PERFORMANCE OF BALANCED DISK ARRAY SCHEMES

Walter A. Burkhard, Kimberly C. Claffy, Thomas J.E. Schwarz

University of California at San Diego

La Jolla,

ABSTRACT

The Balanced Information Dispersal Algorithm (BIDA), a
generalization of Rabin’s Information Dispersal Algorithm
(IDA) [1,2], provides attractive reliability enhancements as
well as modest performance gains for the storage of data at
a number of storage sites. A Balanced Disk Amray (BDA)
is an application of BIDA. Although a BDA appears as a
single, very reliable, fast direct-access device, it actually
consists of a number of independent disks that store data
according to a selected dispersal scheme. BDA devices
offer exceptionally high fault tolerance combined with
better performance than their constituent disks. As a
consequence, a BDA achieves high quality with relatively
low-quality components. BDA schemes also offer the
flexibility to arrange for a desired ratio between read and
write times. This paper discusses the construction, failure
tolerance, and performance of BDAs.

BALANCED INFORMATION DISPERSAL AND
BALANCED DISK ARRAYS

Information dispersal refers to the encoding of a file’s
contents into N fragments such that any D of these
fragments are sufficient to reconstruct the file. Although
there are many possible methods of dispersal, the most
attractive one is based on Reed Solomon codes. There are
fast VLSI chips available that implement the dispersal and
reconfiguration of information as a step in error-correcting
decoding [3]. Preparata [4] proposes an alternative
implementation.

We describe this IDA scheme in more detail. Encoding a
file of a sequence of bytes entails multipliying D bytes of
the file at a time by an N x D matrix A. We interpret the
entries in A as numbers in the finite field of all possible
bytes. Matrix A is chosen such that any D rows are
linearly independent. The m*™ coordinate of the resulting
vector represent a single byte in the m* fragment.

Retrieving the file requires the availability of D of these
fragments. The first bytes of these fragments form a D-
dimensional vector. We invert the submatrix of A consist-
ing of the rows corresponding to the available fragments
and multiply the vector with this inverse. This yields the
first D bytes of the file. The reconfiguration continues with
the remaining bytes in the fragments, one byte at a time.

CH3039-5/91/0000/0045/$01.00 © 1991 IEEE

California

The Balanced Information Dispersal Algorithm s a
generalization and adaptation of IDA to distributed
storage. Before storage, BIDA transforms a record into
fragments with IDA and then stores the fragments at
different sites. To decrease write operation times, BIDA
actually stores only a write quorum W of fragments. BIDA
uses version numbers to identify valid fragments, since
some sites contain invalid data. For record retrival, BIDA
accesses only a read quorum R of sites. It uses the first D
valid fragments to obtain the original record. Parameters W
and R are chosen to insure the existence of D valid
fragments in a read quorum. BIDA allows a wide range of
values for R and W, yielding a wide spectrum of read and
write service times and degrees of fault tolerance.

Balanced disk arrays use a BIDA scheme to store data,
storing file fragments on N separate disks. We store
version numbers within each fragment and within the file
access data. For a BDA write, only the first W disks
reached are written; the other disk writes are aborted if
another request is pending. A BDA read accesses all disks.
The BDA uses the first D valid fragments retrieved from
disk to restore the record; it aborts the other reads.

The storage capacity of a BDA is D/N of the combined
capacity of the component disks. A smaller choice of W
yields better write service times at the expense of in-
creased read times and decreased data safety. It is possible
to achieve both lower write and read service times than for
a single disk. BDAs are meant to be built with inexpensive
disks; the scheme more than compensates for the defi-
ciency of its disk components. In addition to the disks, a
BDA requires a buffer to store fragments before encoding
as well as an encoding/decoding chip.

The BDA scheme is very versatile. We discuss two
enhancements. Usually, read service times are more
important for direct access devices. Thus, one would tend
to choose a value of W relatively close to N. (For a
reconfiguration quorum D=7, we obtain balanced read and
write service times at W=12 with N=20.) With higher
values of W, we can process up to two retrieval requests in
parallel. This leads to improvements at higher loads.
Another enhancement benefits read operations of fre-
quently read files, such as the operating system kernel.
After a BDA retrieves data, if it has no further pending
requests; it does not simply abort after gathering enough
fragments. Instead, the BDA disperses the record, after
reconfiguration, and stores it at disks that previously only

45

contained an invalid fragment. This performance enhance-
ment, we call it adaptive write quorum, incurs no cost.

