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Abstract—LH*RE is a new Scalable Distributed Data Structure 
(SDDS) for hash files stored in a cloud. The client-side 
symmetric encryption protects the data against the server-side 
disclosure. The encryption key(s) at the client are backed up in 
the file. The client may recover/ revoke any keys lost or stolen 
from its node. A trusted official can also do it on behalf of the 
client or of an authority, e.g., to imperatively access the data of a 
client missing or disabled. In contrast, with high assurance, e.g., 
99%, the attacker of the cloud should not usually disclose any 
data, even if the intrusion succeeds over dozens or possibly 
thousands of servers for a larger file. Storage and primary key-
based access performance of LH*RE should be about those of the 
well-known LH* SDDS. Two messages should typically suffice 
for a key-based search and four in the worst case, with the 
application data load factor of 70%, regardless of the file scale 
up. These features are among most efficient for a hash SDDS. 
LH*RE should be attractive with respect to the competition. 

Keywords-cloud; client-side encryption; key recovery, SDDS 

I. INTRODUCTION 
Many applications can benefit from fast, scalable and 

distributed storage that Scalable Distributed Data 
Structures (SDDS) offer. An SDDS receives data from 
client nodes and stores them at server nodes in a cloud, 
grid or P2P system. It adjusts the number of servers 
transparently for the application. The servers are usually 
outside of the control of the data owners, e.g., in a cloud. 
Many applications suited for SDDS need then to maintain 
confidentiality of the data on the servers. The cloud host 
may be usually trusted. It may not be the case however of 
insiders, having, e.g., routine maintaince access to some 
servers. Client-side encryption is then usually the most 
attractive goal. The downside is the difficulty of the 
(encryption) key maintenance. Loss, destruction, or 
disclosure can be disastrous. A third-party escrow service 
can safeguard keys and provide key recovery on request 
[1], [14].  These services are not widely used, perhaps 
because of legal and technical difficulties. Current 
industrial practices mainly advocate server-side 
symmetric encryption, unless “data security is 
paramount” [11, 3]. It is questionable how users feel 
about the resulting lack of control. Microsoft’s Encrypted 
File System (EFS) uses in addition a public key 
infrastructure, [9]. The application encrypts the 
encryption key used for a file with the application’s 
public key and adds it to the file header. The strategy is 
vulnerable to the application private key loss. To keep the 
files accessible even in such case, EFS may encrypt these 

keys with a domain (group) server public key and store 
them also with the files. The downside is that a successful 
intrusion into two servers may suffice to reveal all data at 
an EFS node. 

The research prototype Potshards takes a different 
approach [12].  It targets data records stored much longer 
than the average lifespan of any encryption system.  
Participants use secret sharing, [10], to break every record 
into K > 1 shares stored at different systems, each 
protected by an autonomous authentication procedure. 
The price is a high storage overhead, as every share has 
the same size as the original record. 

Instead of secret-sharing a data record for its secure 
storage, one may encrypt the record and secret-share only 
the encryption key, [2]. The keys are usually relatively 
negligible in size. The secret sharing storage overhead 
becomes negligible accordingly. We propose an SDDS 
called LH*RE for scalable files in clouds, grids based on 
this idea. LH*RE uses the client-side encryption, with one 
or many keys at the client. To prevent the key 
unavailability at the client or the key theft from the client, 
the keys are backed up in the file. The client or a trusted 
official may recover any keys. Likewise, one may revoke 
a key, rekeying the encrypted records.  

The backup stores every key as K > 1 shares. Each 
share resides as a share record at a different server of the 
file extending over at least some G ≥ K servers. The file 
may scale up its extent at will in practice, as well scale 
down towards G. The share records may migrate while 
the file evolves, redistributing themselves about randomly 
over the current file extent. Despite the moves, the 
scheme guarantees that no two shares of a key end up at 
the same server, even transitively. The file is always k-
safe, with K = k+1, i.e., no secret can be disclosed by an 
intrusion up to k-server wide. The value of k is file owner 
(creator) defined. Reasonable choices should be between 
3 and 63. For larger intrusions, even orders of magnitude 
larger, into file with extent N >> G, LH*RE provides still a 
high assurance, e.g. at least 99%. The critical intrusion 
size is about proportional to N, with the ratio, that we call 
resilience (level) F of 31-93 % for the above assurance 
and k values, and for single encryption key used. In other 
words, e.g., for a file over 2K servers, even the intrusion 
1.8K-server wide, should still leave the attacker with only 
1% chance of success. Higher assurance for the same k 
lowers progressively F, which remains nevertheless very 
substantial. As our analysis shows, even for 0.99999 

