Regular Expressions

Python |

Why

e A frequent programming task is “filtering”
e Retain only those records that fit a certain pattern
* Typical part of big data and analytics applications

e Example for text processing

Why

e Whenever you deal with text processing

e Think about whether you want to use regular
expressions

Why

e Regular Expressions are a theoretical concept that is well
understood

e Many programming languages have a module for regular
expressions

e Usually, very similar syntax and semantics

e We can use ad hoc solutions, but regular expressions are
almost always faster

How

Usually, we want to compile a regular expression
e This allows for faster scanning
e Compilation cost time
e But usually amortized very quickly
Python regular expressions are in module re
e Use p=re.compile('?")

* Where the question mark is the search string

How

e A Python regular expression is a string that defines the
search

e The string is compiled

e After compilation, a match, search, or findall is performed
on all strings

e The output is None if the regular expression is not
matched

e Otherwise, depending on the function, it provides the
parts of the string that match

A first example

In a regular expression, most characters match
themselves

e Unless they are “meta-characters” such as *, \, A

E.G.: Find all lines in “alice.txt” with a double hyphen
Regular expressionis '--'
Read in all lines of the text file, find the ones that match

* Need to use search, because match only matches at
the beginning of a string

A first example

' t
HIRREE EE e |mport re
p = re.compile('--") _
e Compile the
def matchl () : | o regular expression
with open("alice.txt") as 1nfile:
line count = 0

for line in infile:
line count+=1
line = line.strip/()
1f p.search(line):
print (line count, line) e Match lines

with .search()

Using raw strings

e Araw string is a string preceeded with a letter r:

e print (r'Hello World')

 The difference to a normal string is that the escape
character always means the escape character itself.

e print (r'\tHello') printsout \tHello
e print ('\tHello') prints out Hello after a tab.

* This can be very useful because we might on occasion
have to escape the escape character several times.

Matching

e Characters are the easiest to match

 Find all words in lawler.txt (a large list of English words) with
a double “o00”

e Just change the expression

import re

p = re.compile('oo"')
def matchl () :
with open("lawler.txt") as infile:
line count = 0

for line 1n 1infile:
line count+=1
line = line.strip ()
1f p.search(line):
print (line count, line)

Matching

o | etters and numbers match themselves
e But are case sensitive

 Punctuation marks often mean something else.

Matching

e Square brackets [] mean that any of the enclosed
characters will do

e Example: [ab] means either 'a' or 'b’
e Square brackets can contain a range

e Example: [0-5] means either 0, 1, 2, 3, 4, or 5
e Acaret A means negation

e Example: [*a-d] means neither 'a’, 'b’, 'c', nor 'd’

Self Test

e Find all lines in a file that have a double ‘e’

Self Test Solution

import re
P = re.complile(r'ee')

def match ee(filename) :
with open(filename) as 1nfile:
for line 1n infile:
1f p.search(line) :
print (line.strip())

Self Test 2

e Find all lines in a file that have a double-'ee’ followed by a
letter between 'I' (el) and 'n'

Self Test 2 Solution

The only difference is in the regular expressions where

import re
we have now a range of letters.

p = re.compile(r'ee[l-m]")

def match ee(filename) :
with open(filename) as 1nfile:
for line 1n infile:
1f p.search(line):
print (line.strip())

Matching: Wild Cards

e Wild Card Characters

e The simplest wild card character is the period / dot: “.”
e |t matches any single character, but not a new line

e Example: Find all English words using Lawler.txt that
have a patterns of an “a” followed by another letter
followed by “a”

e Solution: Use p = re.compile('a.a')

Matching: Wild Cards

e |f you want to use the literal dot ' . ' you need to escape
it with a backslash

e Example: To match “temp.txt” youcanuse 't...\.txt'

* This matches any file name that starts with a t, has
three characters afterwards, then a period, and then
txt.

Matching: Repetitions

 The asterisks repeats the previous character zero or more
times

e Example: '\.[a-z]*' looks for a period, followed by

any number of small letters, but will also match the simple
string ' .

* The plus sign repeats the previous character one or more
times.

e Example: '"unif[a-z]+y' matches a string that starts

with 'uni’ followed by at least one small letter and
terminating with 'y’

e This is difficult to read, as the + looks like an operation

Matching: Repetitions

e Braces (curly brackets) can be used to specify the exact
number of repetitions

e 'a{1:4}' means one, two, three, or four letters 'a’

e 'a{4:4}' means exactly four letters 'a’

Self Test

e Write a regular expression that matches the name of any
Python file.

e Notice that ".py" is not a valid Python file. There must
be something before the dot.

Self Test Solution

p2 = re.compile(r'.+\.py")
def match?2? () :
with open ("temp.txt") as infile:
line count = 0
for line 1n infile:
line = line.strip/()
1f p2.search(line):
print (line)

Matching

e \w stands for any letter (small or capital) or any digit
* \W stands for anything that is not a letter or a digit

e Example: Matching “n”+non-letter/digit+”"t”

"Speak English!" said the Eaglet. "I don't know the meaning of half
They were indeed a queer-looking party that assembled on the bank

* \We need to double escape the backslash using normal
Python strings

e p = re.compile(r'n\wWt'")
e Oruse a “raw string” (with an “r” before the strinQ)

e In a raw string, the backslash is always a backslash

Matching

\s means a white space, newline, tab

\S means anything but a white space, newline, or tab
\d matches a digit

\t matches a tab

\r matches a return

Regular Expression
Functions

e Once compiled a regular expression can be used with

® match () matches at the beginning of the string and
returns a match object or None

® search () matches anywhere in the string and returns
a match object or None

® findall () matches anywhere in the string and does
not return a match object

Match Objects

e A match object has its own set of methods

group () returns the string matched by the regular
expression

start () returns the starting position of the matched
string

end () returns the ending position

span () returns a tuple containing the (start, end)
positions of a match

Regular Expression Gotcha

* Regular expression matching is greedy

e Prefers to match as much of the string as it possibly
can

e Example:

p3 = re.compile(r'.+\.py")
print (p3.search ("This file, hello.py and this file
world.py are python files"))

e Prints out

<re.Match object; span=(0, 42), match='This file,
hello.py and this file world.py'>

Non-Greedy Matching

e We can use the question mark qualifier to obtain a non-
greedy match.

®p = re.compile('o.+?0")

 Finds all non-overlapping, minimal instances

Advanced Topics

e |n this module we only scratched the surface.

e There is excellent online documentation if you need more
iInformation

e But this should be sufficient to do simple tasks such as
data cleaning and web scraping

