
 result.append(character+'f'+character)
 elif character in "AEIOU":
 result.append(character+'f'+character.lower())
 else:
 result.append(character)
 return "".join(result)

String Processing

Try it out:
• Implement pig latin

• Use wikipedia

• Use testing

Slices
• We already know two sequence types: lists and strings

• Sequences can be sliced: A slice is a new object of the
same type, consisting of a subsequence

• Use a bracket cum colon notation to define slices.

• sequence[a:b] are all elements starting with index a and
stoping before index b.

Slices
• String slices

• Number before colon:

• Start

• Number after colon:

• Stop

• Default value before colon:

• Start with first character

• Default value after colon

• End with the string

Slices
• String slices:

• Optional third parameter is
Stride

• First character is
character 1

• Next one is character 1+2

• Next one is character
1+2+2

• Next one would be
character 1+2+2+2, but
that one is >= the stop
value.

M i l w a u k e e

0 1 2 3 4 5 6 7 8

a_string

a_string[1:7:2] i w u

start value is index 1

stop value is index 7

stride is 2

Slices
• Negative strides are allowed.

• Create a new string that is reversed using default
values

Slices
• Negative strides are allowed

• Character 20 is “I” of India

• Next character is 17, the “t” in Gujarat

• Stop before character 3 (the fourth character)
Ahmedabad, Gujarat, India

Lists and Strings
• Both lists and strings are sequences

• Length: len(a_string), len(a_list)

• Concatenation: a_string + b_string, a_list + b_list

• Repetition: 3*a_string, 3*a_list

• Membership: if ‘x’ in a_string, if a in a_list

• Iteration: for ele in a_string, for ele in a_list

Lists and Strings
• Strings are immutable

• Lists are mutable

a_string[2] = ‘x’

a_list[2] = ‘x’

Try it out
• Write a function that determines whether a word is a

palindrome (spelled forward the same as backward)

• Write a function that checks whether two words are
anagrams (have exactly the same letters).

• Hint: Without counting letters, you just create an
ordered list of the letters in each word

• For extra credit: remove all non-letters

• Use string.ascii_letters

• We really need to learn how to format strings
• Python has made several attempts before settling

on an efficient syntax.
• You can find information on the previous solutions

on the net.
• Use the format function

• Distinguish between the blueprint
• and the string to be formatted
• Result is the formatted string.

Formatting Strings

• Blueprint string
• Uses {} to denote places for variables
• Simple example

• "{} {}".format('one', ‘two')

• Result

Blueprint
Calling
format

String to be
formatted

‘one two’

Formatting Strings

• Inside the brackets, we can put indices to select
variables
• 0 means first variable, 1 second, …
• Can reuse variables

Formatting Strings

• Additional formatting inside the bracket after a
colon

• Can assign the number of characters to print out

• Default alignment is to the left

Formatting Strings

• Use ^ to center
• Use < to left-align
• Use > to right-align

Formatting Strings

• Numbers are handled without specifying format
instructions.

• Or we can insist on special types
• Use s for string
• Use d for decimal
• Use f for floating point
• Use e for floating point in exponential notation

Formatting Strings

Formatting Strings
• By specifying “f” we ask for floating point format

• By specifying “e” we ask for scientific format

• Padding
• If the variable needs more space to print out, it

will be provided automatically

• This is actually the longest officially recognized
word in English

Formatting Strings

• Padding:
• On the reverse, we can give the number of

significant digits after a period

• We only want to keep two decimal digits after the
period

• But use a total of 8 spaces for the number.

Formatting Strings

• Escaping curly brackets:
• If we want to write strings with format containing

the curly brackets “{“ and “}”, we just have to
write “{{“ and “}}”

• A single bracket is a placeholder, a double curly
bracket is a single one in the resulting string.