Witold Litwin 
Université Paris Dauphine 

Paris, France  
Witold.Litwin@Dauphine.fr 

Sushil Jajodia 
George Mason University 

Fairfax, USA  
Jajodia@GMU.edu 

Thomas Schwarz, S.J. 
Universidad Católica de Uruguay 

Montevideo, Uruguay 
TSchwarz@CalProv.org 

2010 IEEE 3rd International Conference on Cloud Computing

978-0-7695-4130-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CLOUD.2010.41

354



assurance, we have F = 0.7 for k = 32 and F = 0.84 for 
k = 64. Likewise, more encryption keys lower F a little as 
well. For instance, the F values similar to the above apply 
to 0.99 assurance and 1000 encryption keys.  The benefit 
of more keys is the accordingly smaller disclosure, if an 
intrusion succeeds in disclosing some keys.   

 The access and storage performance of LH*RE should 
be in practice about those of LH*, as already hinted, [5, 
6]. Below, Section II introduces LH*RE. Section III 
analyses the assurance. Section IV discusses performance 
factors. Section V concludes the article.   Space 
limitations make us referring sometimes the reader to the 
technical report [4] for complements.  

II. LH*RE SCHEME  

A. File Structure and Addressing  
LH*RE reuses the file structure and addressing 

principles of LH* SDDS, as, e.g., in [7] and [5]. Some are 
modified towards the new goal. We discuss briefly these 
LH*RE features now. They are crucial for the LH*RE file 
safety, see Section 3. 

An LH*RE file is a collection of records each with the 
primary key that we call here Record Identifier (RID). A 
users/application manipulates the file from the client 
(node). Records are in buckets of some capacity of b >> 1 
records each. Every bucket is at a different server. 
Buckets have consecutive logical addresses 0, 1 ... N–1. 
Here, N is the extent, equals to the current number of 
buckets/servers of the file.  

The file scales up through splits triggered by inserts, 
overflowing the buckets. Every split adds bucket N to the 
file, hence N := N+1 afterwards. If the file should (rarely) 
scale down, after many deletions, a merge reverses the 
latest splits. A specific coordinator component triggers 
splits and merges. A bucket reports to the coordinator 
overflows and underflows. The coordinator maintains the 
file state (n, i), where n is the split pointer since it points 
to next bucket to split and i is called file level. We always 
have N = n + 2i with 0 ≤ n < 2i. The initial state, say (ñ, ), 
defines the minimal and initial extent G. We have 
G ≥ k+1, where k is the file owner (creator client) defined 
as we spoke about. It is likely to be in practice in the 
range of 3 ≤ k ≤ 63, with larger k making the file safer as 
we discuss in Section 3.2. Notice that if the file has 
several clients, as it should be usually the case, they all 
apply the owner’s k.  

The coordinator sends a message to bucket n 
requesting the split. It is usually not the bucket that has 
triggered the split, according to the well-known principle 
of the linear hashing (LH). The coordinator provides the 
physical address of the spare node to become the server of 
the new bucket. The determination of this server includes 
a specific precaution, we discuss in Section 3. Bucket n 
recalculates the address of each of its record as hi+1 (c), 

where hi+1 is an LH-function, e.g., as simple as c mod 2i+1. 
Each split moves about half of the records to bucket n+2i 
that is N. After the split, the coordinator updates n to n+1 
mod 2i. If n = 0, then i:= i +1.  

