Laboratory 3: The Robots Game — Continued

Task 1: Create a class Avatar in model.py

class Avatar:
def init (self, location):
self.location = location
def str (self):
return "Avatar at {}".format(self.location)
def move (self, direction):
self.location.update (direction)

Task 2: Create a class Heap in model.py

class Heap:
def init (self, location):
self.location = location
def str (self):
return "Heap {}".format (self.location)

Task 3: Create a class Robot.

class Robot:
def init (self, location):
self.location = location
def str (self):
return "Robot at {}".format (self.location)
def move (self, avatar):

Task 4: Create a class Model. The interesting part is programming the update. You need to fill
in the lacunae based on the comments. You can use list comprehension to create the list of
the locations of robots and heaps. The function returns a code of 1 if there are no more robots
left and a code of -1 if the avatar is on the same location as a robot or a heap and is therefore
dead.

class Model:

def init (self, geometry, nrrobots):
self.geometry geometry
self.heaps = [

]
self.avatar = Avatar(Location.generate_random_locality(geometry))
self.robots = []
while len(self.robots)<nrrobots:

robot = Robot(Location.generate_random_locality(geometry))

if (robot.location not in [rob.location for rob in self.robots] and

robot.location != self.avatar.location):

self.robots.append (robot)

def str (self):
return "{}\n{}\n{}".format (self.avatar,
[str(robot) for robot in self.robots],
[str (heap) for heap in self.heaps])

def update(self, avatar direction):

if avatar direction=='T':
while True:
self.avatar.location =

Location.generate random locality(self.geometry)
if (self.avatar.location not in [r.location for r in self.robots] and
self.avatar.location not in [h.location for h in self.heaps]):

break
return 0
direction = Direction(avatar direction)
self.avatar.move (direction)
for r in self.robots:
r.move (self.avatar)

Task 5: Create a new file called control.py. In this file create a function run_level. You also need
to adjust the file view.py from a previous lab. In this one, you need to have a function

draw_screen which draws the model to the display.

def run level (my geometry, nr robots):

my model model.Model (my geometry, nr robots)
result = 0
while True:

v = view.View (my geometry)

v.clear screen()
v.draw_screen (my model)
print (my model.avatar.location, len(my model.robots),
if result == -1:
print('you lost"'")
return -1
if len(my model.robots)==
print ('you won')
return 1
move = input ('your move')
try:
result = my model.update (move)
except ValueError:
print ("I could not understand your command")
continue

"robots left")

Task 6: Use this function above to create a game. Notice that we still use return values to
indicate the outcome of a level. You should increment the number of robots and the size of the

geometry every time you have a new level.

