
Scalable Distributed Virtual Data Structures

Sushil Jajodia

1

, Witold Litwin

2

, Thomas Schwarz, SJ

3

1 George Mason University, Fairfax, Virginia, USA
2 Université Paris Dauphine, Paris, France

3 Universidad Católica del Uruguay, Montevideo, Rep. Oriental del Uruguay

ABSTRACT

Big data stored in scalable, distributed data struc-
tures is now popular. We extend the idea to big,

virtual data. Big, virtual data is not stored, but ma-
terialized a record at a time in the nodes used by a
scalable, distributed, virtual data structure spanning
thousands of nodes. The necessary cloud infrastruc-
ture is now available for general use. The records
are used by some big computation that scans every
records and retains (or aggregates) only a few based
on criteria provided by the client. The client sets
a limit to the time the scan takes at each node, for
example 10 minutes.

We define here two scalable distributed virtual data
structures called VH* and VR*. They use, respec-
tively, hash and range partitioning. While scan speed
can di↵er between nodes, these select the smallest
number of nodes necessary to perform the scan in
the allotted time R. We show the usefulness of our
structures by applying them to the problem of recov-
ering an encryption key and to the classic knapsack
problem.

I INTRODUCTION

The concept of Big Data, also called Massive Data

Sets [12], commonly refers to very large collections of
stored data. While this concept has become popular
in recent years, it was already important in the eight-
ies, although not under this monicker. In the early
nineties, it was conjectured that the most promising
infrastructure to store and process Big Data is a set
of mass-produced computers connected by a fast, but
standard network using Scalable Distributed Data
Structures (SDDS). Such large-scaled infrastructures
now are a reality as P2P systems, grids, or clouds.
The first SDDS was LH* [1, 7, 9], which creates arbi-
trarily large, hash-partitioned files consisting of records
that are key-value pairs. The next SDDS was RP*
[8], based on range partitioning and capable of pro-

cessing range queries e�ciently. Many other SDDS
have since appeared; some are in world-wide use.
BigTable, used by Google for its search engine, is a
range-partitioned SDDS, as are Azur Table provided
by MS Azur and MongoDB. Amazon’s EC2 uses a
distributed hash table called Dynamo. VMWare’s
Gemfire provides its own hash scheme, etc. APIs for
the popular MapReduce framework, in its Google or
Hadoop version, have been created for some of these
o↵erings [2, 3].

As many data structures, an SDDS stores records in
buckets. Records are key-value pairs and are assigned
to buckets based on the key. Buckets split incre-
mentally to accommodate the growth of an SDDS
file whenever a bucket overflows its storage capac-
ity. Every SDDS o↵ers e�cient access to records for
key-based operations; these are the read, write, up-
date, and delete operations. LH⇤ even o↵ers con-
stant access times regardless of the total number of
records. SDDS also support e�cient scans over the
value field. A scan explores every record, usually in
parallel among buckets. During the scan, each node
selects (typically a few) records or produces an ag-
gregate (such as a count or a sum) according to some
client-defined criterion. The local results are then
(usually) subjected to a (perhaps recursive) aggrega-
tion among the buckets.

Below, we use the SDDS design principles to define
Scalable Distributed Virtual (Data) Structure (SDVS).
Similar to an SDDS, a SDVS deals e�ciently with a
very large number of records, but these records are
virtual records. As such, they are not stored, but
materialized individually at the nodes. The scan op-
eration in an SDVS visits every materialized record
and either retains if for further processing or discards
it before materializing the next record. Like an SDDS
scan, the process typically retains very few records.

Virtual records have the same key-value structure as
SDDS records. Similar to an SDDS with explicitly
stored records, an SDVS deals e�ciently with Big

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 1

Virtual Data that consists of a large number of virtual
records. Virtual data however are not stored, but are
materialized individually, one record at a time, ac-
cording to a scheme provided by the client. As an
example, we consider the problem of maximizing an
unruly function over a large, finite set, subject to a
number of constraints. We assume that we have an
e�cient enumeration of the set that we can therefore
write as S = {si|i 2 {0, 1, . . . ,M � 1}}. A virtual
record then has the form (i, si) and the record is ma-
terialized by calculating si from i. An SDVS does
not support key-bases operations, but provides a scan
procedure. The scan materializes every record and
either retains and aggregates or discards the record.
In our example, the scan evaluates whether the value
field si fulfills the constraints, and if this is the case,
evaluates the function on the field. It retains the
record if it is the highest value seen at the bucket.
Often, a calculation with SDVS will also need to ag-
gregate the local results. In our example, the local
results are aggregated by selecting the global maxi-
mum of the local maxima obtained at each bucket.

A client needs to provide code for the materialization
of records, the scan procedure, and the aggregation
procedure. These should typically be simple tasks.
The SDVS provides the organization of the calcula-
tion.

An SDVS distributes the records over an arbitrarily
large number N of cloud nodes. For big virtual data,
N should be at least in the thousands. Like in an
SDDS, the key determines the location of a record.
While an SDDS limits the number of records stored at
a bucket, an SVDS limits the time to scan all records
at a bucket to a value R. A typical value for R would
be 10 minutes.

