
Sudoku Problem
Thomas Schwarz, SJ

Sudoku
• squares

• Filled with numbers from 1 to 9

• All numbers from 1 to 9 need to make up:

• Each of nine rows

• Each of nine columns

• Each of nine "houses"

• A sub-block

81 = 9 × 9

3 × 3

Sudoku
• Task:

• Write a valid Sudoku test for a integer array in
numpy

9 × 9

Checking for Equality
• We want to check whether a row has exactly the same

elements as np.arange(1,10)

Checking for Equality
• To check whether two arrays are equal

• Use np.array_equal to check whether two arrays are
equal

• Checks whether shape is the same and whether all
elements in the same position are equal

• np.array_equal(np.array([1,2,3,4]),
np.array([3,2,1,4])) is False

• Because they are different as array but not as sets

Checking for Equality
• This type of equality is of arrays,

• but not of sets

• To check whether one array is a permutation of another:

• Use numpy operations

• Build something ourselves

Checking for Equality
• Can use set operations in numpy

• in1d(array1, array2) tests whether each element in the
first array is also in the second

• intersect1d(array1, array2): intersection of the arrays

• setdiff1d(array1, array2): find the set difference

• Those in array1 that are not in array2

• setxor1d(array1, array2): symmetric difference of the
arrays

• union1d(array1, array2): union, not concatenation of
the two arrays

Checking for Equality
• isin(element, array):

• Checks whether element is in the array

• This is useful

• But be careful about broadcasting and flattening

• np.isin(np.arange(1,6), test)

• just returns [True, True, True, True, True] as the test array gets
flattened and the function is applied on the first parameter

test=np.array([
 [1,2,4,5,3],
 [4,4,3,1,5],
 [1,4,3,2,5],
 [1,2,5,0,2],
 [1,1,2,3,5]
])

Checking for Equality
• isin(element, array):

• We can combine the results of isin by using np.all or
np.any

• np.all(array) returns True if all elements of the array
are true

• np.any(array) returns True if at least one element of
the array is true

Checking for Equality
• We now can test whether an array of nine numbers is a

permutation of {1,2,3,4,5,6,7,8,9}

• Assume that we know beforehand that the array has
nine members

• Then if all of 1, 2, 3, …, 9 are in the array, the array is a
permuation

Checking for Equality
• We need to combine

• Cardinality

• IsIn

• All

def check_perm(array):
 return np.all(np.isin(np.arange(1,10), array)) and
len(array)==9

Numpy Array Indexing
Repetition

• Array indexing is vital, but the many possibilities in numpy
are confusing

• So, let's look at them again

Numpy Indexing
• First, generate a simple array made into a matrix3 × 3

>>> mat = np.arange(1,10)
>>> mat = np.reshape(mat,(3,3))
>>> print(mat)
array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

Numpy Indexing
• The simplest indexing is direct, python-style

• We can also address with tuples

• In fact, mat[0,2] is internally converted into
mat.__getitem__((0,2))

>>> mat[0,2]
3

>>> mat[(0,2)]
3

Numpy Indexing
• Tuple addressing is in fact more "natural"

>>> for i in np.ndindex(mat.shape):
 print (i, mat[i])

(0, 0) 1
(0, 1) 2
(0, 2) 3
(1, 0) 4
(1, 1) 5
(1, 2) 6
(2, 0) 7
(2, 1) 8
(2, 2) 9

Numpy Indexing
• Remember zip(*iterable) to aggregate a tuple?

• We can use np.where with a single argument, a condition,
to find the elements in an array that satisfy the condition

• np.where returns a list of indices where the condition is
true

• We then convert the list into tuples

>>> list(zip(*np.where(mat%2==0)))
[(0, 1), (1, 0), (1, 2), (2, 1)]

Numpy Slicing
• Normal slicing works as in Python

• With the important difference

• Slices are not copies

• If you need copies, then use the copy() method

>>> A = mat.copy()
>>> print(A)
[[1 2 3]
 [4 5 6]
 [7 8 9]]

Numpy Slicing
• Slice actually constructs slice objects

• You can apply them to all arrays (of the correct shape)

>>> s = slice(1,None, 2)
>>> print(s)
slice(1, None, 2)
>>> arr = np.arange(1,10)
>>> arr
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> arr[s]
array([2, 4, 6, 8])