Formatting Strings

Application: Pretty
Printing

• Develop a mortgage payment plan
• Accountants have formulae for that, but it is fun to do it

directly
• Assume you take out a loan of L$ dollars

• The loan is financed at a rate of r% annually
• Interest is paid monthly, i.e. at a rate of r/12%

• Each month you make a repayment
• Part of the repayment is to pay the interest
• The remainder pays down the debt

• Use a while-loop
• Condition is that there is still an outstanding debt
• Adjust outstanding debt
• Count the number of payments

• Need to initialize values

Mortgage Payments

• We need values for:
• Monthly Rate (interest in percent)/1200
• Principal
• Repayment

• Get those from the user
• A true application would contain code that

checks whether these numbers make sense.

Mortgage Payments

• Initialization

Mortgage Payments

princ = float(input("What is the prinipal “))
rate = float(input("What is the interest rate (in percents)? "))/1200
print("Your minimum rate is ", rate*princ)
paym = float(input("What is the monthly payment? “))
month = 0

• We continue until we paid down the principal to
zero

Mortgage Payments

while princ > 0:

• Update the situation in the while loop
• Last payment does not need to be full, so we

calculate it

Mortgage Payments

intpaid = princ*rate
princ = princ + princ*rate - paym
if princ < 0:
 lastpayment = paym + princ
 princ = 0
month += 1

Put things together

Pretty-Printing Tables
• Format Strings revisited:

• Format string — blueprint
• Uses { } to denote spots where variables get

inserted

Pretty-Printing Tables
• Syntax

• {a:^10.3f}
• a — the number of the variable

• Can be left out
• : — what follows is the formatting instruction
• 10 — number of spaces for the variable
• . — what follows is the precision
• 3 — precision
• f — print in floating point format

Pretty-Printing Tables
• If the variable is larger than the space given:

• Full value is printed out
• Alignment by default is

• left (<) for strings
• right (>) for numbers

Pretty-Printing Tables
• Task:

• A program that gives a table for the log and the
exponential function between 1 and 10

• Hint: x=1+i/10 x | exp(x) | log(x)

 1.00 | 2.71828 | 0.00000
 1.10 | 3.00417 | 0.09531
 1.20 | 3.32012 | 0.18232
 1.30 | 3.66930 | 0.26236
 1.40 | 4.05520 | 0.33647
 1.50 | 4.48169 | 0.40547
 1.60 | 4.95303 | 0.47000
 1.70 | 5.47395 | 0.53063

Why another formatting
method

• The format method allows very fine-grained control

• But it is verbose

• Python has two type of special strings:

• r-strings for raw strings: no escapes

• f-strings for formatting

• Using f-strings results in more compact and readable
code

f-strings
• f-strings are defined with a pair of quotation marks

preceded immediately by an “f” or “F”

• An f-string can contain a variable name surrounded by
brackets in its definition

• The bracket is then replaced by the value of the variable

fstring = f'hello world'

f-strings
• Example:

• Variable fstring is then

number = 6.35
astring = “hello"
fstring = f"{astring}, the number is {number}"

'hello, the number is 6.35'

f-strings
• The expression in brackets inside an f-string gets

evaluated at run time.

• For example, we can say

• or

which evaluates to

f"{2+3*4}"

astring = “hello"
string = f"{astring.upper()} World"

'HELLO World'

r-strings
• Because of their similarity with f-strings, we mention r-

strings

• An r-string uses the escape character only as an escape
character, so there is no escaping at all

• This is useful for strings containing the backslash such
as Windows file names

address = r"c:\Windows\System32\system.ini"

Hangman - Ahorcado
• A slightly morbid childrens' game

• Guess a word letter by letter

• For each wrong letter, a part of a hanged man is drawn

Enter a letter j
 +------+
 | |
 | o
 | /|\
 | / \
 |
 |
 |
 |
 |
 |

you looser you

Hangman — Ahorcado
• How to plan a software project?