The client of a computation using SDVS (the SDVS
client) requests an initial number Nc � 1 of nodes.
An SDVS determines whether the distribution of the
virtual records over that many buckets would lead
to scan times less than R. If not, then the data
structure (not a central coordinator) would spread
the records over a (possible many times) larger set
N of buckets. The distribution of records tries to
minimize N to save on the costs of renting nodes. It
adjusts to di↵erences in capacity among the nodes.
That nodes have di↵erent scanning speed is a typ-
ical phenomenon. A node in the cloud is typically
a Virtual Machine (VM). The scanning throughput
depends on many factors. Besides di↵erences in the
hardware and software configuration, several VM are
typically collocated at the same physical machine and

compete for resources. Quite possibly, only the node
itself can measure the actual throughput. This type
of problem was already observed for MapReduce [14].

In what follows we illustrate the feasibility of our
paradigm by defining two di↵erent SDVS. Taking a
cue from the history of SDDS, we propose first VH⇤,
generating hash partitioned, scalable, distributed, vir-
tual files and secondly VR⇤, using scalable range par-
titioning. In both structures, the keys of the virtual
records are integers within some large range [0,M],
where for example M might be equal to 240. We dis-
cuss each scheme and analyze its performance.

We show in particular that both schemes use on the
average about 75% of its capacity for the scanning
process. The time needed to request and initialize all
N nodes is O(log

2

(N)). If N only grows by a small
factor over Nc, say less than a dozen, then the com-

pact VR⇤ can use almost 100% of the scan capacity
at each nodes at the expense however of O(N) time
for the growth to N nodes. The time to set up a VM
appears to be 2-3 seconds based on experiments. This
was observed experimentally for the popular Vagrant
VM [4,13].

To show their usefulness, we apply our cloud-based
solutions to two classical problems. First, we show
how to invert a hash, which is used to implement re-
covery of an encryption key [5, 6]. The second is the
generic knapsack problem, a famously hard problem
in Operations Research [11]. Finally, we argue that
SDVS are a promising cloud-based solution for other
well-known hard problems. Amongst these we men-
tion those that rely on exploring all permutations or
combinations of a finite set such as the famous trav-
eling salesman problem.

II SCALABLE DISTRIBUTED VIRTUAL
HASHING

Scalable Distributed Virtual Hash (VH*) is a hash-
partitioned SDVS. VH* nodes are numbered consecu-
tively, starting with 0. This unique number assigned
to a node is its logical address. In addition, each node
has a physical address such as its TCP/IP address.
The scheme works on the basis of the following pa-
rameters which are common, in fact, to any SDVS
scheme we describe below.
(a) Node capacity B. This is the number of virtual
records that a node can scan within time R. Obvi-
ously, B depends on the file, the processing speed of
the node, on the actual load, e.g. on how many vir-
tual machines actually share a physical machine, etc.

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 2

There are also various ways to estimate B. The sim-
plest one is to execute the scan for a sample of the
records located at a node. This defines the node’s
throughput T [6]. Obviously we have B = RT.
(b) Node load L This is the total number of virtual
records mapped to a node.
(c) Node load factor ↵, defined by ↵ = L/B.

This terminology also applies to schemes with stored
records. In what follows, we assume that B is con-
stant for the scan time at the node. The above pa-
rameters depend on the node. We use subscripts to
indicate this dependencies. A node n terminates its
scan in time only if ↵n  1. Otherwise, the node is
overloaded. For smaller values of ↵n the node is rea-
sonably loaded and becomes underloaded for ↵n <
1/2. An overloaded node splits dividing its load be-
tween itself and a new node as we will explain below.
The load at the splitting node is then halved. Each
split operation appends a new node to the file. New
nodes also follow the splitting rule. The resulting cre-

ation phase stops when ↵n  1 for every node n in
the file.

In more detail, VH* grows as follows:
1. The client sends a virtual file scheme SF where F
is a file, to a dedicated cloud node, called the coordi-

nator (or master) and denoted by C in what follows.
By default, C is Node 0. Every file scheme SF con-
tains the maximally allowed time R and the key range
M . These parameters determine themap phase as we
have just seen. We recall that the file F consists of M
virtual records with keys numbered from 0 to M � 1.
There are no duplicate keys. The rules for the materi-
alization of value fields and the subsequent selection
of relevant records are also specified in SF . These
determine the scan phase of the operation. Finally,
the termination phase is also specified, determining
the return of the result to the client. This includes
perhaps the final inter-node aggregation (reduction).
Details depend on the application.

2. Node 0 determines B based on SF . It calculates
↵
0

= M/B. If ↵
0

 1 then node 0 scans all M
records. This is unlikely to happen, and normally,
↵
0

>> 1. If ↵
0

> 1, then Node 0 chooses additional
N

0

� 1 nodes, sends SF to all nodes in N , sends a
level j = 0 to all nodes in N and labels the nodes
contiguously as 1, . . ., N

0

� 1.

The intention of this procedure is to evenly distribute
the scan over N = N

0

nodes (including the initial
node) in a single round of messages. By setting N

0

=
↵
0

, the coordinator (Node 0) guesses that all N
0

nodes have the same capacity as Node 0 and will

now have load factor ↵ = 1. This is only a safe
bet if the nodes are homogeneous and have the same
load. This is the case when we are working with a ho-
mogeneous cloud with private virtual machines. By
setting N

0

= 2, Node 0 chooses to not assume any-
thing. In this strategy, the number of rounds could
be markedly increased, but we avoid a low guess that
will underutilize many of the allocated and paid for
nodes.

3. Each node i in {0, . . . , N
0

} determines its load
factor ↵i. If ↵i  1, Node i starts scanning. Node
i generates the records assigned to it by the LH ad-
dressing principles [9]. In general, this means that
the records have keys K with i = K mod 2jN

0

. We
will see nodes with j � 1 shortly and recall that the
nodes in the set N all have j = 0.

