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Abstract 
 

For many storage providers, the cost of providing 

service calls exceeds the costs of the hardware being 

serviced. In this paper, we show that zero-

maintenance, small disk arrays are too expensive, but 

that low-maintenance arrays are feasible and describe 

a possible implementation. Our evaluation technique 

replaces Mean Time to Data Loss with the lifespan. 

Our results also show the impact of the assumption of 

constant failure rates on the results of modeling.  

 

1. Introduction 
 

Today’s disks have a less than ten percent 

probability of failing during any given year of their 

useful lifetime [PWB07]. While this reliability level is 

acceptable for applications that only require the storage 

of a few hundreds of gigabytes of non-critical 

information over relatively short time intervals, it does 

not satisfy the needs of applications having to store 

terabytes of data over many years. With the advent of 

digital photography, these applications have entered the 

homes of end consumers. 

Given the multiple limitations of backups, the best 

solution for ensuring the survivability of data over long 

periods is the use of redundant disk arrays.  This goal is 

typically achieved through either disk mirroring or the 

use of m-out-of-n codes, among which RAID level 5 

and RAID level 6 [PGK88, BM93, CL+94] are 

prominent.   

Despite all their advantages, redundant disk arrays 

have their own limitations.  First, they require more 

disk space than non-redundant arrays to store the same 

amounts of data.  Second, they also have higher 

maintenance costs since the addition of parity drives 

results in more disk failures.  This is less of an issue for 

large installations having their own maintenance teams.  

For instance, the Google file system is built from cheap 

commodity disks that are known to fail often and com-

pensates by maintaining three copies of each file chunk 

[GGL03]. On the other hand, smaller installations need 

to replace disks through service calls whose costs can 

exceed the cost of the hardware being serviced. Storage 

vendors have also to consider the possibility of 

seriously embarrassing mistakes occurring during these 

calls. This made us wonder whether it would be 

possible to build highly reliable data storage solutions 

that would not need service during their lifetime. 

Manufacturers would offer a lifetime warranty to their 

customers that would offer reimbursement for loss of 

data due to disk failure. By egregious overprovisioning 

with disks, we can certainly build these zero-

maintenance arrays for the small office and home office 

(SOHO) market, but that approach is too costly to 

succeed in the market. In this paper, we use modeling 

to consider the feasibility of small, zero-maintenance 

disk arrays. 

    

2. Assumptions and Metrics 
 

Hard disks are complex.  They can fail completely, 

sometimes without warning, and they can loose data in 

only a few sectors.  The recent, excellent overview 

article by Elerath [El07] gives more details on these 

various failure mechanisms.  To our knowledge, no 

public data is available on the frequency, at which 

disks suffer partial data losses.  People in the disk 

industry estimate this rate to be about 10 times higher 

as that for complete disk failures.  In a disk array with 

redundant data storage, scrubbing (verification that 

stored data can be read) limits the impact of partial data 

loss, [SX+04]. For these reasons, we only consider 

complete device failure in our models. 

Many models of disk array reliability assume 

constant failure rates, even though this assumption is 
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Figure 1: Markov models for mirrored (top), 

triple, and quadruple data. 
 

known to be false. Empirical studies [El00b, El04, 

EP07, SG07, YS09] have shown that often, but not 

always [GGL03], the failure rate of a batch of disks 

drops over the first year, before it settles on a constant 

rate. Even assuming constant failure rates, the question 

arises for the system modeler of its values. Some 

vintages and batches differ widely from the disk 

manufacturer specified failure rate of now typically 

1/2,000,000 hours [El00b, ES04, EP07].  

Estimating the reliability of a storage system means 

estimating the probability R(t) that the system will 

operate correctly over the time interval [0, t] given that 

it operated correctly at time t = 0.  Computing that 

function requires solving a system of linear differential 

equations, a task that becomes quickly unmanageable 

as the complexity of the system grows, but is feasible 

for the small arrays that we consider. In fact, we used 

Mathematica, a symbolic mathematics software tool. 