The major well-known result of the scheme is that the 
logical bucket address space is always contiguous, 
without need for any distributed hash table (DHT), 
otherwise mandatory, [15].  The correct address a, where 
RID c should locate its record is given by LH address 
calculus as follows: 
(1)       a := hi (c); if hi(c) < n then a := hi + 1 (c);  

On the client side, every client maintains a private 
image of the file state, say (n’, i’). It starts with (ñ, ), i.e., 
with the file having the G initial buckets 0,1..G-1. The 
client calculates the address of a key-based query (search, 
insert, update or delete) using (1) over the image. The 
image can be outdated. As any SDDS, the LH*RE indeed 
does not post splits and merges to the clients. The query 
can reach an incorrect bucket that is not the correct one. 
In presence of merges, and only then, the extent N’ of 
client image can be N’ > N in which case the query can 
even reach a spare without any bucket. In this case, the 
client finds an error message returning from the server or 
no message after a timeout. It then resends the query 
using the initial (ñ, ) state, guaranteeing an address 
within file extent. Every bucket receiving a query can find 
through inherited LH* test-and-forward algorithm 
whether it is the correct one. If not, it forwards the query 
to another bucket which does the same. The algorithm is 
as follows. Here a is the address of the executing bucket 
and j = i+1 used for the latest split of the bucket, retained 
by each bucket and called bucket level: 
(2)  a' := hj (C) ; if a' = a : exit ; 

a'' := hj-1 (C) ; if a'' > a  : forward to a'' ; exit ; 
forward to a' ; exit ; 

It is known for LH*, hence is true for LH*RE as well, that 
in the absence of merges, algorithm (2) delivers the query 
to the correct bucket in at most two hops. In presence of 
merges, one more message may suffice.  

The correct bucket receiving a forwarded message 
sends a specific Image Adjustment Message (IAM) to the 
client. The client processes an IAM as LH* does, hence 
we avoid discussing it here. A more accurate image 
results from, i.e., with N’ closer to N. Same error cannot 
occur twice. 

An LH*RE record consists of the RID and of the non-
key fields at Figure 1. In some popular way, the I-field 
identifies the client or application that stored the record. 
The T- field (to be discussed in more detail) identifies the 
encryption key for recovery and revocation. The F-field is 
a flag indicating whether this is a data record or an 
encryption (key) share record we discuss soon. The P-
field contains either the encrypted data record or the key 
share. 
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    The LH*RE client manipulates the non-encrypted non-
key fields reusing the LH* scan operation. A scan is like 
Map-Reduce. The client requests from every bucket all 
records fulfilling non-key criteria in the query (the Map 
phase). By multicast or forwarding the scan reaches every 
bucket and only once, including eventually buckets 
N’…N-1 beyond the client image. Buckets process the 
scan in parallel (the Reduce phase). They send results to 
the client only, (LH* scans may aggregate the results over 
intermediate servers). The rationale is the safety of the 
LH*RE file (Section 3).  

B. Encryption Key Storage and Backup 
LH*RE client encrypts every payload before sending it to 
the file as already mentioned. The encryption follows any 
strong symmetric encryption scheme. The client may use 
one or many (encryption) keys. It stores the keys locally,, 
in table T[0,..., t–1] with t being the number of keys in 
use. We call T encryption key chain. New keys are added 
to the end of T, dynamically perhaps.   

Figure 1: LH*RE Record Structure 

The client also backs up each key in the file. The 
backup uses the secret splitting (e.g. [2, PHS03]). It 
breaks every key into K=k+1 (key) shares. Here k is the 
parameter chosen by the file owner. For every key C to 
back up, the client first generates k random strings of the 
same length as C.  These become key shares C0, C1…Ck-1.  
The last share is Ck = C0 ⊕ C1 … ⊕ Ck-1 ⊕ C. We have 
C = C0 ⊕…⊕ Ck. This calculus recovers C.  

The client forms for each share a share record. For this 
purpose, the client initiates the F and I fields as already 
discussed. Next, the T field gets the index of C in T. The 
P-field gets the share. Finally, the client generates the 
RID for share. The RID defines through (1) the correct 
address of the record, where it will get stored. The set of 
the K RIDs fulfills two conditions. First, any two values 
are independent. (2)  In the minimal file of G 
buckets, G ≥ K we recall, every RID provides a different 
correct address for its share. These requirements provide 
for the security of the scheme as it will appear.  