4. If Node i has a load factor ↵i > 1, then this node
splits. It requests from the coordinator (or from some
virtual agent serving as cloud administrator) the al-
location of a new node. It gives this node number
i+2j , assigns itself and the new node level j = j+1.
If finally sends this information and SF to the new
node.

5. All nodes, whether the original Node 0, the nodes
in N or subsequentially generated nodes loop over
steps 3-4.

At the end of this possibly recursive loop, every node
enters the scan phase. For every node, this phase
usually requires the scan of every record mapped to
the node. The scan therefore generates successively
all keys in its assigned key space, materializes the
record according to the specifications in SF and cal-
culates the resulting key-value pair to decide whether
to select the record for the final result. If a record is
not needed, it is immediately discarded.

VH* behaves in some aspects di↵erent than LH*,
from which it inherits its addressing scheme. Whereas
LH* creates buckets in a certain order and the set of
bucket addresses is always contiguous, this is not the
case for the node address space in VH*. For exam-
ple, if the initial step creates N

0

= 1000 nodes, it
is possible that only Node 1 splits, leaving us with
an address space of {0, 1, . . . , 999, 1001}. If the same
Node 1 splits again, we would add a node 2001. In
LH*, buckets are loaded at about 70% and the same
number should apply to VH*. We call the splitting
node the parent and the nodes it creates its children.

6. Once a node has finished scanning records, it en-
ters the termination phase with its proper protocol.

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 3

After the termination phase, the node always deallo-
cates itself.

The simplest protocol for the termination phase is a
direct protocol that requires every node to deliver its
results, basically the selected records, to the client
or to a coordinator. This protocol performs well if
one expects only a small number of results. Other-
wise, it can create a message storm to the client or
coordinator. As an alternative, we o↵er a protocol
with inter-node aggregation. Because the node ad-
dress space is not contiguous, our best option is for
children to report to their parents. The total number
of children is the di↵erence between the initial level
at node creation and the current level. This allows a
node to determine whether it has heart from all of its
children. Therefore, when a node finishes scanning
its records and has no children, it sends the result to
its parent. Otherwise, it waits for all of its children to
send it their results. If it has heart from all its chil-
dren, it aggregates the results. Finally, all nodes in
the original set N aggregate by sending their results
to the client.

7. It may happen that the scan searches for exactly
k, k � 1 records in the record space. In this case,
we can change the termination protocol by requiring
that each node that has found a record reports this
directly to the coordinator. We then want the co-
ordinator be able to terminate the calculation at all
nodes. Here, information flows contrary to the infor-
mation flow in the termination phase from coordina-
tor to nodes. Doing so is simple. If the coordinator
does not have all node addresses – because the coor-
dinator was not responsible for requesting the gener-
ation of all nodes – then we can send from parent to
children.

8. It is possible that nodes fail or become otherwise
unavailable. For the direct termination protocol, the
coordinator might not know the addresses of unavail-
able nodes. In this case, we need to expand the pro-
tocol to detect unavailable nodes. In the alternative
termination protocol, the parents know their children
and can ascertain whether they are unavailable if they
are overdue in delivering their results. Once the coor-
dinator knows the fact that nodes are unavailable and
their addresses and levels, it can recreate them and
bring the calculation to a successfull end. We leave
the discussion and evaluation of recovery schemes to
future work

Using a simple invariant argument, we can show that
the VH* splitting rules define an exact partitioning
of the key space. In other words, every virtual key

hashes to exactly one node and is scanned therefore
only once. This is certainly true when the client has
started the scheme and the coordinator is responsible
for the complete key space. It remains true after the
coordinator has created N

0

nodes and partitioned the
key space among them. Finally, each further split
partitions the assigned key space among the splitting
and the new node.

EXAMPLE 1: NOISED SHARED SECRET
FOR ENCRYPTION KEY RECOVERY

This procedure was designed to always recover a (secret-
sharing) share of a client’s encryption key from a re-
mote backup in a given time limit [5,6]. The recovery
must use a large cloud to perform this task in the al-
lotted time. We show how VH⇤ organizes the work
in a large cloud.

More in depth, the backup scheme uses a key escrow
agency. The client uses secret splitting to generate
at least two shares. One of the shares is given to an
entity as is, whereas the other is noised at a di↵erent
escrow agency. Noising first calculates the hash of
the key using a cryptographically secure hash. The
noised share is stored as the hash together with a
search space. The escrow agency only knows that
the noised share is in the search space and that it
can verify whether an element of the search space is
the key share by calculating its hash and comparing
it with the stored hash. Even if it were to use the
information it has available, it would only recover
one share and not the key. Given the costs of finding
the hash, there is no incentive to do so unless the
client requests and reimburses it. The cloud resources
needed to find the key in the search are made too
large to deter illegal attempts but small enough to
still allow finding the noised key share and thereby
allow key recovery.

We can formulate the recovery problem abstractly.
The client defines an integer p, the prefix, of length,
say, 216 bits. It also defines a large number M , say
M = 240. The client then defines an integer s such
that s is the concatenation of p and a secret su�x c,
c 2 {0, 1, . . . ,M � 1} i.e. s = p.c. In our example,
the length of s is 256 bits and c is expressed as a
bit string with 40 bits. Using some good one-way
hash function h such as as a member of the SHA
family, the client defines a hint H = h(s). Given the
size of M , it is very unlikely to have two di↵erent
values c

1

, c
2

2 {0, 1, . . . ,M � 1} with the same hint
h(p.c

1

) = h(p.c
2

).