Unfortunately, R(t) is function and not a single 

number. Mean Time To Data Loss (MTTDL) is a 

misleading single figure of merit, since the failure rate 

of a disk array is far from being constant.  For a given 

reliability level r, we therefore calculate the economic 

life span L(r) of a disk array  as the maximum time 

interval for which data stored on that array will have a 

probability r to survive intact. Our figure of merit 

becomes dimensionless, if we express it in multiples of 

the Mean Time Between Failures (MTBF) of the disks. 

 

3. Replicated Single Disk 
 

The first array organization we considered was an array 

consisting of n identical disks each holding an identical 

copy of the data.  We further assumed that we would 

never repair the array during its useful lifetime. We 

selected this organization because of its simplicity and 

its potential for achieving any arbitrary data survival by 

increasing the number of disks in the array.  

Assuming a constant disk failure rate λ, the survival 
S1 of a single disk at time t is given by the differential 

equation  

1)0(    ,' 111 =−= SSS λ  

with solution  

)exp(1 tS λ−= . 

We model survival of a mirrored disk in the standard 

Markov model depicted in Figure 1, top.  We label the 

non-failure states by the number of existing disks.  The 

starting state is state 2, from which we transition to 

state 1 at rate 2λ, whenever one of the two disks fails.  
We can capture the probability pi of being in state i at 

time t in a system of ordinary differential equations 

with initial conditions  
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The solution is  
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Similarly, the middle Markov model in Figure 1 

describes the case of triplicate disks.  Using the same 

convention of writing pi(t) for the probability of being 

in state i, we now obtain the following system of 

ordinary differential equations with initial conditions 
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This system has solution 
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Finally, the final Markov model in Figure 1 gives the 

Markov model for a quadrupled disk.  The system of 

ODEs is now 
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The solution is now  
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We capture the chances of survival of the system of 

n replicated disks in the function )()(
1

tptS
n

i

in ∑
=

= . 



Table 1: Economic life span for a single data 

disk and different replication levels 

 

We define the economic life span L(r) of an array as 

the maximum time interval for which data stored on 

that array will have a probability r to survive intact.  

More precisely, L(r) is the solution of Sn(t) = r, where 

the reliability level r is 0.9, 0.99, 0.999, 0.9999, and 

0.99999, i.e. 1, 2, 3, 4, and 5 nines. After setting λ = 1, 
the economic life span is expressed in multiples of the 

disk MTBF. 

We tabulate our results in Table 1.  A single disk 

reaches a life span of 1% of the device MBFT with 

probability 99%. A quoted disk MTBF of 1,000,000 

would then be 10,000 hrs or a little bit more than a 

year.  More realistic MTBF estimates would result in 

even lower economic life spans  

 

4. The 2D+P+Q Disk Array 
 

In this section, we consider disk arrays that store two 

disks worth of data.  Our first and simplest 

configuration consists of two data disks supplemented 

by two parity disks, the P and the Q disk, whose 

contents we calculate with erasure coding.  Figure 2 

gives the state diagram of this array. Notice that this 

configuration does not suffer any data loss as long as 

any two disks can still be read. We represent the initial 

configuration in the first state.  We capture the first 

disk failure in the state transition out of this state.  If 

the failed disk is a parity disk, then obviously we are 

left with two data and one parity disks.  (To improve 

the speed of further updates, we could replace the 

parity with the ordinary parity, but this would not affect 

the modeling of data survival in our disk array.)  If the 

failed disk was a data disk, then reads to this drive need 

to be serviced by accessing any two of the three 

surviving disks and calculate the data, and these reads 

are therefore slow. However, we can carefully replace 

the data on one parity drive by the recalculated data 

that used to be on the failed disk.  We take care by 

storing temporary data so that no additional failure 

during the reconstruction will loose data. Therefore, the  
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Figure 2. Markov models for 2D+P+Q 

Table 2: Economic life span: 2D+P+Q Array 
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Figure 3: Economic life span comparison 

 
reconstruction has no effect on the survival of our data, 

but it reestablishes a configuration where all data can 

be directly read.  (If further performance improvements 

are desired, we can afterwards replace the parity data 

on the surviving parity drive with ordinary parity.)   

Another data failure still preserves all information, but 

each of the remaining disks is now critical and no 

further disk failure can be tolerated. 

