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1 Introduction

Assume a distributed database consisting of a large number of objects that can

be created, deleted, and modified by manipulations. We want to capture the

state of the system in a very small bit-string (a signature as in [2]). We now hash

(map) the set of all possible manipulations into a finite, non-associative algebra.

We can capture the state of an object also in a signature, an element in that

algebra, initially 1. Whenever a manipulation changes an object, we multiply

the current signature of the object with the signature of the manipulation.

Since there are frequent manipuliations that change a large number of objects

in a given set (such as increasing the salary of all objects representing faculty),

the distributive law becomes useful. The state of the database is given as the

sum of the signatures of all objects. Since manipulations do not commute,

the finite algebra made up of all possible (non-zero) signatures needs to be

1



non-communative, thus, it also needs to be non-associative. Furthermore, the

algebra should be a division algebra, i.e. a vector space over a finite field with a

multiplication such that the left multiplication of non-zero elements is invertible.

A simple way to come up with candidate algebras is to use the isotope of a Galois

field GF(2k).

The concept of isotopy goes back to A. A. Albert [1]. Our application leads to

the mathematical question on the classification of finite algebras up to isotopy.

Finite algebras of dimension two are isotopes of Galois fields. Few work seems

to have been done in this area, an exception being [3, 4]. In this article, we

present a classification for algebras with 8, 16, and 27 elements. To do so, we

reduce the number of possibilities using elementary mathematical arguments

and then use software for a final, brute force calculation. The vast majority

of the work presented here is spent verifying the software, while the actual

programs run fast. Due to a combinatorial explosion, obtaining similar results

for larger algebras is currently computationally infeasible. The limiting factor is

the size of main memory and the much slower performance of hard drives which

leads to runtimes of months and years regardless of parallelization. Further

mathematical insight is needed here. Because of the bit-based nature of current

computing, results in characteristic 2 are especially valuable.

2 Definition and Basic Properties

Definition 1. A non-associative division algebra A over a field Φ is a non-

associative division algebra such that for every element a 6= 0, the left-multiplication

La : A → A, x 7→ a · x is a bijection.

Definition 2. Let f, g, and h be vector space automorphisms of a non-associate
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division algebra A. The (f, g, h) isotope of a (non-associative) algebra (A, ·) is

the same algebra (A, ?) with a new multiplication defined by x ? y := h−1(f(x) ·

g(x)).

Isotopy is an equivalence relation. Obviously, an isotope of a division algebra

is also a division algebra. A finite-dimensional algebra is a division algebra if

and only if the equation x · y = 0 implies that x or y are zero. Thus, we

can equivalently identify finite dimensional division algebras through the right

multiplication.

2.1 Existence of Unity

If A is a division algebra with left multiplication L and a ∈ A is not zero, then

a is a left one in the isotope with left multiplication L̂x = L−1
a ◦Lx. With a little

bit more work, we can find an isotope with a (left and right) one. Assume that

a ∈ A is a left one. Form the isotope with left multiplication L̂x = R−1
a ◦Lx◦Ra.

Clearly, a is still a left one in this isotope, but it is also a right one because x?a

= R−1
a (x(aa)) = x. This important observation is due to Kaplansky, but seems

to be unpublished (according to H. Petersson, Hagen).

2.2 Isotopes of Fields

Assume that (A, ·) is a field with one 1. Assume that its (f, g, h)-isotope (A, ?)

has a one e. This implies h = Lg(e) ◦ f and g = Lg(e)/f(e) ◦ f. In particular, we

have the identity f(a ? b) = h−1
(

g(e)f(a)f(b)
f(e)

)
. From this, it follows that (A, ?)

is associative. Thus:

Proposition 1. An isotope of a field that has a one is also a field.
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3 GF(3)3

We start out with a base B consisting of a one 1 and two elements x, y of GF(3)3.

Obviously

MatB(Lx) =


0 a b

1 c d

0 e f


with scalars a, b, c, d, e, f ∈ GF(3). In addition, we know that all linear

combinations of the identity matrix and Lx are invertible. Replacing x′ by

α · 1 + β · x in B changes this matrix to

MatB(Lx′) =


0 β2a− α2 − αβc βb− αd

1 2α + βc d

0 β2e α + βf


To form a division algebra, all non-trivial linear combinations of the identity

matrix and Lx have to be invertible. A computerized brute force calculation

reveals that the set of possible left multiplications with the x has 24 equivalence

classes. A·Lx ·A−1 is the left multiplication matrix with respect to the same base

in the (A, id, A−1)-isotope of the original algebra. Accordingly, we introduce a

further equivalence relation on the set of all possible left multiplications of the

above form that now only has 5 equivalence classes. That is, we can assume

without loss of generality and up to isotopy that Lx is one of the following

matrices:
0 1 1

1 0 0

0 1 0




0 1 1

1 1 0

0 1 0




0 0 2

1 1 0

0 1 0




0 2 2

1 1 0

0 1 0




0 0 1

1 0 1

0 1 0


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The choice of these particular matrices is an artifact of the enumeration of

matrices in our program. Similarly,

MatB(Ly) =


0 a b

0 c d

1 e f


with (different) scalars a, b, c, d, e, f ∈ GF(3). Replacing y by y′ = α · 1 + β · y

in B changes this matrix to

MatB(Ly′) =


0 βa− αe −α2 + β2b− αβf

0 α + βc β2d

1 e 2α + βf


This gives of course again 24 equivalence classes of matrices. Taking the identity

matrix, a matrix from the first list, and a matrix from the second list defines a

non-associative algebra. However, it turns out that only 10 of them are division

algebras. A final brute force calculation reveals that all these algebras are

isotopes.