C. Data Record Operations 
An application inserting a record provides it to the 

LH*RE client in the non-encrypted form: (RID, D), where 
D are non-encrypted data.  The client retains the RID, say 
r, sets F to indicate a data record, and fills in the identify 
information in the I-field. Next, it hashes r over t, e.g. 
calculates l = r mod t, puts l into T-field, reads T(l) and 
uses the key found to encrypt D into P-field.  Finally, it 
sends the result to the bucket given by (1) for r over the 
client image.  

Reversely, if the application searches the data record, 

say R, with RID r, the client searches the record with r in 
the file. If it gets it, then it explores the T-field, and gets 
the key from T accordingly. It then decrypts P into D 
field and delivers R = (r, D) to the application.  

We skip the processing of a delete and of an update as 
obvious.  Notice however that if keys were added to T
since the record was last written, the update may end up 
using a new encryption key. 

D. Encryption Key Recovery and Revocation  
The client or the authority requests these operations. 

The key recovery restores the keys from their backup 
when the original T is unavailable. The client issues the 
scan over I-, T-, and F-fields. The authority does the 
same, but also specifies the client to receive the result. 
Each server searches all the records with given I, and with 
F indicating that these are key shares. It send them all 
(directly) to the specified client. The client groups the 
shares received by T-field. Each group has K records, 
obviously. The XOR operation over P fields in each 
group recovers every key. The recovered keys are 
reinserted into new T.  

The client or the authority may alternatively revoke 
some keys.  The need can be caused by a theft of the 
client. Alternatively, a terminated employee should not 
retain the data access capabilities. The key(s) to revoke 
are first retrieved from T or recovered from the file. An 
obvious scan recovers then all data records encrypted with 
each key. The client decrypts each P-field, re-encrypts the 
P-field with a newly created key and re-inserts the record 
into the file. See [4] for details skipped here. 

III. SECURITY ANALYSIS 

A. Threat Model 
LH*RE stores the records in the cloud; we disregard 

(here) attacks on clients, as outside the cloud. We focus 
on attacks on the servers. The main threat should come 
from insiders, with access to some server(s), usually at 
most k or to a number lesser than the file extent. The 
attacks are on individual servers (buckets), one by one. 
Larger attacks are less and less likely. In particular,, no 
intruder is able to break into all the servers of the file in 
the cloud. Next, we assume the industrial strength 
encryption. The only practical way for the attacker is then 
to break some secret, recovering a key from its shares. 
Having the key, the attacker attempts to disclose the 
records it encrypts.  

Furthermore, we consider that the intruder only tries to 
read the data. S/he does not seek to maliciously modify 
the code. We finally disregard the network snooping. In 
[4], we discuss LH*RE variants for relaxed models, e.g. 
with the snooping.   

B. Key Safety 
LH*RE is k-safe. We recall that it means that, 
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regardless of the file expansion from G, an intruder has to 
break then into more than k servers to find all shares of 
some key. The intruder can capture a share by either 
finding it in the bucket of the intruded server or by 
obtaining it in transit. The latter happens when a client 
creates a key and the share record gets forwarded. The 
scan delivering the share records directly to the client 
does not create this problem.  

To prove k-safety, it suffices to show that no expansion 
could lead to two shares of a secret at the same address, 
correct one or during the forwarding. The formal proof is 
in [4], because of space limitations. Here we provide an 
informal presentation. The buckets created by splits of 
bucket a are descendents of a. Bucket a is their ancestor. 
Recursively, descendants of descendants etc. are also 
(indirect) descendents. For every bucket a in the minimal 
extent G, bucket a and the descendants form the 
descendent set Da. Each Da is ordered by the (unique) 
order of creation of its elements, defined by the split 
pointer n trips. In fact, it is tree structured with levels 
defined by the successive values of i, while the file scales 
up. According the LH splitting principles in Section 2, we 
have for any a, Da = {a, a+2i, a+2i+1, a+2i+2i+1…}, with i 
being the file level for the state (a, i), when bucket a splits 
for the first time. Observe from Section 2 that i is the 
minimal integer so that a < 2i.  