Numpy Slicing
• Slices have up to three components:

• Start (default 0 or -1)

• Stop (default 0 or -1)

• Step (default 1)

• For multidimensional arrays, can slice in each dimension

• First part is rows

• Second part is columns

• etc

Numpy Slicing
• Examples:

• Inverting rows: use first dimension

>>> A
array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])
>>> A[::-1,:]
array([[7, 8, 9],
 [4, 5, 6],
 [1, 2, 3]])

Numpy Slicing
• Examples:

• Invert columns: Use second dimension

>>> A[:,::-1]
array([[3, 2, 1],
 [6, 5, 4],
 [9, 8, 7]])

Numpy Slicing
• Examples: Get the first three rows of the first two

columns
>>> B = np.arange(1,21)
>>> B = np.reshape(B,(4,5))
>>> print(B)
[[1 2 3 4 5]
 [6 7 8 9 10]
 [11 12 13 14 15]
 [16 17 18 19 20]]
>>> B[0:3,0:2]
array([[1, 2],
 [6, 7],
 [11, 12]])

Numpy Slicing
• If you specify a slice that has only one element, the

dimension does not vanish

• The slice is still a two-dimensional array

• Count the brackets

• It just happens to have one row and one column

>>> B[1:2,3:4]
array([[9]])

Numpy Slicing
• Ellipsis

• As a short-cut, we can use the ellipsis, consisting of
three dots

• …

• Consists of as many colons as needed : :

• But usually, we can only use one to avoid
ambiguity

•
>>> B[...,2:4]
array([[3, 4],
 [8, 9],
 [13, 14],
 [18, 19]])

Numpy Slicing
• If you do not provide enough information for each

dimension, an ellipsis will be provided

Fancy Indexing
• Sometimes, slices are not enough

• Then we can use fancy indexing

• Example: Create a random two-dimensional array

>>> X = 10*numpy.random.rand(5,4)-5
>>> X
array([[1.23489451, 1.22443527, 3.35876328, 2.72987117],
 [-1.32420494, 4.14354623, -3.09531196, 4.97524407],
 [-4.43644932, 4.7533215 , -1.14004859, -4.32039428],
 [2.05397116, -1.05290493, -3.20528586, -4.5549263],
 [3.62748115, 0.53619237, 2.48564965, 1.34442926]])

Fancy Indexing
• Let's square the negative entries

• Need to change X

>>> X[X<0] **= 2
>>> X
array([[1.23489451, 1.22443527, 3.35876328, 2.72987117],
 [1.75351872, 4.14354623, 9.58095613, 4.97524407],
 [19.68208255, 4.7533215 , 1.29971079, 18.66580675],
 [2.05397116, 1.1086088 , 10.27385742, 20.74735363],
 [3.62748115, 0.53619237, 2.48564965, 1.34442926]])

Numpy Slicing
• You can always use slices to assign to numpy arrays

• This is different then for Python

• QUIZ:

• Create an array from 1 to 20.

• Change this to a 5 by 4 array

• Change the second row to negatives

Numpy Slicing
• Answer: >>> import numpy as np

>>> x = np.reshape(np.arange(1,21),(5,4))
>>> x
array([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12],
 [13, 14, 15, 16],
 [17, 18, 19, 20]])
>>> x[1]
array([5, 6, 7, 8])
>>> x[1,...]=-x[1,...]
>>> x
array([[1, 2, 3, 4],
 [-5, -6, -7, -8],
 [9, 10, 11, 12],
 [13, 14, 15, 16],
 [17, 18, 19, 20]])

Numpy Slicing
• QUIZ:

• No change the second row by squaring

>>> x[...,1]=x[...,1]**2
>>> x
array([[1, 4, 3, 4],
 [-5, 36, -7, -8],
 [9, 100, 11, 12],
 [13, 196, 15, 16],
 [17, 324, 19, 20]])

Sudoku Task
• Now we have all the ingredients for you to write a

program that checks the Sudoku:

• You can check whether an array is a permutation of 1
… 9

• You can extract rows

• You can extract columns

• You can extract houses (sub-squares)

• And you can combine checks with np.all