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 4

search space

Secret Key = s’ ⊕ s, H
i, h(p.i)

noised share

i, h(p.i)i, h(p.i)i, h(p.i)i, h(p.i)i, h(p.i)i, h(p.i)i, h(p.i)i, h(p.i)i, h(p.i)i, h(p.i)

i, h(p.i)

i, h(p.i)i, h(p.i)i, h(p.i)i, h(p.i)i, h(p.i)

virtual records,
one of which is the
noised share of the

secret

Figure 1: The cryptographic key is secret shared and
one share is noised. The noised share is in a large
collection of records only one of which will result in
a hash value equal to the hint H.

It also sets a reasonable time limit R, say R = 60 min.
The problem is to retrieve s givenH, M , and R. Here
we assume that given the size of M , it is very unlikely
to have two values for s = p.c with the same hash
value H.

The VH* solution is a virtual file mapped over a large
number of nodes. The virtual records have keys i in
{0, 1, . . . ,M � 1} and values h(p.i), the hash value
of the concatenation of the prefix and the key i. A
result is a record with value H.

The scanning phase of VH* looks for every possible
value of i. The records created are ephemeral and
exists only for the purpose of evaluating the hash.
As each key i is equally likely to be the solution, it
is possible that all records have to be created. There
should be only one result, so the coordinator attempts
to stop all further calculation as outlined in Step 7
above. On average, the solution is found after half
the maximum time, so that the costs are on average
only half the maximum costs.

If the coordinator knows that the cloud is homoge-
neous and that every node will be a private VM (not
sharing with other VMs), then the coordinator can
determine exactly how many nodes are necessary in
order to terminate the scan in time R. For exam-
ple, if the load factor at the coordinator, Node 0 is
↵
0

= 1000, the coordinator might simply choose to
spread the virtual file over 1000 nodes 0 (itself), 1,
. . ., 999. This is the smallest possible set of nodes.
Node 0 will then scan (i.e. attempt to match records
with key 0, 1000, 2000, . . . and Node 1 will scan the

records with key 1, 1001, 2001,

If on the other hand the cloud is heterogeneous or
there is interference with other virtual machines col-
located at nodes, then the coordinator does best in
limiting guessing. For instance, with the same initial
load factor of ↵

0

= 1000, the coordinator chooses an
initial set of size 2. In the following, the coordinator
will split the bucket at Node 0 ten times, generat-
ing the nodes 1, 2, 4, . . . 1024. Assume that Node 1
has double the capacity of Node 0 or in our notation
B

1

= 2B
0

. Since it is tasked with working the same
number of records as Node 0 after the first split, its
load is ↵

1

= 8. Correspondingly, when Node 1 is
created, it splits eight times, creating Nodes 3, 7, . . .
259, 513. Every other node will split according to its
initial load factor, depending on its respective capac-
ity B and the initial load it receives upon creation.
The coordinator will not know neither the existence
nor the address of all created nodes.

Suppose now that the search for the noised share suc-
ceeds at a node. The coordinator enters the termi-

nation phase upon notification. In the case of the
homogeneous cloud, the coordinator simply sends the
message to every node. Otherwise, it uses the parent-
child relations to terminate the calculation at the
other nodes by sending first to its children which then
recursively send to their children. On average, the
node with the searched-for record will find the record
in half the time, so that this procedure usually saves
almost half the maximum rental costs for the nodes.
A preliminary performance analysis shows that these
numerical values are practical in a cloud with thou-
sands or tens of thousands of nodes [6]. Several cloud
providers o↵er homogeneous clouds with private vir-
tual machines.

Let us finally mention some extensions to key backup
with noised share. First, as in classical secret splitting
schemes, we might have more than two secret shares,
of which we can noise all but one. In this case, we
have that many hints and the value field in the record
will be compared against all of them. If one record
has one match, it becomes a result and is sent to the
coordinator. Finally, the owner of the original, cryp-
tographic key can distribute additional secrets, called
discounts that limits the size of the search space if
they are made known to the search [5]. This natu-
rally means that the lesser work is distributed over
fewer nodes.

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

a=2, b=2

a=4, b=4

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0 truncated normal

normal

Figure 2: PDF for the two beta distributions (top)
and the truncated normal distribution and normal
distribution (bottom).

EXAMPLE TWO: KNAPSACK PROBLEM

The client application considers a number Q of ob-
jects, up to about 40 or 50. Each object has a cost c
and a utility u. The client looks for the top-k sets (k
in the few dozens at most) of objects that maximize
the aggregated utilities of the objects in the set while
keeping the total costs below a cost limit C. Addi-
tionally, the client wants to obtain the limit in time
less than R. Without this time limit, the knapsack
problem is a famously complex problem that arises in
this or a more general form in many di↵erent fields.
It is NP-complete [11] and also attractive to database
designers [10].

To apply VH* to solve a knapsack problem of medium
size with time limit, the client first numbers the ob-
jects 0, 1, . . ., Q�1. Then the client creates a virtual
key space of {0, 1, . . .M = 2Q}. Each element of the
key space encodes a subset of {0, 1, . . . Q� 1} in the
usual way. Bit ⌫ of the key is set if and only if ⌫ is an
element of the subset. If we denote by i⌫ the value of
bit ⌫ in the binary representation of i, then the value
field for the virtual record with key i is

Q�1X

⌫=0

i⌫u⌫ ,
Q�1X

⌫=0

i⌫c⌫

In other words, the value field consists of the utility
and the costs of the set encoded by the key. A match
attempt involves the calculation of the field and the
decision whether it is a feasable solution and is in the
top K of the records currently seen by the node. At
the end of the scanning phase, each node has gener-
ated a local top-k list.