• Principal idea: divide tasks into simpler components

• Make a diagram of program logic:

• This is apt to change

Hangman — Ahorcado
ask for a letter

is this a new
letter?

no

is the letter in
the word?

yes

are we done?

update list of
guessed letters

yes

display
hangman

display word with
asterisks

Congratulate

yes

update list of
guessed letters

display
hangman

display word with
asterisks

update list of
guessed letters

no

too many
errors?

You lost

no

yes
no

Hangman — Ahorcado
• Observation:

• We need a list of
guessed letters to
decide whether this is a
letter

• We need to do more
input control

• User enters digit

• user enters capital
letters

• …

ask for a letter

is this a new
letter?

no

is the letter in
the word?

yes

are we done?

update list of
guessed letters

yes

display
hangman

display word with
asterisks

Congratulate

yes

update list of
guessed letters

display
hangman

display word with
asterisks

update list of
guessed letters

no

too many
errors?

You lost

no

yes
no

Hangman — Ahorcado
• All of the yellow boxes

are candidates for
functions

• We can see some
common data:

• The secret word

• The list of guessed
letters

• The number of bad
guesses

ask for a letter

is this a new
letter?

no

is the letter in
the word?

yes

are we done?

update list of
guessed letters

yes

display
hangman

display word with
asterisks

Congratulate

yes

update list of
guessed letters

display
hangman

display word with
asterisks

update list of
guessed letters

no

too many
errors?

You lost

no

yes
no

Hangman — Ahorcado
• We can also see that at

the heart is a giant loop

• Python-style:

• Make the loop an
infinite loop

• Break out

ask for a letter

is this a new
letter?

no

is the letter in
the word?

yes

are we done?

update list of
guessed letters

yes

display
hangman

display word with
asterisks

Congratulate

yes

update list of
guessed letters

display
hangman

display word with
asterisks

update list of
guessed letters

no

too many
errors?

You lost

no

yes
no

Hangman — Ahorcado
• A word about diagrams:

• Programming has become a lot easier over the years

• So we program more difficult things

• And focus has shifted

• Some methods are very data-centric

• Useful for big data implementation or graphics, e.g.

• Some methods focus on processing

• As we just did

Hangman — Ahorcado
• "Enter a letter" function:

• Needs one parameter: list of guessed letters

• Should do error checking (homework / project)

• Returns a letter not previously seen

ask for a
letter

Is this a
new

letter

return
letter

noyes

Hangman — Ahorcado
def get_letter(lol):
 while True:
 x = input('Enter a letter ')
 x = x[0]
 if x in lol:
 print('This letter is already guessed. Try again.')
 else:
 return x

ask for a
letter

Is this a
new

letter

return
letter

noyes

Hangman — Ahorcado
• Check whether we are done

• All the letters in the secret are in the list of letters
already guessed (lol)

def done(lol, secret):
 for letter in secret:
 if letter not in lol:
 return False
 return True

Hangman — Ahorcado
• Print out the hangman: An exercise in ASCII art

Enter a letter a
 +------+
 | |
 |
 |
 |
 |
 |
 |
 |
 |

Good job. The word is *******a

Hangman — Ahorcado
Enter a letter b
 +------+
 | |
 |
 |
 |
 |
 |
 |
 |
 |

Good job. The word is *****b*a

Hangman — Ahorcado
Enter a letter d
 +------+
 | |
 | o
 |
 |
 |
 |
 |
 |
 |

Not quite. The word is c****b*a

Hangman — Ahorcado
Enter a letter e
 +------+
 | |
 | o
 | |
 |
 |
 |
 |
 |
 |
 |

Not quite. The word is c****b*a

Hangman — Ahorcado
Enter a letter f
 +------+
 | |
 | o
 | /|
 |
 |
 |
 |
 |
 |
 |

Not quite. The word is c****b*a

Hangman — Ahorcado
Enter a letter g
 +------+
 | |
 | o
 | /|\
 |
 |
 |
 |
 |
 |
 |

Not quite. The word is c****b*a

Hangman — Ahorcado
Enter a letter h
 +------+
 | |
 | o
 | /|\
 | /
 |
 |
 |
 |
 |
 |