Using our previous conventions, we first solve the 

system of ODE 
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to obtain 
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9s Simple Mirrored Triple Quadr. 

1 0.10536 0.38013 0.62392 0.82632 

2 0.01005 0.10536 0.24265 0.38013 

3 0.00100 0.03213 0.10536 0.19581 

4 1.00E-04 0.01005 0.04753 0.10536 

5 1.00E-05 0.00317 0.02178 0.05788 
Nines Mirrored 2+P+Q Triple 

1 0.38013 0.38634 0.623918 

2 0.105361 0.151832 0.242637 

3 0.0321336 0.0661806 0.105361 

4 0.0100503 0.0299014 0.047528 

5 0.0031673 0.0137122 0.02178 
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Figure 4: Markov model: Pair of mirrored disks 
 

We present the results in Table 2.  Figure 3 compares 

our schemes so far.  The x-axis gives the number of 

nines.  The y-axis contains the negative base 10 

logarithm of the economic lifespan of the ensemble 

described. Recall that chance of data loss during this 

economic lifespan is given by the level of nines.  We 

give the life spans in multiples of the MTTF of the 

disks.  For instance, our graph for a single disk 

guaranteed to not loose data with probability 99.99% 

(four nines) has a y-value of about 4.  This means that 

it should not be used longer than 1/1000 = 10
-4
 of the 

disk MTTF. In contrast, at 99.99%, the quadrupled 

disk configuration has an economic lifespan of 

approximately 1/10 = 10
-1
 of the disk MTTF. The 

graph illustrates that the 2+P+Q configuration lies 

between mirroring and triplication. 

 

5. Mirroring Arrays 
 

First, we consider an array consisting of two pairs of 

mirrored disks. We present the Markov model in 

Figure 4.  A failure from the initial state (left) leads to a 

state where half of the data only resides on one drive 

indicated by our label of D1, D2, D2, regardless on 

what specific disk has failed.  From there, failure of 

one of the mirrored disks left leads to a state where all 

data is still available, whereas failure of the lone disk 

leads to data loss. 

Our Markov analysis yields the following system of 

ODEs where we label states and hence state 

probabilities with the number of surviving disks.  Thus, 

the probability of the system being in the initial state is 

p4(t). 
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Figure 5: Markov model: Pair of mirrored self-

reorganizing disks 

 
Not surprisingly, the resulting economic life spans are 

smaller than the ones for a single pair of mirrored 

disks, by about 30%.  Compared to the 2D+P+Q 

organization, the lower life span is caused by the 

transition to the Failure State from State 3, (D1, D2, 

D2).  Assume that immediately after the first failure, 

we reorganize the array to a RAID Level 5 so that the 

disk contents are now of the form D1, D2, D1⊕D2.  In 
this case, the Markov model becomes that of the 

2D+P+Q array.  The advantage of starting out with a 

pair of mirrored disks over the 2D+P+Q organization is 

the better performance.   A read to mirrored disks is 

directed to the disk with shortest service time and a 

write only involves writing to two disks and completely 

avoids the cumbersome read-modify-write operation in 

RAIDs.  

As the results of instantaneous reorganization are 

spectacular, we now model a more realistic reorganiza-

tion with a non-zero reorganization time 1/µ. 
Reorganization involves reading two data disks and 

overwriting the third one with the parity of the two data 

disks. We can realize it in an idle array by sweeping the 

disks in parallel.  In this optimal case, the rate of 

reconstruction is given by the time to access a single 

disk completely.  At a sustainable rate of 100MB/sec, 

this takes 2.8 hours for a 1TB drive. We give the 

Markov model in Figure 5.   

Unfortunately, with the presence of two rates, our 

simple dimensionless analysis is no longer possible. In 

addition, the speed of reorganization depends on 

factors such as array utilization, the size of the disks, 

and the sustainable bandwidth of the disks.  While 

reorganization takes a constant time, we nevertheless 

model it exponentially distributed with rate µ. After a 
failure in the initial state (state 1), reorganization starts 

immediately, in which we systematically replace the 

contents of one of the drives in the surviving pair with 

parity data. We write D1 for the surviving drive in the 

lost pair, D2 for one of the drives making up the other 

pair and X for the drive that contains partially data 

from D2 and partially the parity of D1 and D2.  If D1 

fails during this time, then we have suffered data loss.  