Example: Let it be k = 3 and G = 4.  The four ancestors 
are buckets 0, 1, 2, and 3.  We have D0 = {0, 4, 8, 12, 
16...}, D1={1, 5, 9, 13, 17...}, D2={2, 6, 10, 14, ...}, and 
D3={3, 7, 11, 15, ...}.  Consider now that we choose 
G = 6, so to make the life of an intruder little harder, since 
the four shares, even initially, are randomly somewhere 
between six buckets. We now have D0 = {0, 8, 16,...}, 
D1={1, 9, 17, ...}, D2 and D3 as before, but also D4 = {4, 
12…} and D5 = {5, 13…}.  

A share record may potentially move from a splitting 
ancestor to any of its direct descendants. Then, it may 
move to any indirect one, following the above discussed 
order and resulting paths in the tree. These are the only 
possibilities for the moves, regardless of how far N could 
scale up from G. In other words, Da is the correct address 
subspace for address a. The LH*RE splitting principles in 
Section 2 imply on the other hand that these subspaces 
partition the entire address space {0, 1, 2…}. As we 
stated finally, the client chooses RIDs of the share records 
of a key so that they are all in different buckets among 
0…G-1. Hence, regardless of N, the splits can never move 
two of them into the same bucket.  

An attacker breaks however not directly into buckets 
but into the servers. Hence, any server should get during 
its life for the file only one bucket or, at most, buckets 
within the same Da. Otherwise the safety could obviously 
get destroyed during merges disallocating the servers 
followed by splits reallocating them. The discussed 
precaution is (easily) enforced by the coordinator, as we 

said in Section 2.  
Finally, we did not elaborate in Section 2 on the test- 

and-forward algorithm (2), because of the space limits. 
We prove in [4], but one may see from (2) rather easily, 
that the one or two hops at most it creates, also follow 
only addresses in the Da with a being the correct address 
of the RID in the query in the file extending over G 
buckets only. Hence, for any key share record, any client 
image and any N >G, the eventual forwarding cannot 
traverse or reach the bucket and server with some other 
key share record of the key already there, or having 
transited through.  No key or data operation can thus 
violate the k-safety of LH*RE file.      

C. Assurance 
LH*RE file safety concept gives a simple measure of 

confidence that an intruder cannot read or write any data 
records. It gives the lower bound K = k+1 on the number 
of intrusions (intrusion extent) necessary for any success.  
We show now that, in practice, even a much higher extent 
usually still gives only a little chance to the intruder of 
disclosing any secretes. For the proof, we reuse the 
popular concept of assurance, [8]. We formalize it here as 
the probability that an intrusion into x out of N buckets 
does not disclose any keys.  Assurance depends on x, on 
N, on t and on k. We first aim at the average number of 
keys obtained by the intruder. We calculate it first for the 
use of single key, then - of multiple ones.  Afterwards, we 
analyze the disclosure that we define as the expected 
amount of records decrypted by the intruder. 

1) Single Key: We first calculate the assurance in a file 
with a single key. We use our basic threat model; hence 
the attacker does not know which bucket is located where.  
Otherwise, an attacker that has found a key share record 
in a bucket with number in Di no longer needs to look for 
this key share in buckets with numbers also in Di.  We 
assume that the intruder has gained access to x out of N 
buckets.  We know that K= k+1, of these buckets contain 
a key share record and need to calculate the probability 
that all of these K buckets are among the x accessed 
buckets.  We determine the probability by counting. There 
are then  ways to select the x buckets that the intruder 
broke into. If the attacker has intruded into all K sites with 
key shares then there are  ways to select the 
remaining x – K buckets intruded into but without key 
share. Thus, the probability that the intruder obtains a 
given set of K key shares with x intrusions is  

. 
The assurance against disclosure of a single key is 
q1(N,x,K) = 1 – p1 (N,x,K). 

