Searchable Encryption through Dispersion

Carlos Aiello Montandén
Universidad Cat6lica del Uruguay
Montevideo, Uruguay
C@it.com.uy

Abstract—Cryptography is the universal tool to protect the
privacy of data. Today’s cryptography still requires encrypted
data to be decrypted before it can be searched. We propose here
an alternative way of protecting the privacy of data through
dispersion of a compressed version of the original data that can
be searched without recovering the original data. Our scheme
compresses the original data and then generates several chunks
that are stored at different nodes. The chunks are stored in the
form of an index. To search for a string, we convert the string
into chunks with the same scheme and then have each site consult
its index in order to obtain a list of all possible positions where
the search string might be found. These local results are then
sent to the user who performs a logical intersection to find all
likely positions in the original, where the search string might be
located in the text. The user can then decrypt only those parts
or records to obtain all parts or records where the search string
is.

Our scheme has no false negatives (all occurrences of the
search string will be found). We show that the precision becomes
close to 100% for longer strings using a corpus consisting of
texts in the English language. We also show that the chunks
are somewhat, but not quite similar to random bit streams, and
that each individual stream has less information content than a
typical English language stream of the same length.

I. INTRODUCTION

Cryptography is a universal tool to protect the confidential-
ity of data. Unfortunately, with today’s best cryptographical
schemes, processing encrypted data requires decryption before
processing. Homomorphic encryption holds the promise of
directly processing data in its encrypted forms, including
searches, but despite great progress in the last years, [8],
[25], especially through the work of Gentry who presented
the first fully homomorphic encryption scheme [9], [10], it
appears that homomorphic encryption light-weight enough for
practical applications (other than voting schemes) is still far
in the future.

The current state of the art uses symmetric or asymmetric
encryption to allow searches for keywords and protects data
providing provable, high security.

In this article, we evaluate dispersion as an alternative
method for searching in protected data. We see two different
approaches. The first is to search directly in the protected data.
Using dispersion, the original text is broken into chunks and
a search for a string recovers fragments of the chunks that are
then reassembled into fragments of the original text likely to
contain the search string. Unfortunately, this method has the
drawback of creating large amounts of data to be sent from
the nodes to the user. Instead, we propose a search structure

Luis Vidal Introini
Universidad Cat6lica del Uruguay
Montevideo, Uruguay
LuisVidalIntroini @ gmail.com

Thomas J. E. Schwarz, S.J.
Universidad Catdlica del Uruguay
Montevideo, Uruguay
TSchwarz@ucu.edu.uy

original text

Cryptography is a universal tool to

01100101001100100010011110100111001
00001010001001100011110010101001010
11110111111101001011100101000110001

Site 0
Site 1

Site 2
Pattern Site 1
0000 [
0001 [
0010 [
0011 [
0100 [
0101 [
0110 [
0111 [
1000 [
[
[
[
[
[
[
[

o

@

=~ o~

AN -

w~a—N U

O~
— N
e}

w~
SN

1001
1010
1011
1100

NS e N O~

=N
—

S O~ JMNS S~ s
w~

NN
o N P

1101
1110
1111

P—0O— WO OoO—

[ee]

e e N el el S A =Y S =
=N OO N W

0O W

Fig. 1: Processing Example with index key length of only four

that works like an index, but for all possible substrings. In
this second method, the search gives the user a list of possible
locations of the substring and the user then decodes the blocks
or records of the encrypted original containing these locations.
This second method, which we investigate here, trades traffic
reductions for higher storage use.

In the reminder of this article, we first present our scheme,
evaluate its costs and safety, and discuss related and future
work.

II. ARCHITECTURE

Our scheme creates a distributed search structure from the
unencrypted data. The original data is stored in encrypted form
elsewhere. The goal of our application is to provide the client
quickly with a list on all the positions where a given search
string in the original text is located. While there are no false
negatives (each position of the searched for string in the text
is in the returned list) there is a usually small possibility for
false negatives. The cost of a false negative is the decryption
of the block that contained the erroneous position.

While the idea of such a structure is very general, its details
depend on the type of data. However, the same is true for
searches within the data. For example searches within an
image (not of a set of images) will depend heavily on the
format of the image, and the same is true for maps, movies,
etc.