Table 3: Economic life span of a self-

reorganizing pair of mirrors 
 

9s 2+P+Q µ/λ=105 µ/λ=104 µ/λ=103 
1 0.38634 0.38633 0.38625 0.38547 

2 0.15183 0.15181 0.15161 0.14964 

3 0.06618 0.06613 0.06568 0.06120 

4 0.02990 0.02979 0.02879 0.01972 

5 0.01371 0.01347 0.01132 0.00345 

 

If X fails, then data is preserved and we transition to 

the unprotected State 4 with a D1 and a D2 disk.  If D2 

fails, then either we can reconstruct its contents directly 

by copying from X or we can reconstruct it from the 

already stored parity data.  In either case, after a 

possible further reorganization, the disk array ends in 

State 4.  This final reorganization has no implications 

for the reliability of the disk array.  

The Markov model in Figure 5 gives rise to the 

following ODE. 
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We tabulate the life spans of the reorganizing disk 

array in Table 3.  The right columns give the life spans 

of the reorganizing pair of mirrors for various 

assumptions of the ratio µ/λ that equals the ratio of the 
disk MTTF over the reorganization time.  Since the 

reorganization time is somewhere between a few hours 

and maybe 100 hours, and disk MTTF is somewhere 

between 100,000 hours and 2,000,000 hours, the true 

ratio lies in the spectrum covered by the table.  From 

the numbers, it is clear that the speed of reorganization 

only matters for very stringent demands on disk array 

longevity. 

 

6. Impact of Variable Disk Failure Rates 
 

The assumption of constant disk failure rates 

enables Markov modeling, but is often not realistic.  
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Figure 6: Probability density and hazard rate 
 

A two-parameter Weibull distribution with probability 

density function usually fits field disk operational 

failure data much better.  Exceptions typically arise 

when a disk drive family suffers from two or more 

competing early failure causes.  The probability density 

function of the two-parameter Weibull distribution is  
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with shape parameter β and characteristic lifetime η. 
Since the mean time to failure of a device following the 

Weibull distribution is )1
1

(MTTF +Γ⋅=
β

η , we set 

η = 1
)1

1
(

−+Γ
β

.  The shape parameter is typically a 

value between 0.9 and 1.5.  A typical value is β = 1.12 
[EP07]. Let F(t) = Prob(X≤t) be the cumulative 

probability distribution of the failure event X.  The 

failure rate or hazard rate h(t) is the probability that a 

device fails in a given unit of time. We always have the 

relationship h(t) = p(t)/(1-F(t). For the Weibull 

distribution, this amounts to 

1
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The failure rate for the exponential distribution with 

parameter λ is simply constant λ. The Weibull failure 

rate decreases if 0<β<1, is constant if β = 1, and 



Table 4: Economic life span for various 

Weibull shape parameters 

 

9s ββββ = 0.8 ββββ = 0.9 ββββ = 1.0 ββββ = 1.1 ββββ = 1.2 
Single Disk 

1 0.0530 0.0780 0.1054 0.1340 0.1630 

2 0.0028 0.0058 0.0101 0.0158 0.0230 

3 0.0002 0.0005 1.0E-3 0.0019 0.0034 

4 8.8E-6 3.4E-5 1.0E-4 0.0002 4.9E-4 

5 5.0E-7 2.6E-6 1.0E-5 3.0E-5 7.2E-5 

Mirrored Disk 

1 0.2634 0.3245 0.3801 0.4302 0.4748 

2 0.0530 0.0780 0.1054 0.1340 0.1630 

3 0.0120 0.0208 0.0321 0.0455 0.0606 

4 0.0028 0.0057 0.0101 0.0158 0.0230 

5 0.0007 0.0016 0.0032 0.0055 0.0088 

Triplicate Disk 

1 0.4894 0.5627 0.6239 0.6749 0.7175 

2 0.1503 0.1970 0.2426 0.2860 0.3266 

3 0.0530 0.0780 0.1054 0.1340 0.1630 

4 0.0196 0.0322 0.0475 0.0650 0.0840 

5 0.0074 0.0135 0.0218 0.0320 0.0438 

2D+P+Q 

1 0.2688 0.3304 0.3863 0.4365 0.4813 

2 0.0837 0.1170 0.1518 0.1868 0.2210 

3 0.0296 0.0465 0.0662 0.0878 0.1106 

4 0.0110 0.0192 0.0299 0.0426 0.0571 

5 0.0041 0.0081 0.0137 0.0210 0.0298 

 