In the termination phase, the local top k-lists are
aggregated into a single top-k list. Following the ter-
mination protocol is SF , this is done by the client
or by the cloud, with the advantages and disadvan-
tages already outlined. In the cloud, we can aggre-
gate by letting each child send its top-k list to the
parent. When the parent has received all these lists,

1000 2000 3000 4000 5000MêB
0.5

0.6

0.7

0.8

0.9

1.0

a

0.5
0.4
0.3
0.2

0.1

betaH2,2L
0

1000 2000 3000 4000 5000MêB
0.5

0.6

0.7

0.8

0.9

1.0

a

0.5
0.4
0.3

0.2
0.1 0betaH4,4L

1000 2000 3000 4000 5000MêB
0.5

0.6

0.7

0.8

0.9

1.0

a

0.5

0.4
0.3
0.2

0.1
0

truncated normal

Figure 3: Values for average load factor ↵̄ dependent
on normalized total load M/B̄ for three di↵erent dis-
tributions. The labels give a measure of heterogeneity
as explained in the text.

it creates an aggregated top-k list and sends it to its
parent. When Node 0 has received its lists and ag-
gregates them, it sends the result as the final result
to the client.

Our procedure gives the exact solution to the knap-
sack problem with a guaranteed termination time us-
ing a cloud, which is a first to the best of our knowl-
edge. Preliminary performance analysis shows that
values of Q ⇡ 50 and R in the minutes are practical
if we can use a cloud with thousands of nodes. Such
clouds are o↵ered by several providers.

An heuristic strategy for solving a knapsack problem
that is just too large for the available or a↵ordable

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 6

resources is to restrict ourselves to a random sampling
of records. In the VH* solution, we determine the
total feasible number of nodes and use the maximum
load for any node. Each node uses a random number
generator to materialize only as many virtual records
as it has capacity, that is, exactly B records, each
with a key K = i + random(0,M � 1)2jN

0

. The
resulting random scan yields a heuristic, sub-optimal
solution that remains to be analyzed.

Our algorithm is a straight-forward brute force method.
It o↵ers a feasible solution where known single ma-
chine OR algorithms fail. The method transfers im-
mediately to problems of integer linear programming.
There is much room for further investigation here.

VH* PERFORMANCE

The primary criteria for evaluation are (1) the re-
sponse time and (2) the costs of renting nodes in the
cloud. We can give average and worst case numbers
for both. The worst response time for both of our
examples is R (with an adjustment for the times to
initialize and shut down the system), but with the key
recovery problem, we will obtain the key on average in
half the time, whereas for the knapsack problem the
average value is very close to R. These values depend
on the homogeneity of the cloud and whether the co-
ordinator succeeds into taking heterogeneity into ac-
count.

At a new node, the total time consists of the alloca-
tion time, the start time to begin the scan, the time
for the scan, and the termination time. Scan time is
clearly bound by R. Allocation involves communica-
tion with the data center administrator and organi-
zational overhead such as the administrator’s updat-
ing allocation tables. This time usually requires less
than a second [4] and is therefore negligible even when
there are many round of allocation. The start time
involves sending a message to the node and the node
starting the scan. Since no data is shipped (other
than the file scheme SF) this should take at worst
milli-seconds. The time to start up a node is that
of waking up a virtual machine. Experiments with
Vagrant VM have shown this time to be on average
2.7 seconds [4].

While individual nodes might surpass R only negligi-
bly, this is not true if we take the cumulative e↵ects of
allocations by rounds into account. Fortunately, for
VH⇤, there will be about logN rounds. The largest
clouds for rent may have 107 nodes, so that the num-
ber of round is currently limited to 17 and might be

as small as 1.

The provider determines the cost structure of using
the cloud. There is usually some fee for node setup
and possibly costs for storage and network use. Our
applications have more than enough with the minimal
options o↵ered. There is also a charge per time unit.
In the case of VH⇤, the use time is basically the scan
time. The worst case costs are given by c

1

N + c
2

RN
where c

1

are the fixed costs per node and c
2

the costs
per time unit per node. The value of N depends on
the exact strategy employed by the coordinator.

A cloud can be homogeneous (all nodes have the same
capacity B) in which case every node has the same ca-
pacity B. The coordinator then chooses a static strat-
egy by choosing Nc to be the minimum number of
nodes without overloading. In this case, all nodes are
set up in parallel in a single round and the maximum
response time is essentially equal to R. If ↵

0

is the
load factor when the coordinator tests its capacity,
then it will allocate N = Nc = ↵

0

= dM/B
0

e nodes
and the maximum cloud cost is c

1

↵
0

+ c
2

↵
0

R. The
average cost in this case depends on the application.
While the knapsack problem causes them to be equal
to the maximum cost, the key recovery problem uses
on average only half of R before it finds the sought
value. The average cost is then c

1

↵
0

+ (1/2)c
2

↵
0

R.