Not quite. The word is c****b*a

Hangman — Ahorcado
Enter a letter i
 +------+
 | |
 | o
 | /|\
 | /
 |
 |
 |
 |
 |
 |

Good job. The word is c****bia

Hangman — Ahorcado
Enter a letter j
 +------+
 | |
 | o
 | /|\
 | / \
 |
 |
 |
 |
 |
 |

you looser you

Hangman — Ahorcado
• "printing the hangman"

• Two possibilities:

• Draw the same string with slight changes for
different number of false guesses

• Draw different strings (using copy and paste)

• Can use multi-dimensional strings

• or use string arithmetic (which becomes unreadable)

def print_it(n):
 if n <= 0:
 print(5*' ' +'+------+\n' + 5*' ' +'| |\n' + 8*(5*' '+'|\n'))
 elif n == 1:
 print(5*' ' +'+------+\n' + 5*' ' +'| |\n'
 +5*' '+'| o\n' +7*(5*' '+'|\n'))
 elif n == 2:
 print(5*' ' +'+------+\n' + 5*' ' +'| |\n'
 +5*' '+'| o\n' ++5*' '+'| |\n'
 +7*(5*' '+'|\n'))
 elif n == 3:
 print(5*' ' +'+------+\n' + 5*' ' +'| |\n'
 +5*' '+'| o\n' + 5*' '+'| /|\n'
 +7*(5*' '+'|\n'))
 elif n == 4:
 print(5*' ' +'+------+\n' + 5*' ' +'| |\n'
 +5*' '+'| o\n' + 5*' '+'| /|\\ \n'
 +7*(5*' '+'|\n'))
 elif n == 5:
 print(5*' ' +'+------+\n' + 5*' ' +'| |\n'
 +5*' '+'| o\n' + 5*' '+'| /|\\ \n'
 +5*' '+'| / \n'
 +6*(5*' '+'|\n'))
 elif n == 6:
 print(5*' ' +'+------+\n' + 5*' ' +'| |\n'
 +5*' '+'| o\n' + 5*' '+'| /|\\ \n'
 +5*' '+'| / \ \n'
 +6*(5*' '+'|\n'))

Hangman — Ahorcado
• Now we are ready for the game:

• First, define the data structures

def game():
 secret = 'colombia'
 lol = []
 false_guesses = 0
 …

Hangman — Ahorcado
• Then start the while loop:

def game():
 secret = 'colombia'
 lol = []
 false_guesses = 0
 while True:
 …

Hangman — Ahorcado
• First, get the letter and do not forget to update your list of

guessed letters (lol)

• We have hidden some logic in get_letter

 while True:
 x = get_letter(lol)
 lol.append(x)

Hangman — Ahorcado
• If the letter is a good guess:

• Print hangman and word, then check whether we are
done

if x in secret:
 print_it(false_guesses)
 if done(lol, secret):
 print('You won')
 break
 else:
 print('Good job. The word is', display(secret, lol))

Hangman — Ahorcado
• If the letter is bad:

• update false guesses

• print hangman

• decide on whether we lost

if x not in secret:
 false_guesses += 1
 print_it(false_guesses)
 if false_guesses >= 6:
 print("you looser you")
 break
 else:
 print('Not quite. The word is', display(secret, lol))

Hangman — Ahorcado
• Notice: We could have used return in order to get out of

the loop

def game():
 secret = 'colombia'
 lol = []
 false_guesses = 0
 while True:
 x = get_letter(lol)
 lol.append(x)
 if x in secret:
 print_it(false_guesses)
 if done(lol, secret):
 print('You won')
 break
 else:
 print('Good job. The word is', display(secret, lol))
 if x not in secret:
 false_guesses += 1
 print_it(false_guesses)
 if false_guesses >= 6:
 print("you looser you")
 break
 else:
 print('Not quite. The word is', display(secret, lol))