increases if 1<β.  Figure 6 compares the probability 

density and failure rate for a Weibull with λ=1, β=1.12, 
η=1.04238 and an exponential distribution with λ=1. 
In this example, the Weibull hazard rate first increases 

and then very shortly afterwards steadily decreases. 

This behavior is true for many, but not for all disk 

populations studied by Elerath and Shah [El00b, ES04, 

EP07]. To estimate the impact of the shape parameter β 
on the economic life span of the array, we replace the 

constant failure rate λ in our systems of ODE’s with the 

non-constant hazard rate of the Weibull 

distribution.For example, when calculating the life span 

for a system of mirrored disks, we obtain the ODE 
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We can easily solve these equations for given 

Weibull parameters. We similarly proceed to reproduce 

the results for triplicate disks. We present our results in 

Table 4. As we compare the results, we find the strong 

influence of the shape parameter. The discrepancy is 

particularly strong at larger numbers of nines, where it 

attains more than one decadic order of magnitude.   

These results force us to qualify our previous 
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Figure 7: Markov model: Repairable disk array  
 

conclusions.  They also show clearly that the 

Markovian assumption of constant disk failure rates is 

a dangerous one. The effect is more pronounced where 

we are interested in the reliability of very young disks, 

namely when we define the lifespan by a high level of 

nines survivability of the ensemble. 

 

7. Small Disk Arrays with Repair 
 

Since small repair-free disk systems cannot provide 

sufficient survivability guarantees, we now look at

 small disk arrays that are repaired only in an 

emergency.  Basically, we assume a 2D+P+Q layout 

that is repaired whenever two disks have failed.  When 

modeling such a system, we run into the problem of 

how to model repair times.  In our settings, we cannot 

assume a service technician call to the home office or 

small business.  Therefore, repair involves shipping to 

the manufacturer, replacement by a new system, and 

copying data from the old array. 

Under these circumstances, we also have to 

accommodate other reasons for data loss such as 

shipping damage and service provider error. Assume 

that for the moment, we assume an exponential repair 

time with rate ρ.  We can then model our system as in 

Figure 7, where the initial state is state 4, representing 

the system without disk failure.  The other states are 

states 3 and 2, labeled by the number of available 

disks.  In state 2, we have an additional failure 

transition to the failure state, taken with rate 2λ and a 
repair transition back to the initial state 4, taken with 

rate ρλ.  
The resulting system of differential equations is: 

 



Table 5: Economic life span for various repair 

parameters 
 

Exponential Repair Rate 

9s ρ = 10 ρ = 100 ρ = 1000 ρ = 10000 
1 0.6061 3.3224 30.9729 307.5440 

2 0.1756 0.4472 3.0845 29.4659 

3 0.0702 0.1129 0.4294 3.0620 

4 0.0307 0.0385 0.1033 0.4276 

5 0.0139 0.0154 0.0309 0.1022 

Constant Repair Rate 

9s ρ = 10 ρ = 100 ρ = 1000 ρ = 10000 
1 0.7778 6.3051 61.6189 614.762 

2 0.1565 0.7303 6.0071 58.7713 

3 0.0440 0.1523 0.7258 5.9793 

4 0.0134 0.0430 0.1519 0.7253 

5 0.0042 0.0131 0.0429 0.1518 
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The general solution (obtained with Mathematica) 

involves solving polynomial equations and is too 

involved to represent here.  However, we obtain the 

economic life span for various values of the repair time 

parameter.  The results, in Table 5, are quite 

encouraging, even for very low repair rates – only 10 

times faster than the disk failure rate (first column).  