Figure 2 plots q for a file with 32, 64, 128, 256, 512, 
and 1024 server sites. We calculate assurance for four 
(top) and eight key shares. Since we would often be given 
a required assurance (expressed in number of nines), we 
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drew the x-axis at the 99.999% (five nines) level.  Even 
for moderately large files the required number of 
intrusions has to be much larger than k+1. We call the 
maximum number of sites whose intrusion does not let 
assurance fall under a given level the critical number x0. 
For example, a file with extent N = 512 and k = 7 has 
critical number  for two and 124 for five nines 
assurance. The ratio F = N/x0 is almost constant, as can be 
seen from the almost even spacing on the logarithmic x-
axis. For larger numbers of key shares, we give the 
critical point x0 of attacked sites up to which the assurance 
remains higher than a certain value (Table 1). We give 
values for K = 32 and K = 64 key shares, with N ranging 
from 512 to 8192. 

 

 

 
Figure 2:  Assurance in an LH*RE file with 4, 8 key shares (top, bottom), 
hence k = 3, 7, extending over 32, 64, 128, 256, 512, and 1024  servers.  

The x-axis gives the number of intruded servers.  

 K=32 K=64 
N x0 

2 nines 
x0 

5 nines 
x0 

2 nines 
x0 

5 nines 
256 223   183 240 219
512 445  362 478 433

1024 888  719 955 860
2048 1775  1433 1908 1716
4096 3549  2863 3813 3426
8192 7096 5721 7625 6848

 
Table 1: Critical number of intruded sites (out of N) with assurance 

falling below the two nines / five nines level if more sites are intruded. 

Figure 3: Values of F for K=4, 8,16,32,64 and two nines. 

Figure 3 plots further the ratio F= x0/N found through 
simulations for various k’s and up to rather large N = 4K.  
As one sees, the ratio appears surprisingly constant, 
thought in fact it falls slightly when N grows. The formal 
rationale for this nice behavior is under investigation. We 
call F the resilience (level) of the file and we say that the 
file is F-resilient. E.g., it is 0.93-resilient, regardless of N, 
for the two nines assurance and K = 64 and at least 0.31-
resilient already for K = 4, at Figure 3. In both cases, the 
single-key LH*RE file should thus in practice easily resist 
to intrusions orders of magnitude larger than k, as we 
have promised. For instance, if the user wishes the file to 
be 63-safe, (i) s/he creates it with G  64 buckets and 
single encryption key, then (ii) e.g., if the file scales up to 
4K buckets, the intruder has at most 1% likelihood to get 
any keys, as long as s/he did not managed to break into 
more than 0.93*4K = 3720 buckets (Figure 3). Clearly an 
exploit for a well managed cloud. It is also clear that if the 
file resilience is the primary concern, it also pays to 
choose a smaller bucket capacity b, increasing the file 
extent N.  

2) Multiple Keys: The assurance against retrieval of 
one key out of r keys is qr = (1–p1(N,x,K))r reflecting the 
lowering of assurance when using multiple keys. Figure 4 
and Figure 5 plot qr for r = 10 and r = 100, respectively, 
with a two nines threshold. In comparison with Figure 2 
they show the effect of more keys. Nevertheless, the 
threshold of successful attacks is still very high. For 
instance, with a single key, K = 4, and N = 64, a value of 
x = 21 still does not press assurance below the 99% mark.  
For r = 10, this value decreases to about 13, and for 
r = 100, to 8.  This is still more than twice the safety 
rating of k = 3. Of course, while the chance of a breech 
increases with r, the extent of the breach diminishes as 
most successful attacks will only yield a single key given 
a high ratio of N/k. We also calculated assurance for 
higher values of K and give the results for K=32 and two 
nines in Table 2. We notice that for N large enough the 
ratio of critical point to N remains almost constant, though 
slightly falling. For K =64 and two nines, these ratios are 
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between 0.919 and 0.898 for r= 10, and between 0.882 
and 0.867 for r=100.  
The curves show that increasing r with N is secure. For 
example, Figure 2, for k = 8 and r = 1, the assurance for 
N = 32 remains above our threshold of 0.99 for  20-
bucket wide intrusion. For the same x, Figure 4 shows that 
if the file reaches the extent of about N = 48, we can 
increase r to 10. The assurance remains above the 
threshold, while the expected gain for a successful 
intruder decreases by ten. Similarly, Figure 5 shows that 
if N increases to about 55, we can increase the number of 
keys used to 100. The quantity of records becoming 
accessible to the attacker shrinks again by 10.The curves 
illustrate also that larger values of k compensate for larger 
r. For instance, Figure 4, in the case of r = 10 and N = 64, 
four shares put the assurance above the threshold for a 12 
bucket intrusion, while k = 8 shares allow a 29 bucket 
intrusion, an increase of x by about 2.5. 