In the following, we present a version optimized for records
in a natural language. Our scheme uses lossy compression.
This shrinks the size of the text by half, but about doubles the
information content of a single character. Each letter in the
original alphabet is put into a bin and the letter is encoded by
the bin number in the compressed version. The next step takes
each character in the compressed text and distributes the bin
number into various chunk streams. The number of streams is
k with k =3 and each bit of a chunk stream corresponds to
one character in the original and compressed text. The number
of bins therefore is 2. If we were to use text in a different
alphabet or use data in a different domain such as audio data,
the number of streams could and should be chosen differently.
We will later discuss a version where we double the number
of streams to cut the information contained within a single
stream.

Searching for a text using these string of bits turned out
to be time-consuming because of the byte-oriented nature of
modern computing. In our first C-implementation, we did not
want to store a chunk stream as an array of char, but then
had to use too many shift and and operations for searches
to be fast. We therefore use a well-known technique from
information retrieval to build a complete search index for
“shingles” (substrings of fixed length /). The search index
uses all 2/ combinations of all possible shingles, i.e. [bits
binary strings, as vocabulary and indexes all the occurrences.
In practice, the list of postings (lists of occurrences) can be
compressed so that the overall storage need is about that of
the original text.

A. Binning

The information content of a single symbol in an English
language text has long been of interest [24], not in the least
because of the need for good compression. The best well-
established compression techniques achieve a compression to
1.78 bits per character [2], whereas the best actual methods
can use as little as only 1.269 bits per original character in
the compressed text [15], even though they do not achieve
this performance under all circumstances. This observation
justifies assuming that in ordinary English written text, the
information content of a single letter is larger than 1 bit. In
our proposal, a chunk stream stores a single bit per original
character. An adversary who obtains access to a single chunk
should therefore not be capable of reconstructing the original
text as (s)he lacks sufficient information. An adversary with
additional information might still of course be able to draw
conclusions on the original text.

Any selection of binning will try to obtain a distribution
of zeroes and one in the bit chunk stream that appears to be
indistinguishable from a random sequence. The precision of
searches will depend on the specificity of the string for which
we search. We therefore try to equalize the number of symbols
that fall within a bin as much as possible.

Each corpus has its own frequency distribution for its sym-
bols, mainly, but not completely depending on the language
used. Since we chose to evaluate English texts, we use a

TABLE I: Frequency table in percent for English letters and
a possible binning with 8 bins

Bin Symbols Frequency of Symbols Fr. Bin
0 empty, K 12.17 + 0.41 12.58
1 E, B 11.36 + 1.05 12.41
2 T, M, F 8.03 +2.76 + 1.79 12.58
3 S,D,L,V 5.68 +292 +292+0.97 12.49
4 A, C,PWIJ] 6.09 +2.84 + 195+ 138 + 024 12.50
5 O,R, Y, Q 6.00 +4.95 + 1.3 + 0.24 12.49
6 N, L G, X 544 +544 + 138 + 0.24 12.50
7 others, H, U, Z 6.57 + 3.41 + 2.43 + 0.03 12.44

frequency table for English letters given by Lee [13] that has
26 letters, a white space, and an other category. By hand, we
developed the binning given in Table L.

Languages other than English might benefit from prepro-
cessing. For example, a text in Spanish might consider “Q”,
“ch”, “lI”, and “rr” as different letters, placed possibly in
different bins than the non-accented or single letter. If the text
were in German, it makes sense to consider the umlauts and

the “sch”, “ch”, “ei” and “ai” combinations different letters.

B. Creation of chunk streams

Each character belongs to a bin. We encode the character
by the bin number (in binary). In the example of Figure 1, the
text “Cryptography ...” is split first into chunk streams. The
first letter “C” is in Bin 4 or binary 100 and therefore the first
bit of the chunk stream for Site O is 1, and the ones for Site
1 and Site 2 is 0. The second letter “R” is in Bin 5, so the
second bit is 1 in Site 0 and 2 and O in Site 1.

By simply permuting the bin numbers among the bins, we
can create different encoding, The one presented in Table 1
tries to distribute zeroes and ones equally for each chunk
stream.

C. Creation of Index

In order to facilitate searches, we use at each site an index
structure that uses bit strings of length / =8 (or / = 10) as
indices (from 0000 0000 to 1111 1111) and associates to
them a list of postings to obtain a classic structure used in
information retrieval [16].