The general situation is however clearly that of a het-
erogeneous cloud. The general choice of the coordi-
nator is Nc = 1. The VH⇤ structure then only grows
by splits. The split behavior will depend on the load
factor M/B̄ and on the random node capacities in
the heterogeneous cloud. If the cloud is in fact ho-
mogeneous unbeknown to the coordinator, then the
node capacity Bn at each node n is identical to the
average node capacity B̄. In each round, each node
n makes then identical split decisions and splits will
continue until ↵n  1 at every node n. Therefore,
VH⇤ faced with a total load of M and an initial load
factor ↵

0

= M/B̄ will allocate N = 2dlog2(↵0)e nodes,
which is the initial load rounded up to the next inte-
ger power of two. Each node will have a load factor
↵̄ = ↵

0

2�dlog2(↵0)e which varies between 0.5 and 1.0.
The maximum scan time is equal to ↵̄R. The cloud
costs are c

1

N + c
2

↵̄NR if we have to scan all records
(the knapsack problem) and c

1

N +0.5c
2

↵̄NR for the
key-recovery problem.

We also simulated the behavior of VH⇤ for various
degrees of heterogeneity. We assumed that the ca-
pacity of the node follows a certain distribution. In
the absence of statistical measurements of cloud node
capacities, we assumed that very large and very small

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 7

capacities are impossible. Observing very small node
capacities is a violation of quality of service guaran-
tees, and the virtual machine would be migrated to
another setting. Very large capacities are impossible
since the performance of a virtual machine cannot
be better than that of the host machine. Therefore,
we can only consider distributions that yield capacity
values in an interval. Since we have no argument for
or against positive or negative skewness, we picked
symmetric distributions in an interval (1 � �)B̄ and
(1+�)B̄ and chose � 2 {0, 1/10, 2/10, 3/10, 4/10, 5/10}.
For � = 0, this models a homogeneous cloud. If
� = 5/10, then load capacities lie between 50% and
150% of the average node capacity.

For the distributions, we picked a beta distribution
with shape parameters ↵ = 2, � = 2, a beta distri-
bution with shape parameters ↵ = 4, � = 4, and a
truncated normal distribution in the interval (1��)B̄
and (1+�)B̄ where the standard deviation of the nor-
mal distribution was �B̄. The truncated normal dis-
tribution is generated by sampling from the normal
distribution, but rejecting any value outside of the
interval. We depict the probability density functions
of our distributions in Figure 2.

Figure 3 shows the average load factor ↵̄ in depen-
dence on the normalized total load M/B̄. This value
is the initial load factor ↵

0

in the homogeneous case.
In the homogeneous case, the average load factor
shows a sawtooth behavior with maxima of 1 when
M/B̄ is an integer power of two. For low hetero-
geneity, the oscillation is less pronounced around the
powers of two. With increasing heterogeneity the de-
pendence on the normalized total load decreases. We
also see that ↵̄ averaged over the normalized load be-
tween 512 and 4096 decreases slightly with increasing
heterogeneity. As we saw, it is exactly 0.75 for the ho-
mogeneous case, and we measured 0.728 for � = 0.1,
0.709 for � = 0.2, 0.692 for � = 0.3, 0.678 for � = 0.4,
and 0.666 for � = 0.5 in the case of the beta distri-
bution with parameters ↵ = 2,� = 2. We attribute
this behavior to two e↵ects. If a node has a lower
than average capacity it is more likely to split in the
last round increasing the number of nodes. If the new
node has larger than usual capacity, then the addi-
tional capacity is likely to remain unused. Increased
variation in the node capacities then has only nega-
tive consequences and the average load factor is likely
to decrease with variation.

In the heterogeneous case, the total number of nodes
is N = M/(↵̄B̄) and the average scan time is ↵̄R.
The cloud costs are c