We also calculated assurance for K = 32 and K = 64 
and observe, Table 2, very high assurance and only very 
slightly varying resilience level F for each r.  F decreases 
for greater r, remaining nevertheless impressively high: 
over 70% for K = 32 and 84% for K = 32, for our largest 
r = 1000 keys. 

D. Disclosure size 
Disclosure d measures the quantity of data revealed by 

a successful intrusion. More precisely, we define d to be 
the expected proportion of records revealed by an 
intrusion into x servers. As we will see, d does not depend 
either on the distribution of data records to buckets nor on 
the distribution of records encrypted with a certain key.  
The attacker has intruded into x servers each with a 
bucket, has harvested all key share records, and is now in 
possession of any encryption key for which s/he has 
gathered all key shares. S/he possesses now a given key 
with probability: 

 
Since on average, s/he has obtained a proportion x/N of all 
data records encrypted with this key and since s/he needs 
encryption key and data record to obtain access to an 
application record, the attacker obtains on average the 
following proportion of all application records encrypted 
with this key:  

 
Since this is a proportion, the same expression not only 
gives the disclosure for a single key but also the 
disclosure for a number of encryption keys. In particular, 
 

K=32 r=10 r=100 r=1000 
N=256 209 195 183 
N=512 415 387 362 
N=1024 828 771 719 

N=2048 1653 1539 1434 
N=4096 3304 3075 2863 
N=8192 6605 6147 5722 
Range 0.82−0.81 0.76−0.75 0.71−0.70 

 
K=64 r=10 r=100 r=1000 

N=256 233 226 219 
N=512 462 447 433 
N=1024 922 891 860 
N=2048 1841 1777 1716 
N=4096 3680 3551 3427 
N=8192 7357 7098 6849 
Range 0.91-0.90 0.88-0.87 0.86-0.84 

 
Table 2: Critical values for K = 32 and 64, two nines, and number of 

keys r from 10 to 1000. 

disclosure does not depend on the number of encryption 
keys used. We also calculate conditional disclosure, 
defined to be the disclosure (measured again as a 
proportion of accessible application records over total 
application records) given that x intrusions resulted in a 
successful attack, i.e. one where the attacker has obtained 
at least one key and therefore one or more application 
records. The probability p for this successful attack is 
p = . We set q = 1 – p. The probability of 
obtaining at least one out of r keys is .  The 
conditional probability of obtaining exactly s out of r keys 
given that we obtain at least one key is  
and the expected number of total keys obtained given that 
we obtained at least one is  which 
after factoring out  is the value of the expected value in 
a binomial distribution and evaluates to rp/P. The 
expected number of records encrypted with s out of r keys 
is s/r.   

The expected proportion of LH*RS data records 
obtained with x intrusions into N buckets is x/N (even 
though LH* buckets are not of the same size). The 
conditional disclosure is given as the expected number of 
keys disclosed (given that this is a successful intrusion) 
divided by r and multiplied with the expected number of 
data records obtained, hence is  

  . 

Figure 6 plots the resulting (conditional) disclosure d 
in two contour plots. Each plots d as a function of N and 
r, for k = 7 with x = 8 for the left plot and x = 32 for the 
right one. The left plot shows thus the minimal intrusion 
able to disclose any data. The right one shows, as an 
example, a four times wider one. Each shaded region is 
for d equal to or under the value on it at the figure. These 
range from 0.0001 to 0.0006.  As an application of the 
plots, consider for instance that the user creates indeed a 
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7-safe file, expected to scale over N =100 buckets. The 
left plot shows that choosing r =1000 keys results in  
d < 0.0001. The lucky attacker gets thus access to less 
than 0.01% of application data. Instead of 8/100 = 8% for 
a single key. The right plot shows that even the four times 
wider intrusion still discloses only d  0.03% of data, 
instead of up to 32%. Notice the thumb rule matching the 
intuition: d for r keys is about r times smaller than for a 
single key. If the file still doubles, reaching N = 200, the 
dashed line shows that d decreases to again to at most 
0.01%. As the analysis has shown, the price to pay is a 
moderately smaller resilience and a larger T of course. 
The d values clearly illustrate nevertheless the potential 
interest of multiple encryption keys for some users. 

