
Reliability Stripe Coagulation in Two Failure
Tolerant Storage Arrays

Thomas Schwarz
Department of Computer Science

Marquette University
Milwaukee, Wisconsin, USA

tschwarz@calprov.org, orcid: 0000-0003-4433-3360

John Rose Santiago
Department of Information Technology

Xavier Institute of Engineering
Mahim, Mumbai, Maharasthra, India

johnrose@xavier.ac.in, orcid: 0000-0001-8487-5370

Abstract—As the industry slowly transitions to data centers
made up of electronic instead of magnetic storage components,
the rate of device failure and page corruption will decrease, but
not vanish. In this emerging environment, redundant storage is
still required to safeguard data. We argue that the use of two-
failure resilient linear codes with an exclusive-or (xor) based
P-parity and a Q-parity calculated using a finite field operations
is appropriate. We use the algebraic property of finite fields to
show how to coagulate a number of small “constituent” reliability
stripes into larger coagulated stripes without recalculating pari-
ties. This allows to protect largely inactive data with more storage
efficient larger reliability stripes. The procedure is reversible.

Index Terms—Erasure Correcting Codes, Extension of Codes,
Linear Codes, Storage Systems

I. INTRODUCTION

Storage and memory systems are made up of fallible com-
ponents. With increasing numbers, the probability of failure
also goes up. Faced with the possibility of failure, systems
designers can opt to do nothing, to detect failures in order to
prevent secondary damage, or to store data redundantly. The
first course is examplified by phone owners who do not back
up their data, the second is taken by DRAM manufacturers
whose devices store a parity bit for each memory word to
prevent an invalid word to be interpreted as valid data. Data
centers that store petabytes of data will use erasure correcting
codes, whereas high value data that cannot go through a
reconstruction process after loss is mirrored or even triplicated.

The use of erasure correcting code does not come for free.
One cost factor is the increased complexity of operations. It
takes more effort to update data as now also parity data has to
be updated. The other cost factor is financial, it costs money to
buy and operate the additional devices needed. We can control
the first by the number of parity pages that have to be updated
and the second by the ratio of storage devoted to parity over
the total number of storage, i.e. by adjusting the length of a
reliability stripe.

In storage arrays using hard drives, silent corruption of disk
blocks has been recognized as a source of data loss [6], [11]. If
we try to access data stored in a corrupted disk block, we can
usually recover the data because we still can access all other
blocks in the reliability stripe. However, if we need the data
in a corrputed block in order to deal with a failure in another
block, then we need the capacity to recover from more than

one failure. This observation lead to the development of RAID
Level 6, where blocks located in n−2 of the n disks making
up the storage array are placed in reliability stripes to which
two blocks, the P- and the Q-parity, located in the remaining
two disks are added. Of these, the P-parity is the exclusive-or
(XOR) of the data blocks in the stripe, whereas the Q-parity is
the result of a more involved calculation, frequently obtained
using calculations in a finite field [9]. These type of stripes are
also used in larger disk arrays where they incorporate blocks
on n different disks, but the number of disks in the array is
much larger.

As storage and memory moves to the use of very large
non-volatile RAM technologies, the failure rates for these
components will be less, but the same failure mechanisms
experienced in large disk-based data centers will still happen,
namely the loss of communication to a range of devices, the
failure of enclosures, the failure of components, and the failure
of individual storage units (pages). The size of the reliability
stripe will still be an important design issue. If stripes are long,
then as recovery of a lost block or two in a stripe involves
reading all other blocks in the stripe, the load generated by
recovery is high. If stripes are short, then the storage overhead
for the parity is bad. Maintaining parity is also a problem.
In the “small write”, we update a block by reading its old
contents, reading the contents of the P and Q-parity, calculate
the new contents from the exclusive-or (XOR) of the old and
new contents before we write the data and the newly calculated
parity.. (This assumes that the Q-parity is obtained from a
linear code, see below.) In a modern disk storage systems,
incoming blocks of data (which can be much larger than the
4KB physical blocks) are streamed into stripes and when the
stripe is full, the P and Q-parity data is written. This is much
more efficient.