FAULT TOLERANCE

A principal drawback to building storage systems of an
ensemble of components is the significant degradation of
the reliability of such systems compared with the reliabil-
ity of a single component. The generous use of disk space
in a BDA presents a cushion against the failure of single
component disks. We use mean time to data loss
(MTTDL) as the criterium of BDA reliability. A BDA
with 20 disks, a write quorum W of 15, and a reconstruc-
tion quorum D of 7 can still fully operate with 8 of its
disks failed. Without replacement of individual disks, this
BDA has MTTDL of about half the mean time to failure

With replacement of components MTTDL increases
considerably. This gain can be so extreme that one can
essentially rule out individual disk failure as a cause for
data loss; secondary causes, catastrophic events like fire
and earthquake, or failure or destruction of the power
supply and central components emerge as the most
significant factor.

We have analyzed two different repair strategies. In the
first, one inspects the BDA at regular intervals. If the
number of failed disks surpasses a threshold during an
inspection, then one replaces failed disks. Hence, in this
scheme, many maintenance visits will be skipped. In the
second repair strategy, the failure of more than a threshold
number of disks triggers a repair request. In response (0 a
repair request, the repair operation replaces all failed disks

(MTTF) of the component disks. by new ones and rewrites the contents of the BDA.
MTTDL with Scheduled Inspections
N RT Min MTTDL (in years) MTTDL (in years)
quarterly inspection monthly inspection
20 19 18 0.7 x 10° 2.5 x 10°
20 19 17 1.6 x 10° 1.6 x 10!
20 19 6 4.4 x10° 1.4 x 102
20 19 15 1.9 x 10! 1.6 x 103
20 i8 15 1.7 x 101 4.4 x 10?
20 19 13 3.6 x 102 3.5 x 10°
20 17 13 1.4 x 10% 1.1 x 10*
20 19 11 1.8 x 10 1.8 x 108
20 17 11 5.0 x 10 3.4 x 10°
20 19 9 1.9 x 108 1.9 x 10!
20 17 9 3.8 x 103 2.6 x 10°
[MTTDL with Triggered Repair
N RT Min MTTDL (in years)
One Week Time Lag
20 19 18 5.2 x 10¢
20 19 17 4.2 x 102
20 19 16 3.6 x 103
20 19 13 3.3 x 106
20 17 13 1.2 x 105
20 19 11 4.3 x 103
20 17 11 1.7 x 107
20 19 9 8.2 x 1010
20 17 9 3.1 x 10°

Table 1.

Mean Time to Data Loss under the regular inspection (above) and the triggered repair regime for a BDA with

“N disks, which is repair when only “RT" disks are operational. The BDA needs Min disks 1o insure no loss
of data. The component disks have MTTF of only 20000 hours (2.3245 years).

46

In our analysis, we concentrated on data loss due to
individual disk failures. We used Markov chain models to
obtain closed-form formulae for the MTTDL and the
probability of a repair at a scheduled maintenance time.
The (hypothetical) component disks have a very low
MTTDL. We present some of our numerical results in
Table 1. The derivations appear in the companion
technical report [5].

Individual disks suffer from inperfections in the magnetic
medium, preventing the use of some blocks. BDA blocks
are usable if all but one or two of the disk blocks constitut-
ing it are free from bad spots. A write to a BDA block
containing a bad disk block takes longer, because bad disk
blocks can never partake in a write quorum; however, a
read to such a BDA block is unaffected.

Soft and hard read errors occur at individual disks. A read
that has failed due to a soft error is simply repeated after a
full rotation of a disk (10-16.7 ms). A soft error occuring
during an access in a BDA read incurs a much smaller
penalty since the next available fragment replaces the
unreadable one. Hard failures occur more frequently in a
BDA since there are more disks. The inherent redundancy
of the BDA architecture, however, makes their effects
practically invisible.

PERFORMANCE

Response times of a direct access device (DAD) depend
heavily on the character of the load; often temporal and
spatial locality of access requests leads to better service
and response times. However, modelling these various

loads is difficult; we thus restricted ourselves instead to
random locations and Poisson (i.e., unstructured random)
arrivals. This yields conservative estimates of actual
performance.