4) Refinements of Intrusion Scenario: Our basic 
intrusion scenario limits the capability of the attacker 
perhaps sometimes more than s/he will be able to do. By 
analyzing the data from intruded servers, a savvy attacker 
can reconstruct the location of at least some buckets. The 
attacker may then prefer intruding the servers not yet split 
in the current round. These contain indeed twice as many 
key shares, by properties inherited from LH*. The 
attacker may also remove from the target list the servers 
from the descendent set with an already obtained key 
share. Such scenarios can be modeled as interesting 
optimization problems for the attacker, but their analysis 
requires advance knowledge of LH*. We therefore 
discuss it in [4]. It turns out that access to discussed 
information, while useful, does not change much the 
assurance and resilience figures. We give some thoughts 
therefore also to even further refinements of the 
intrusions. For instance, an attacker could triage servers 
based on the results of vulnerability scan. Likewise, the 
costs of an attack to a site could depend on the site, etc.  

IV. PERFORMANCE 
LH* has been implemented and measured [7, 5]. The 

result apply to the inherited features of LH*RE. Especially, 
since the LH*RE client manages encryption with the 
storage and processing costs of key shares that should be 
usually negligible. RID-based operations such as look-ups 
and inserts of records should have then service times 
dominated by messaging and the difference to LH* 
should not be noticeable. It should be the same for the 
load factor, being thus usually about 70%.    

With respect to LH*RE exclusive features, the key 
recovery time is dominated by the LH* inherited scan 
time. This one is O (2N) messages. The exact value 
depends on the number of buckets beyond the client 
image, in rather complex way. Key revocation time is the 
longest, being dominated by the messaging for key 
recovery, then for the retrieval and reinsertion of re-
encrypted records. It includes thus at first two rounds of 
scans with their above complexity. The first is the scan 
for the key shares. Follows the scan for the records 

encrypted with the recovered keys. Finally, there are 
O (M) messages for the re-insert of M re-encrypted 
records.  

V. CONCLUSION  
LH*RE provides the client side encryption for scalable 

distributed hash files in the clouds, with the minimum 
encryption related overhead. Its novelty consists 
especially in the secure backup of the client’s encryption 
keys within the cloud. The file should typically resist to 
intrusions, fully or with high assurance against even very 
extensive attacks. The disclosure in the bad case may be 
highly limited. The scheme appears an attractive choice to 
the current competitors.  

Future work will aim on experiments. Also, we will 
analyze attractive developments, we hint to in [4]. For 
instance, one may dynamically scale up the secret size. 
One should be able on the other hand to add the high-
availability, protecting against share and data loss, e.g., as 
in [5]. There are also ways to generalize the threat model. 
Next, it may be useful to re-encrypt the shares. Finally, 
one may analyze the portage to other popular SDDSs, 
especially the DHT based.      
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Figure 4:  Assurance in LH*RE file with 10 keys and 4 and 8 (left, right graph) key shares, hence k = 3,7 respectively, extending over 32 (left 

curve), 64, 128, 256, 512, 1024 (right curve) servers.  The x-axis is the intrusion size. 

      
Figure 5: Assurance in LH*RE file with 100 keys and 4 and 8 (left, right graph) key shares, i.e., k = 3, 7 respectively, extending over 32 (left 

curve), 64, 128, 256, 512, 1024 (right curve) servers.  The x-axis is the intrusion size.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Disclosure for file with k = 7, under 8 and 32 intrusions. We vary N from 20 to 400 and r from 1 to 1500. 
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