We give an example of the structure in Figure 1, but for
obvious reasons, we did not want to depict indices with 28 or
210 entries, so that we used an otherwise too tiny length of 4
for the bit strings that make up the vocabulary in Figure 1. The
bit string 1111 appears in the chunk list of Site 0 beginning
in first and fifth position, therefore the corresponding list of
postings is [0, 5].

In general, the average difference between two subsequent
occurrences of a bit string of length / is 2!/. Each letter in
the original text corresponds to one posting for each chunk
stream unless the letter is at a distance < [/ from the end of
the record. Our choice of an index implies that we use more
storage space, but gain in the speed of processing searches.
Besides, the information retrieval community has developed
efficient ways of compressing the list of postings. Assume
that simple compression leads to using x bytes per posting.
Good compression schemes use from less than 4 to about 5

l.search string |
T

«—] —>+—] —>
-—] —>
Fig. 2: Shingling of a large search string into groups of [
symbols.

bits per posting, giving us a value of x of around 0.5 [16].
Since compression benefits from having not large differences
in the value of one posting to the next, and since the chunk
streams have some similarity to random bit strings, we can
orientate ourselves more towards the lower end for the number
of bits stored per posting. Each site stores one posting for every
character in the text. The keys (0000 0000 to 1111 1111 or
0000 0000 00 to 1111 1111 11 for shingle size 10) do not
need to be stored explicitly but are an offset into the list of
postings lists. Thus, each site stores x times the size of the
original file. If alternatively we only store the chunk streams
themselves, each site stores 1/8% of the original file written
in ASCIL.

D. Performing searches

To perform a search for a substring, we first use the binning
to encode the search string in exactly the same manner in
which we obtained the chunk streams to obtain k binary search
strings for each chunk stream. We then divide each binary
search string into shingles — groups of [contiguous bits —
and use the index to find positions in each site, where the
string is located. In more detail, if by, b1,bs,...,by_2,b, is a
binary search string, then the first shingle is bg,by,...,b;_1,
the second by, by 1,...by— etc. If | does not divide n, then we
have a last shingle b, ; 1,b,_4,...,b, that partially overlaps
the previous one as depicted in Figure 2. We then use the
lists of postings at a site to obtain the positions of the binary
search string within the chunk stream. If the first shingle of
the binary search string starts at position x, then the second
shingle (unless it overlaps with the first) starts at position x+1,
the third shingle (unless it is the last one and overlaps with
the second) starts at position x+ 2/ etc. For the last shingle,
the offset to x needs to be adjusted. This is done by going
through the index in a similar manner in which the “and”
operation works in information retrieval. All sites send the list
of the positions of the binary search string to the client. There,
we form the intersection of these lists. The intersection only
contains positions where the compressed version of the search
string occurs in the compressed version of the original.

If the search string is smaller than /, we can append wild
card characters to create a single shingle of size /. We create
the binary search string and then generate all binary strings
that have the binary search string as a prefix. We then combine
the postings of all these strings as the local result. These results
can have a high rate of false positives, but the “and” operation
at the client will remove most of these false positives.

E. Example searches

Assume that we want to search for the substring “a univers”
in the example of Figure 1. The search string is first lossily
compressed by the bin numbers, giving “407663153”. The
binary search string at Site 0 “001001111”, which is shingled
as “0010”, “0111” and “1111”. In our small example, the first
shingle is found at positions 3, 12, and 16. If one of them
is a true position of the binary search string, then the second
shingle would be found at position 7, 16, and 20, respectively.
Since the second shingle is only at position 20, only 16 is
remains possible for the location of the binary search string.
Since the third shingle starts at one character removed from
the second shingle, “1111” has to be at position 21, which
is indeed the case. Therefore, according to Site 0, the search
string can possibly only occur in position 16. Since the results
from the other two sites also contain this value, this is the only
position that possibly can contain the search string.

Assume now that we want to search for the substring “too”
in the text of Figure 1. The lossy compression yields search
string “255”. At Site 0, we look for the binary search string
“011”, which we complete to “011*”. Accordingly, we look for
the positions of “0110” and “0111”. This gives list [20,28]. At
Site 1, we look for the binary search string “100”. Accordingly,
we combine the postings of “1000” and “1001”, yielding [6,
10, 14, 21, 28]. At Site 2, we look for “011”, giving [4, 17, 28].
The lists are intersected at the client, giving the only possible
position of 28, which is indeed a correct position.