The columns in Table 5 are indexed by the repair rate 

ratio ρ.  A value of ρ = 10000 means that the average  

repair time is 10000 times less than the disk MTTF. 

Our Markov model depicted in Figure 7 top uses an 

exponentially distributed repair time.  This assumption 

is obviously false, since it assigns a positive probability 

to a repair time of a minute and similarly a positive 

probability to repair times longer than a decade.  To 

gauge the influence of this assumption, we now assume 

that the repair time is a predetermined value of 1/ρ.  If 
we consider a system in state 3 in our Markov model in 

Figure 7 that is suffering a transition to state 2, which 

triggers a repair.  Assuming a constant repair time, our 

system will transit to state 4 if the repair is successful 

and to the failure state if another disk failure intervenes 

before the repair becomes effective.  The chance for 

the former is )./exp( ρλ−=p  If we decide to neglect 

the time that the system is in state 2, we e obtain a 

transition from state 3 to state 4 taken at rate 3pλ and 
from state 3 to the failure state at rate 3(1-p)λ.  We 

depict the resulting approximate model in Figure 7 

bottom.  Assuming that the time between disk failures 

is exponentially distributed and setting λ = 1 to obtain 
normalized values, we can capture the state of the 

system in the following system of ordinary differential 

equations: 
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with p = exp(-1/ρ). The explicit solution for the 
survival rate R(t) = p4(t) + p3(t) is somewhat involved 

and we do not write it down here.  Because we do not 

take the repair time into account, it is a pessimistic 

(lower) bound. When we tabulate the results, we find a 

significant difference.  For very small life spans (the 

lower right corners of Table 5), our neglect of the time 

spent during repair shows up, whereas for longer ones, 

our life spans are close to twice as good.  Our results 

show that modeling repair time with an exponential 

distribution can also lead to significant errors. 

 

8. Conclusions and Related Work 
 

We have investigated the feasibility of building data 

storage solutions that would not need any servicing 

during their useful life span, as these solutions would 

eliminate the need of costly on-site repairs. We found 

that cost-effective solutions simply do not guarantee 

sufficient data survival.  Based on our investigation, we 

propose instead low-maintenance disk arrays that 

would not be repaired until they reach a state where 

they cannot tolerate any additional failure.  We have 

shown that one such solution is actually feasible and 

have described a possible implementation. 

Our proposal is only directed to a situation where a 

disk failure would result in a service call, whose costs 

might approach the costs of the hardware being 

serviced.  Other strategies should apply to larger 

installations where the possibility of a human error 

during the disk replacement process is a major concern.  

Anecdotal evidence amply suggests that mistakes in 

repairs constitute one of the major causes of data loss 

in disk arrays.  From the manufacturer's perspective, 

the loss to the customer is compounded by the 

appearance of incompetence of the staff.  The main 

advantage of low maintenance solutions will then be a 

reduction in the likelihood of these mishaps. 

Relatively little work has been dedicated to disk 

arrays that self-reorganize to adjust to device failures.  

Sparing is one such form of adaptation to disk failures. 

Adding a spare disk to a disk array provides the 

replacement disk for the first failure.  Distributed 

sparing [TM97] gains performance benefits in the 



initial state and degrades to normal performance after 

the first disk failure. The authors et al. [PSL06] have 

recently presented a mirrored disk array organization 

that adapts itself to successive disk failures. When all 

disks are operational, all data are mirrored on two 

disks.  Whenever a disk fails, the array starts using 

(n – 1)-out-of-n codes in such a way that no data are 

left unprotected.   

Our modeling proposes a new measure of disk array 

reliability, the economic life span.  In our context, we 

can express the economic life span of a disk array as a 

factor of the expected life span of an individual disk 

and the required data survival probability. In addition, 

our study has shown that the Markovian assumption 

that failure rates are exponentially distributed can lead 

to misleading results, even for small arrays.  This 

complements earlier results on the impact of disk infant 

mortality for large disk arrays by Xin et al. [XS+05] 

and a more recent investigation by Elerath and Pecht 

[EP07], who use an alternative technique based on field 

data for disk reliability. 
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