1

N + c
2

↵̄NR for the knapsack

Node
0

2.1

Node
1

2.8

Node
2

1.5

Node
3

3.6

Node
4

2.2

Node
5

2.0

Node
6

3.8

Node
7

3.1

Node
8

2.6

Node
9

2.1

Node
10
3.0

Node
11
3.5

Node
12
1.0

Node
13
1.7

Node
14
1.2

Node
15
2.7

Node
21
2.5

Node
24
3.4

Node
18
3.7

Node
25
2.3

Node
26
1.8

50

25

12.5

Node
0

2.1 25

Node
1

2.8 12.5

Node
0

2.1 12.5 12.5

Node
2

1.5

Node
3

3.6 6.3

Node
1

2.8 6.3

Node
0

2.1 6.3 6.3 6.36.3 6.3 6.3

Node
4

2.2

Node
5

2.0

Node
6

3.8

Node
7

3.1

Node
2

1.5

Node
3

3.6 3.6

Node
1

2.8 2.8

Node
0

2.1 2.1 3.2 3.22.2 3.8 3.1

4.2 3.5 3.2 2.6 4.1 3.2 2.5 3.3

Node
8

2.6

Node
9

2.1

Node
10
3.0

Node
11
3.5

Node
12
1.0

Node
13
1.7

Node
14
1.2

Node
15
2.7

Node
4

2.2

Node
5

2.0

Node
6

3.8

Node
7

3.1

Node
2

1.5

Node
3

3.6 3.6

Node
1

2.8 2.8

Node
0

2.1 2.1 1.5 2.02.2 3.8 3.1

2.6 2.1 3.0 2.6 2.1 1.7 1.2 2.7

1.7 1.2

1.6 1.4 0.2

Node
28
3.5 2.1

Node
29
2.7 1.5

Node
30
2.3 1.3

Node
31
1.1 0.6

Node
21
2.5

Node
24
3.4

Node
18
3.7

Node
25
2.3

Node
26
1.8

Node
8

2.6

Node
9

2.1

Node
10
3.0

Node
11
3.5

Node
12
1.0

Node
13
1.7

Node
14
1.2

Node
15
2.7

Node
4

2.2

Node
5

2.0

Node
6

3.8

Node
7

3.1

Node
2

1.5

Node
3

3.6 3.6

Node
1

2.8 2.8

Node
0

2.1 2.1 1.5 2.02.2 3.8 3.1

2.6 2.1 3.0 2.6 1.0 1.7 1.2 2.7

1.7 1.2

1.6 1.4 0.2

Node
28
3.5 2.1

Node
29
2.7 1.5

Node
30
2.3 1.3

Node
31
1.1 0.6

Node
44
2.2 1.1

Figure 4: Example of the creation of a file using scal-
able partitioning with limited load balancing.

problem and c
1

N + 0.5c
2

↵̄RN in the key-recovery
case.

III SCALABLE DISTRIBUTED VIRTUAL
RANGE PARTITIONING

Scalable distributed virtual range partitioning or VR⇤
SDVS partitions the virtual key space [0,M) into N
successive ranges

[0,M
1

) [[M
1

,M
2

) [. . . [[MN�1

,M)

Each range is mapped to a single and di↵erent node
such that [Ml,Ml+1

) is mapped to Node l. The VR*
mapping of keys by ranges allows to easily tune the
load distribution over a heterogeneous cloud with re-
spect to the hahs-based VH* mapping. This poten-
tially reduces the extent of the file and hence the
costs of the cloud. The extent may be the minimal
extent possible, i.e., the file is a compact file by anal-
ogy with a well-known B-tree terminology. In this
case, the load factor is ↵ = 1 at each node. However,
it can penalize the start time, and hence the response
time.

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 8

For the range j located on Node j, Mj�1

is the min-

imal key while Mj � 1 is the maximum key. The
coordinator starts by creating the file at one node,
namely itself, with a range of [0,M). Next, as for
VH*, the coordinator generates an initial mapping
using N

0

nodes, where each node j carries the range
of keys [Mj�1

,Mj) each of the same length of M/N
0

.
The coordinator chooses N

0

= d↵
0

e based on its ini-
tial load factor. In an homogeneous cloud, the load
factor at each node is therefore  1 and optimal. This
yields a compact file.

In a heterogeneous cloud, we split every node with
load factor ↵ > 1. The basic scheme divides the cur-
rent range into two equal halves. However, we can
also base the decision on the relative capacities of
the nodes [6]. In previous work on recoverable en-
cryption, we have the splitting node obtain the ca-
pacity of itself and of the new node. This implies
that the new node has to determine its capacity first,
which implies scanning a certain number of records.
Only then do we decide on how to split. This ap-
pears to be a waste of time, but we notice that the
records used to assess the capacity are records that
have to be scanned anyway. Thus, postponing the
decision how to split does not mean that we loose
time processing records. However, if the second node
also needs to split, then we have waited for bringing
in the latest node. This means that these schemes do
not immediately use all necessary nodes. If there are
many rounds of splitting, then the nodes that enter
the scheme latest either have to do less work or might
not finish their work by the deadline. All in all, an op-
timized protocol needs to divide the load among the
necessary number of nodes in a single step as much
as possible.

The scheme proposed in our previous work (scalable
partitioning with limited load balancing) [6] splits
evenly until the current load factor is  3. If a node
has reached this bound through splits, we switch to a
di↵erent strategy. The splitting node assigns to itself
all the load that it can handle and gives to the new
node the remaining load. There are two reasons for
this strategy: First, there is the mathematical ver-
sion (the 0-1 law) of Murphy’s law: If there are many
instances – in our case thousands of nodes – then bad
things will happen with very high probability if they
can happen at all – in our case, one node will exhaust
almost all its allotted time to finish. Therefore, there
is no harm done by having a node use the maximum
allotted time. Second, by assuming the maximum
load, we minimize the load at the new node. There-
fore, the total number of splits starting with the new

node is less likely. We also note that the new node
does not have to communicate its capacity with the
splitting node. The reason for not using this strategy
from the beginning is that we want to reach close to
the necessary number of nodes as soon as possible.
Thus, if the node load is very high, the current load
needs to be distributed among many nodes and we do
so more e�ciently by splitting evenly. The number of
descendants will then be about equal for both nodes.

We give a detailed example in Figure 4. The boxes
contain the name of the node, which is its number
according to LH* addressing and encodes the parent-
child relationship. With each node, we have the ca-
pacity and outside the box, the current load. We gen-
erated the capacities using a beta-distribution with
parameters ↵ = 4 and � = 2 and mean 8/3, but then
rounded to one fractional digit. In the first panel, the
initial load of 50 is assigned to Node 0 with a capacity
of 2.1. This node makes a balanced split, requesting
Node 1 and giving it half of its load. Both nodes split
again in a balanced way, Node 0 gives half of its load
to Node 2 and Node 1 to Node 3. All four nodes
are still overloaded and make balanced splits (fourth
panel). The load at all nodes is (rounded up) 6.3. All
nodes but Node 2 and Node 5 have capacity at least
one third of the load and split in an unbalanced way.
For instance, Node 0 requests Node 8 to take care of
a load of 4.2 while it only assigns itself a load equal to
its capacity, namely 2.1. Nodes 2 and 5 however make
a balanced split. As a result, in the fifth panel, var-
ious nodes are already capable of dealing with their
load. Also, all nodes that need to split have now at
least capacity one third of their assigned load. After
the splits, we are almost done. We can see in the
sixth panel that there is only one node, namely Node
12, that still needs to split, giving rise to Node 44
(= 12+32). We have thus distributed the load over a
total of 26 nodes. Slightly more than half, namely 15
nodes are working at full capacity. We notice that our
procedure made all decisions with local information,
that of the capacity and that of the assigned load. Of
this, the assigned load is given and the capacity needs
to be calculated only once. A drawback to splitting
is that the final node to be generated, Node 44 in the
example, was put into service in the sixth generation,
meaning that excluding its own capacity calculation,
there were five times that a previous node generated
the capacity. If we can estimate the average capacity
of nodes reasonably well, we can avoid this by having
Node 0 use a conservative estimate to assign loads to
a larger first generation of nodes.