F. Wildcard searches

There are two main types of wildcard searches, one where
the wildcard represents a single, unknown character (which
is trivially to implement in our system) and one where the
wildcard represents a known or unknown number of char-
acters. It is possible to even use these type of searches if
the determined parts of the search string make up completely
or almost shingles. We leave a detailed description to future
work, though the idea is similar to the one used by Litwin and
colleagues [14].

III. ENHANCED SECURITY VERSION

As each chunk stream has one bit per symbol in the
original text, its information content lies below, but close to the
information content of English text. We can increase security
by only storing half a bit in a chunk stream for each symbol.
We simply break each chunk stream into two by storing the
even bits at one site and the odd bits at another site. The
resulting increase in security is paid for by more complex
searches.

A. Dividing chunk streams

If we have a chunk stream bgy,by,bs,..., we define two
smaller chunk streams, an even chunk stream bg,b;,by ... and
an odd chunk stream by, b3, bs, The even and the odd chunk
stream are stored at two different sites. In order to allow fast
processing, we create as before a postings index that takes bit
strings of length [as vocabulary and associates to them the

Original 1001000111011000101010001011100011101010
Site A 1000101011101 1101111
Site B 01 011100000001TO0ODO0OD1TO0O0O
Site A Site B

000 1 000 6,7,8,9,10,17

001 2 001 11,14

010 3,5 010 0,12,15

011 7,11,15 011 2,

100 0 100 5,13,16

101 4,6,10,14 101 1,

110 9,13, 110 4,

111 8,12,16,17 111 3,

Fig. 3: Breaking a chunk stream into an even and an odd part.

occurrences of the vocabulary bit string in the smaller (even or
odd) chunk stream. The value of / needs to be half the previous
value for / in order to maintain the same search precision as
in the basic variant.

B. Defining searches

After breaking all chunk streams into even and odd com-
ponents, we perform a search using shingles of length 2/. A
given search string shingle is first converted into the three
chunk streams, and then is divided into an even and an odd
half. The indices at the even and the odd site are consulted
for the postings, which we then translate into positions into
the original data. If the search string is to be found at an even
position 2p in the text, then the even part of the search string
occurs at position p in the even stream and the odd part at the
same position p in the odd chunk stream. If the search string
is to be found at an odd position 2p+ 1 in the text, then the
odd part of the search string begins at position p in the even
chunk stream and the even part of the search string at position
p+1 in the odd chunk stream.

C. Example

Assume that we want to find “100010” in the chunk stream
in Figure 3. We break the search string into even and odd
parts to obtain “101” and “000” respectively. The index for
Site A gives positions 4, 6, 10, and 14 for the even part in the
even chunk stream. The index for Site B gives positions 6, 7,
8,9, 10, and 17 for the odd part. We can conclude that the
search string is to be found at offset 12 in the original chunk
stream. Since “000” only appears at position 1 in the even part
and “101” at position 1 in the odd part, there are no further
occurrences.

If we search for “000101” in Figure 3, we also break the
search string into even and odd parts to obtain “000” and
“011” respectively. If we look for the even part at Site A and
the odd part at Site B, we get the two incompatible lists 1 and
2 corresponding to positions 2 and 5 in the original text. If
we look for the odd part of the search string at Site A and for

Precision

L0 melville
0.8}
0.6}
Karamazov
0.4}

0.2}

00510 15 20 25 30

Fig. 4: Precision of 1000 random word searches in the two
samples.

3‘5Length

TABLE II: Frequency of ones

Chunk Stream Frequency Chunk Stream Frequency
Melville Dostoyevsky

0 46.62% 0 48.49%

1 47.58% 1 49.08%

2 47.35% 2 49.49%

the even part at Site B, we get 7, 11, 15 and 6, 7, 8, 9, 10,
17, respectively. These correspond to positions 14, 22, 30 and
13, 15, 17, 19, 21, 35. Therefore, we have an occurrence of
the original search string starting at offset 13 in the original
chunk stream.

IV. EVALUATION

For our evaluations, we choose two novels from the Project
Gutenberg, Herman Melville’s Moby Dick and Garnett’s trans-
lation of Fyodor Dostoyevsky’s The Brothers Karamazov.