4 Algebras of size 4, 8, 16

In the case of four elements, we can use elementary case distinctions:

Proposition 2. GF(4) is the only division algebra with unity 1 over GF(2) such

that every sub-algebra generated by 1 and an arbitrary element x has dimension

at most 2.

Proof: Since Lx is invertible for x 6= 0, x2 = x implies either that x = 1 or that

x = 0. If every sub-algebra generated by 1 and x has dimension at most 2, and

x 6= 0, 1, then x2 = x+1. If x and y are linearly independent and not equal to 1,
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we can apply this equation to x+y and obtain xy = yx+1. Finally, if we apply

this last equation to three linearly independent elements x, y, and z, neither of

which equal 1, we obtain (x + y + z)2 = (x + y + z), which is a contradiction.

Hence, the dimension of such an algebra cannot exceed 3. However, as we will

see, it can also not have dimension 3. For assume a basis (1, x, y). Since x

already has inverse 1+x, the product xy cannot equal 1. xy = x implies y = 1,

a contradiction, and xy = 1 + x means yx = x, also a contradiction. Hence we

remain with xy = x + y or yx = x + y. In the first case, (1 + x)(1 + x + y) = 0

and in the second (1+x+y)(1+x) = 0, a contradiction. Hence, such an algebra

can only have dimension 2, must have a base (1, x) with x2 = 1 + x, i.e. must

be GF(4).

Proposition 3. The only division algebras over GF(2) of dimension 3 are

isotopes of GF(8).

Proof: According to Proposition 2, there exists an element x such that 1, x, x2

are linearly independent. With respect to this base, the matrix representation

of the left multiplications L1, Lx, and Lx2 are given by
1 0 0

0 1 0

0 0 1

 ,


0 0 ∗

1 0 ∗

0 1 ∗

 ,


0 ∗ ∗

0 ∗ ∗

1 ∗ ∗

 .

This gives us 29 possible algebras. Many are not division algebras and we can

apply Proposition 1 to ascertain that those that are are indeed fields. Alterna-

tively, we can find an explicit isotopy relationship to GF(8). In both cases, a

brute force calculation proves the theorem.

Recall that the opposite algebra Aop of an algebra A (with multiplication ·)

is the same vectorspace, but a new multiplication defined by x ·op y = y · x.
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Theorem 1. There are three isotopy classes among the division algebras of di-

mension 4 over GF(2). One class contains GF(24), and any of the other two

classes contains the opposite algebras of the remaining class. contains the op-

posite algebras of the other.

Proof: We classify these division algebras using the matrix representation of

the left multiplications with respect to a chosen basis. For convenience of pre-

sentation, we encode a column vector t(b1, b2, b3, b4) with coefficients in {0, 1} as

the hexadecimal digit b1∗8+b2∗4+b3∗2+b4∗1 ∈ {0, 1, . . . , 9, a, . . . f}. Because

of Proposition 2, any four-dimensional division algebra over GF(2) contains an

element x such that 1, x, x2 are linearly independent. Assume that x3 := x · x2

is in the linear span < 1, x, x2 > of 1, x, x2. We expand 1, x, x2 to a basis of the

algebra and have with respect to this base

L(x) =



0 0 ∗ ∗

1 0 ∗ ∗

0 1 ∗ ∗

0 0 0 ∗


and either L(x) or L(x + 1) is not invertible. Therefore, 1, x, x2, x3 is a base.

With respect to this base, the matrix for L(x), L(x2), and L(x3) respectively

must have the form

0 0 0 1

1 0 0 ∗

0 1 0 ∗

0 0 1 ∗


,



0 ∗ ∗ ∗

0 ∗ ∗ ∗

1 ∗ ∗ ∗

0 ∗ ∗ ∗


,



0 ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗

1 ∗ ∗ ∗


.

The small number of possibilities (228) allows us to use computer software to

determine the isotopy classes. To keep the runtime under control, we first
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generate a list of all invertibe 4 by 4 matrices. We use this list to decide

for each possible assignments of the free variables (the stars in the preceeding

equation) whether the resulting algebra is a division algebra. This gives us 178

division algebras. We then determine isotopy classes by identifying in a first

pass whether for X ∈ GL(4) and algebras A and A′ we have

X{L(a)|a ∈ A}X−1 = {XL(a)X−1|a ∈ A} = {L′(a′)|a′ ∈ A′}

This leaves us with 6 equivalence classes under this relation with finer equiva-

lency classes. Our second, much more compute-intensive pass then uses a brute

force enumeration of all pairs of invertible matrices X and Y whether

X{L(a)|a ∈ A}Y = {L′(a′)|a′ ∈ A′}

This leaves exactly three equivalence classes. One has representative GF(16),

the other ones are given by L(1), L(x), L(x2), and L(x3) equal to (8421, 4219,

21f5, 1a87) and (8421, 4219, 2945, 15f3). It turns out that the latter two algebras

are opposite algebras of each other.

I have not succeeded in proving or disproving that the only division algebras

of dimension 3 over a field GF(p), p a prime, are isotopes of fields and leave it

as a conjecture.
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