We developed formulae describing the service time for a
disk modelled after the IBM 3380 J. We then developed
service time formulae for the different BDA schemes, with
and without external version number information. We also
developed worst-case scenario service times for BDA
devices with faulty disks. If access to less than half of the
disks is needed, the scheme shows better average service
times and a significantly lower variance in all cases.
(Typical variances are 3 to 4 ms compared to 30 ms for a
single disk.) This more deterministic behaviour of the
BDA results in lower response times. This is valuable in
certain applications such as on-line storage of massive
visual information that demand predictable service times.

Figure 1 presents some of our results. We provide access
times for a single disk on all graphs for comparison
purposes. We give the response time for writes and reads
for varying write quora W. The gradual change in perfor-
mance with varying write quorum shows that a small
number of faulty disks leads to minor performance
degradation. If a BDA with 20 disks suffers loss of two
disks, the worst-case read response degrades to the one for
a BDA with write quorum W-2. The write response for this
BDA equals that for a BDA with two fewer disks. Our
graphs also contain read response times for parallel reads,
in which case half of the disks in a BDA serve one read,
while the other half serves a second read. These load
numbers reflect the load of one half of the BDA.

50 50, 50,
/
Response (W) / © /@) Response / // Response /
Time Time / / Time
W) “7 /@ b W) @/ © (b
/ /
N) // / 30 Q/
104 Write Quorum 14 104 Write Quorum 16 10 Write Quorum 18
T T T L T T T T T T
0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05
Arrival Rate Arrival Rate Arrival Rate

Figure 1: Performance of a BDA with 20 disks and reconfiguration quorum 5. We give the response time of a single disk
access (a), a BDA read (b), one parallel BDA read (c), and of a BDA write (W).

47

Table 2 presents the results of simulations, during which a
hypothetical disk was modelled. The results are insensi-
tive to the exact behaviour of the disk. One can see that
lower write quora result in lower write but higher read
service times. Again, the results for a single disk provide a
base for comparison.

Response Time Simulation for BDA (Parallel Reads)
Number Write Recon. Count Expec- Stand.

of Disks Quorum Quorum tation Deviation
1 Write 1688 22.662914 9.806096
1 Read 3357 22.164433 9.459054
1 Write 5018 23.786966 11.030768
1 Read 10068 23.247120 10.664573
1 Write 100081 24.996933 12.842823
1 Read 199655 24.951401 12.774114
20 12 7 Write 1693 23.548140 5.478806
20 12 7 Read 3363 22.661612 5.489290
20 12 7 Write 5044 24.575336 7.211687
20 12 7 Read 10066 23.940790 7.517098
20 12 7 Wirite 10094 26.143948 9.610193
20 12 7 Read 19883 25.414124 9.528119
20 14 7 Write 1699 25.834021 5.774207
20 14 7 Read 3390 21.304720 5.521911
20 14 7 Write 5026 26.815161 7.123455
20 14 7 Read 10128 22.422985 7.310118
20 14 7 Write 10035 28.177578 9.240656
20 14 7 Read 19972 23.887743 9.481475
20 16 7 Write 1708 28.415106 5.902241
20 16 7 Read 3394 20.023277 5.494655
20 16 7 Write 5044 29.317209 7.413608
20 16 7 Read 10094 21.217060 7.412131
20 16 7 Write 10047 30.875088 10.140890
20 16 7 Read 19938 22.731216 9.643435
20 18 7 Write 1705 31.638123 6.501423
20 18 7 Read 3407 19.280891 6.045768

Table 2. Simulation Results of BDAs with parallel reads on demand. The simulation cold-starts and continues for 1000
seconds. We ordered the table from the conservative to the progressive layout.

48

Response Time Simulation for BDA (No Parallel Execution)
20 10 5 Write 1635 21.159634 4.877164
20 10 5 Read 3277 20.653952 5.108156
20 10 5 Write 4954 22.035728 6.209320
20 10 5 Read 10009 21.695374 6.610047
20 10 5 Write 9948 23.314436 8.217979
20 10 5 Read 20284 23.013409 8.559411
20 9 5 Write 1627 20.142593 4.791084
20 9 5 Read 3281 21.843645 5.476469
20 9 5 Write 4931 21.097952 6.292918
20 9 5 Read 9989 22.802784 6.924872
20 9 5 Write 9959 22.536701 8.434684
20 9 5 Read 20236 24.120380 8.906157
20 8 5 Write 1635 19.257492 5.308617
20 8 5 Read 3281 22.937519 5.555192
20 8 5 Write 4958 20.166397 6.543950
20 8 5 Read 9947 23.981602 7.206654
20 8 5 Write 9965 21.753538 9.116640
20 8 5 Read 20193 25.524538 9.518342
20 6 3 Write 1632 16.680147 4.342917
20 6 3 Read 3260 19.951841 5.434194
20 6 3 Write 4996 17.541433 5.809189
20 6 3 Read 9997 20.705112 6.747925
20 6 3 Write 10006 18.580551 7.410272
20 6 3 Read 20211 21.663252 8.031772
20 6 2 Write 1636 15.187653 3.873252
20 6 2 Read 3266 17.395592 5.495386
20 6 2 Write 5039 15.930542 4.981722
20 6 2 Read 9986 17.934507 6.198398
20 6 2 Write 9957 16.648890 6.094142
20 6 2 Read 20163 18.650053 7.025160