A. Precision

We first measure the precision of searches for longer search
strings. The precision is defined as the proportion of actual
positions of the search string over the number of reported
positions. A precision of 1 is therefore ideal: each reported
occurrence is indeed a true occurrence. We treated the lines
of the novels as records. We generated a list of 1000 random
words in the novel and compared the number of true occur-
rences with the number of occurrences in the compressed text
to obtain the proportion of times that a record supposedly with
a hit does into contain one. The result is given in Figure 4.
Basically, if the word size is more than about 10, then the
precision is reasonably high, and becomes 1 if the word is
long enough.

We then investigated the precision at individual chunk
streams. This time, we selected randomly 1000 substrings of
a given length and tabulated the number of times that these
substrings appeared, the number of times that the compressed
text had the compressed version of the substring, and the
number of times that a chunk stream had a corresponding
occurrence. We then calculated the four precision values for
each substring length, one for the precision of searches in the
compressed text and three for the precision of searches in the
bit streams. Figure 5 gives the result. First, we notice that
precision at the chunk streams behaves as is to be expected,
starting to become high when we look for substrings of

Precision

1.0r

0.8}

to
0.6+
chunk stream

0.4

0.2

00 5 10 15 20 25

Fig. 5: Precision searching for 1000 random existing substring
searches in Melville.

Sb Length

TABLE III: Frequency of blocks of 2 bits in a chunk stream

Dostoyevsky

Stream 0 Stream 1 Stream 2
Block | Obs Theor Obs Theor Obs Theor
00 26.89% 26.53% | 23.91% 2593% | 24.93% 25.51%
01 24.24% 24.98% | 26.773% 24.99% | 25.50% 25.00%
10 23.47% 24.98% | 26.18% 24.99% | 24.90% 25.00%
11 2541% 23.52% | 23.18% 24.09% | 24.66% 24.49%

Melville

Stream 0 Stream 1 Stream 2
Block | Obs Theor Obs Theor Obs Theor
00 2779% 27.48% | 2529% 27.48% | 27.10% 27.72%
01 25.04% 24.94% | 26.61% 24.94% | 2523% 24.93%
10 24.00% 24.94% | 25.85% 24.94% | 24.52% 24.93%
11 23.17% 22.64% | 22.24% 22.64% | 23.15% 22.42%

about 20 letters, since for bit strings of this size, a random
coincidence becomes quite small given the overall size of the
corpus. Second, we can see that the behavior of the chunk
streams is not quite identical, in our case, chunk stream 3
almost always had lower precision. This indicates that the
chunk streams are different from random bit stream in a
statistically significant way.

B. Apparent randomness

A first test for randomness is the distributions of zeroes and
ones in the chunk streams. As Table II shows, the number of
ones is less than expected. This is a consequence that the fre-
quency of letters in the two corpus is not the same as given in
Lee [13]. We developed an alternative binning for the Melville
corpus, but the distribution could not be made even because the
white spaces make up more than 1/8th of all letters. In itself, a
slight discrepancy from a 50-50 distribution of zeroes and ones
in a string is not an argument against considering the string
essentially random. Much more important is the possibility to
predict the next bit given a sequence of various bits. If we
measure the frequency of 2-bit blocks (Table III), we see that
the distribution is significantly different from one predicted by
assuming independence and the observed proportion of ones
and zeroes. Clearly, a chunk stream cannot serve as a stand-in
for a random number generator, but the differences are not
dramatic.

If we pass to the even / odd chunk streams, we find that the
apparent randomness of the chunk streams has not improved

TABLE IV: Frequency of blocks of 2 bits in an even / odd
chunk stream for Melville.

Even
Stream 0 Stream 1 Stream 2
Block | Obs Theor Obs Theor Obs Theor
00 26.39% 29.06% | 26.29% 27.84% | 24.79% 28.08%
01 27.52% 24.85% | 26.47% 24.92% | 28.19% 24.91%
10 26.30% 24.85% | 2591% 24.92% | 28.18% 24.91%
11 19.79% 21.25% | 21.33% 22.32% | 18.18% 22.10%
Odd
Stream 0 Stream 1 Stream 2
Block | Obs Theor Obs Theor Obs Theor
00 26.22% 28.59% | 2629% 27.62% | 24.15% 27.36%
01 27.25% 24.88% | 26.26% 24.94% | 28.16% 24.95%
10 26.67% 24.88% | 26.26% 24.94% | 28.60% 24.95%
11 19.86% 21.65% | 21.63% 22.52% | 19.09% 22.74%

by dividing them. Table IV clearly shows this just using blocks
of two bits. The total number of characters processed (which
is slightly different from the total number of characters in
the text because of how we treat end of lines) is 581618 and
571672 respectively.