A final enhancement uses the idea of balancing from

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 9

B-trees. If a node has a load factor just a bit over
1, it contacts its two neighbors, namely the nodes
that have the range just below and just above its own
range to see whether these neigbors have now a load
factor below 1. If this is the case, then we can hand
over part of the current node’s range to the neighbor.

We have shown by simulation that these enhance-
ments can be e↵ective, but that their e↵ects depend
heavily on assumptions about the heterogeneity of
the nodes [6]. For an exact assessment, we need to ex-
periment with actual cloud systems. As has become
clear from our discussion, the final scheme should
guess the number of nodes necessary, allocate them,
verify that the capacity is su�cient and accept that
sometimes local nodes need to redistribute the work.
We leave the exact design of such a protocol and its
evaluation through experiments and simulations to
future work.

IV CONCLUSIONS

Scalable distributed hash and range partitioning are
currently the basic structures to store very large data
sets (big data) in the cloud. VH⇤ and VR⇤ apply
their design principles to very large virtual data sets
in the cloud. They form possibly minimal clouds for a
given time limit for a complete scan. They work with
homogeneous and, more importantly because more
frequent, heterogeneous clouds. These schemes con-
stitute to the best of our knowledge the first cloud-
based and - more importantly - fixed execution time
solutions to two important applications, namely key
recovery and knapsack problems.

Further work should implement these schemes at a
large scale and add details to the performance analy-
sis. For instance, the behavior of actual node capac-
ity in commercial cloud solutions needs to be mea-
sured so that performance modeling can be placed
on a firmer foundation.

The two schemes can be used for other di�cult prob-
lems in Operations Research such as 0-1 integer linear
programming or the traveling salesman problem. The
problems amenable to these solutions are search prob-
lems where a large, search space S = {si|i = 1, . . .M}
has to be scanned in fixed time.

References

[1] S. Abiteboul, I. Manolescu, P. Rigaux, M.-C.
Rousset, P. Senellart et al.: Web data manage-

ment, Cambridge University Press, 2012.
[2] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D.

Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. “Bigtable: A distributed storage sys-
tem for structured data.” ACM Transactions on
Computer Systems (TOCS) 26, no. 2 (2008):4.

[3] J. Dean and S. Ghemawat. “MapReduce: simpli-
fied data processing on large clusters.” Commu-
nications of the ACM 51, no. 1 (2008): 107-113.

[4] W. Hajaji. “Scalable partitioning of a dis-
tributed calculation over a cloud”. Master’s
Thesis, Université Paris, Dauphine, 2013 (in
French).

[5] S. Jajodia, W. Litwin, and T. Schwarz. “Key
Recovery using Noised Secret Sharing with Dis-
counts over Large Clouds”. Proceedings ASE /
IEEE Intl. Conf. on Big Data, Washington D.C.,
2013.

[6] S. Jajodia, W. Litwin, T. Schwarz. “Recoverable
Encryption through a Noised Secret over a Large
Cloud”. Transactions on Large-Scale Data and
Knowledge-Centered Systems 9, Springer, LNCS
7980, pages 42-64, 2013

[7] W. Litwin, M.-A. Neimat, and D. A. Schneider.
“LH⇤: Linear Hashing for distributed files”. Pro-
ceedings of ACM SIGMOD international confer-
ence on management of data, 1993.

[8] W. Litwin, M.-A. Neimat, and D. Schneider.
“RP*: A family of order preserving scalable dis-
tributed data structures.” In VLDB, vol. 94, pp.
12-15. 1994.

[9] W. Litwin, M.-A. Neimat, and D. Schneider.
“LH⇤ - a scalable, distributed data structure.”
ACM Trans. on Database Systems (TODS) 21,
no. 4 (1996): 480-525.

[10] W. Litwin and T. Schwarz. “Top k
Knapsack Joins and Closure.” Keynote
address, Bases de Données Avancées
2010, Toulouse, Fr, 19-22 Oct. 2010
www.irit.fr/BDA2010/cours/LitwinBDA10.pdf

[11] S. Martello and P. Toth. Knapsack problems: al-
gorithms and computer implementations. John
Wiley and Sons, Inc., 1990.

[12] A. Rajaraman, J. Leskovec, and J. Ullman. Min-
ing of massive datasets. Cambridge University
Press, 2012.

[13] Vagrant. www.vagrantup.com
[14] M. Zaharia, A. Konwinski, A. Joseph, R. Katz,

and I. Stoica. “Improving MapReduce Per-
formance in Heterogeneous Environments.” In
Proc. of Symp. on Operating Systems Design
and Implementation (OSDI), 2008.

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 10