Table 2. Simulation Results of BDAs with parallel reads on demand. The simulation cold-starts and continues for 1000
seconds. We ordered the table from the conservative to the progressive layout (cont.).

The performance of BDAs depends crucially on the
randomization effects of accessing several disks. As the
rotation of different disks is not synchronized, this
randomization is given for the rotation phase. To insure
that the seek times of different disks are independent, we
use a different track numbering for each disk. Hashing of
track numbers achieves this numbering. Several other
heuristics achieve a similar randomization effect. One
could return the heads to different (it home tracks) after
every request as long as no other request is already waiting
for service. The results of these schemes are more difficult
to predict analytically.

RELATED WORK

BDA are similar to RAIDs [6]. In contrast to RAIDs, they
offer write times similar to those of the individual disk

49

components and suffer far less performance degradation
due to failed disks BDA control units are less complex.
BDAs use disk capacity much more extravagantly and
offer less parallelization. As essentially serial devices, they
allow easy commits of data base transactions. Their high
fault tolerance allows one to build arrays of BDA modules.

BDAs are not the only application of the BIDA algorithm.
At UCSD, Petar Stojadinovic is constructing a UNIX-
based dispersal system that stores fragments of files on
four different systems. He is currently evaluating the
system run-time performance. The software implementa-
tion strives for fault tolerance.

Another application of BIDA is a variant of the BDA
proposed here. Small write quora in combination with
small reconfiguration quora lead to devices that process

very fast writes with reasonably large read times. In these
DADs, parallel writes and adaptive write quora make the
operation even faster. To achieve high levels of fault
tolerance, we adopt a more elaborate maintenance strategy.
When a disk fails, we read and rewrite the contents of the
BDA, thus maintaining the write quorum as the minimum
number of valid fragments.

REFERENCES

1. Rabin, M.O., “Efficient Dispersal of Information for
Security, Load Balancing and Fault Tolerance,”
Journal of the Association for Computing Machinery,
Volume 36, No. 2, April 1989, pp. 335-348.

, “The Information Dispersal Algorithm and
its Applications,” Combinatorics, Compression,
Security and Transmission, Springer Verlag, 1990, pp.
406-419.

3. Advanced Hardware Architectures, Product Specifica-
tion, Moscow, ID, 1988.

4, Preparata, F.P., “Holographic Dispersal and Recovery
of Information,” IEEE Transactions on Information
Theory, Vol. 35, No. 5, 1989, pp. 1123-1124.

5. Burkhard, W.A,, K. Claffy and T. Schwarz, “Perfor-
mance of Balanced Disk Arrays,” Technical Report,
UCSD, 1991.

6. Patterson, D., G. Gibson and R. Katz, “A Case for
Redundant Arrays of Inexpensive Disks (RAID),”
Proceedings of the SIGMOD International Conference
on Data Management, Chicago 1988, pp. 109-116.

7. Patterson, D., and J. Hennessy, Computer Architec-
ture, A Quantitative Approach, Morgan Kaufmann
Publ., San Mateo, CA 1990.

8. MacWilliams, F.J., and N.J.A. Sloane, The Theory of
Error-Correcting Codes, North Holland Mathematical
Library, North Holland, 1978.

9. von Neuman, J., “Probabilistic Logics and the
Synthesis of Reliable Organizations for Unreliable
Components," Automata Studies, Princeton
University Press, 1958, pp. 43-98.

10. Ng, S., “Some Design Issues of Disk Arrays,”
Proceedings of CompCon 1989, pp. 118-123.

11. Schultz, M., G. Gibson, R. Katz and D. Patterson
“How Reliable is a RAID?," Proceedings of
CompCon 1989, pp. 118-123.