V. RELATED WORK

Rabin proposed in 1989 his Information Dispersal Algo-
rithm (IDA) to distribute a file amongst several nodes in a
distributed system [18]. It turns out that IDA is based on
a erasure correcting code [17]. Krawczyk was the first to
consider the problem of validation of the shards into which
a file is split [12]. This problem is related to secret splitting
[23], [4]. Since Krawczyk’s work, numerous schemes provide
for checking of remote data [1], [7], [20], [22]. Since IDA is
based on a linear transformation (in the sense of an algebraic
homomorphism), it is possible to search in IDA chunks [19].
However, IDA and similar schemes either use encryption of
the shards into which they split a file or provide no security.

Searching in encrypted data is a well-established important
problem. Any fully homomorphic encryption scheme provides
this capability. Even though the recent, important advances in
finding fully homomorphic encryption schemes [25], [8], [9],
[10], usable homomorphic encryption is still far in the future.

Song’s et al. proposed to encrypt every word of a document
independently to allow for efficient keyword searches and a
number of authors have provided better schemes for keyword
searches. Goh uses a structure based on Bloom filters [11] and
Chang and Mitzenmacher use a similar index that is secure
with a stronger definition [6]. More recent improvements are
those by Boneh ef al. using asymmetric cryptography [5],
Bellare et al. [3] and v. Liesdonk et al. [26], where the main
effort is preventing traffic analysis. To our best knowledge,
only our previous work attempts to allow searches not based
on key-words [21].

A main difference between these recent works and dis-
persion is the grade of security provided. Dispersal uses a
security based on the statistical impossibility of reconstruction
complete data contents from a single site and this is simply
not secure enough for many applications. However, the costs
of cryptography (for example of storing keys securely) can be

high and some data only needs protection at the “confidential”
security level, which is what dispersal can provide.

VI. FUTURE WORK

The greatest drawback to the work presented here is the
lack of evaluation to other data domains such as audio data.
For example, an anti-mafia police surveillance might generate
thousands of hours worth of data from phone calls, but would
need to process the information fresh if new clues would arise.
A typical search then might be for all mentions of a certain
gangster monicker in all tapped phone calls during a certain
time period. This example shows the need for additional search
capabilities, since representing the phone call as a string of
phonemes will not be a completely accurate process. One only
has to think about local accents (such as the pronunciation
“nucelar” for “nuclear” in Texan) and background noise as
sources of inaccuracies in the presentation.

Easy porting of our method to another data domain requires
the automatic generation of the lossy compression scheme
and a bin number assignment that minimizes the differences
between a chunk stream and a random bit string. The scheme
needs to generate chunk streams that lack information to
reconstruct the original stream of symbols (the phonemes in
our example).

VII. CONCLUSION

We have presented a method to disperse text based infor-
mation into several chunk streams in a manner that allows ar-
bitrary searches in the dispersed text. The information content
of each chunk stream is too low for an adversary with only
access to a single chunk stream to reconstruct the content.
We evaluated the statistical properties of chunk streams using
English language novels. In our test corpus, the search shows
excellent precision if the search string is longer than about 10
letters. For larger arbitrary substrings, the precision at a single
chunk stream becomes high if the substring is longer than
20 letters. We implemented a version in C that showed that
searches in bit strings are too time consuming. We therefore
advocate the present scheme that replaces the chunk stream
with a complete index of the chunk stream. We also evaluated
the security of the scheme. As was to be expected, after lossy
compression and dispersion, the resulting chunk stream still
shows a certain structure that make it easily distinguishable
from a random bit stream. This is also evidences that on the
average existing substring search, only few false positives are
generated at the sides. To alleviate the security concerns, we
propose to divide each of the three chunk streams into halves.
The scheme is ready to be ported to other type of data of
which audio recordings of human speech seems to be the most
interesting.

REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. Peterson, and D. Song, “Remote data checking using provable data
possession,” ACM Transactions on Information and System Security
(TISSEC), vol. 14, no. 1, p. 12, 2011.

[2] T. Bell, I. H. Witten, and J. G. Cleary, “Modeling for text compression,”
ACM Computing Surveys (CSUR), vol. 21, no. 4, pp. 557-591, 1989.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

M. Bellare, A. Boldyreva, and A. ONeill, “Deterministic and efficiently
searchable encryption,” in Advances in Cryptology-CRYPTO 2007.
Springer, 2007, pp. 535-552.

J. Benaloh and J. Leichter, “Generalized secret sharing and monotone
functions,” in Proceedings on Advances in cryptology. Springer-Verlag
New York, Inc., 1990, pp. 27-35.

D. Boneh, E. Kushilevitz, R. Ostrovsky, and W. E. Skeith III, “Public key
encryption that allows pir queries,” in Advances in Cryptology-CRYPTO
2007. Springer, 2007, pp. 50-67.

Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Applied Cryptography and
Network Security. Springer, 2005, pp. 442-455.

R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “Mr-pdp: Multiple-
replica provable data possession,” in Distributed Computing Systems,
2008. ICDCS’08. The 28th International Conference on. IEEE, 2008,
pp. 411-420.

C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP J. Inf. Secur., vol. 2007, pp. 15:1-15:15,
January 2007.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Pro-
ceedings of the 41st annual ACM symposium on Theory of computing,
ser. STOC 09, 2009, pp. 169-178.

C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” in Proceedings of the 30th Annual international
conference on Theory and applications of cryptographic techniques:
advances in cryptology, ser. EUROCRYPT’11, 2011, pp. 129-148.
E.-J. Goh et al., “Secure indexes.” JACR Cryptology ePrint Archive, vol.
2003, p. 216, 2003.

H. Krawczyk, “Distributed fingerprints and secure information dis-
persal,” in Proceedings of the Twelfth Annual ACM Symposium on
Principles of Distributed Computing, ser. PODC 93, 1993, pp. 207—
218.

E. S. Lee. (1999) Essays about computer security. Centre for
Communications Systems Research Cambridge, Cambridge. [Online].
Available: http://www.proselex.net/Documents/Essaay about Computer
Security.pdf

W. Litwin, R. Mokadem, P. Rigaux, and T. Schwarz, “Fast ngram-
based string search over data encoded using algebraic signatures,” in
Proceedings of the 33rd international conference on Very large data
bases. VLDB Endowment, 2007, pp. 207-218.

M. Mahoney. Large text compression benchmark. Accessed: 2014-06-
19. [Online]. Available: http://mattmahoney.net/dc/text.html

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

F. Preparata, “Holographic dispersal and recovery of information,”
Information Theory, IEEE Transactions on, vol. 35, no. 5, pp. 1123—
1124, 1989.

M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” Journal of the ACM (JACM), vol. 36,
no. 2, pp. 335-348, 1989.

——, “The information dispersal algorithm and its applications,” in
Sequences. Springer, 1990, pp. 406-419.

T. Schwarz and E. L. Miller, “Store, forget, and check: Using algebraic
signatures to check remotely administered storage,” in Distributed Com-
puting Systems, 2006. ICDCS 2006. 26th IEEE International Conference
on. IEEE, 2006, pp. 12-12.

T. Schwarz, P. Tsui, and W. Litwin, “An encrypted, content searchable
scalable distributed data structure,” in Proceedings of the 22nd Interna-
tional Conference on Data Engineering Workshops (ICDEW ’06), 2006,
p. 18.

M. A. Shah, M. Baker, J. C. Mogul, R. Swaminathan et al., “Auditing
to keep online storage services honest.” in Proceedings, Eight workshop
on Hot Topics in Operating Systems (HotOS), 2007.

A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

C. E. Shannon, “Prediction and entropy of printed english,” Bell system
technical journal, vol. 30, no. 1, pp. 50-64, 1951.

M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Proceedings of the
29st Annual international conference on Theory and applications of
cryptographic techniques: advances in cryptology, 2010.

P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker,
“Computationally efficient searchable symmetric encryption,” in Secure
Data Management. Springer, 2010, pp. 87-100.