Data in storage exhibit strong access characteristics. First,
in many situations, data is actually never accessed after it is
written or after a certain time after creation. For instance,
medical images are rarely consulted after the end of treatment,
but for legal reasons or for rare medical cases, need to stay
available. Secondly, much data goes from an active phase after
creation to an inactive phase where accesses are very rare. The
HP AutoRAID was an example of such a system [14]. Fresh
data was stored in mirrored form, where recovery and updates

978-1-6654-5987-7/23/$31.00 ©2023 IEEE

are simple and efficient, but after a while data was migrated to
a RAID Level 5 configuration. Unfortunately, the commercial
version was not a success because the product could not
overcome the problem of trashing where data blocks oscillate
between the mirrored and the erasure correction protected
states, but the principal idea is sound.

We propose a similar mechanism where data blocks migrate
back and forth between reliability stripes of small and large
length. Our mechanism allows more than two stripe sizes.
We envision its use in large data storage devices using solid
state technology, either Flash or one of the storage class
memory technologies currently under development such as
phase change memories or second generation magnetic RAM.
Our work is inspired by that of Pâris, Estrada-Galiñas, Amer,
and Rincón, who showed how the use of entanglement codes
[3], [2] can be used to expand and shrink reliability stripes
defined by two-dimensional erasure correcting codes (2D
codes) [5], [12]. The contribution of these authors is stronger,
as Pâris et al. use the entanglement coding idea in a clever
way to counter-act the decrease in reliability that results from
using larger reliability stripes and is the cost of lower storage
overhead. The other inspiration is the work by Plank, Greenan
and Miller [8], [16] who showed how one can exploit features
of modern CPU by vectorizing Galois field calculations. We
exploit here the fact previously observed by Zhou and Tian
[16] that calculation in small Galois fields are more efficient
than in large Galois fields.

Our proposal is based on the mathematics of finite fields,
used in the definition of linear codes. We review this in the
next section. We then discuss how these codes are and will
be used in the future. We then describe our proposal on how
to stitch together (“coagulate”) several small reliability stripes
into a larger ones, using the previously calculated parities of
the smaller stripes. Finally, we discuss how to integrate this
proposal into large storage installations.

II. MATHEMATICAL PRELIMINARIES

General linear codes are defined over finite fields, which
we have to explain first. Because of the binary nature of data
storage in Information Storage, i.e. because we store data as
arrays of bits, the finite fields whose elements can be naturally
interpreted as bit strings are the most important. (There is
nothing fundamental in Computer Science to this, as many
modern storage and memory technologies use cells that in
principal can use any number of levels, for example multi-level
flash drives. However, current semi-conductor technology uses
bits forcing storage technologies to use a small power of two
as the number of levels.) Mathematically, (up to isomorphy),
there is only one finite field with 2l elements. We write it as
F2l . It is also called the Galois field with 2l elements.

A. Galois Field Definition

The elements of F2l are bit strings of length l. The actual
operations will depend on the exact definition of the field, but
the following is standard. The addition of two field elements is

given by the exclusive-or (XOR) of two bit-strings. This oper-
ation is standard in modern computer architectures and among
the fastest to be executed on a modern micro-processor. It is
also an operation that smart storage devices might be capable
of handling. As a consequence, the zero bit string 00 . . .0 is the
zero of the field. For the multiplication, we need to distinguish
between implementation and mathematically most convenient
definition. The latter interprets a bit string a0a1a2 . . .al−1 as a
polynomial a0 + a1 · t + a2 · t2 + . . .+ al−1t l−1 with unknown
t and coefficients in the field F2 = {0,1}; in the latter
the addition is the logical eXclusive OR (XOR) and the
multiplication is the logical AND of two operands. This
just means that 0+ 0 = 0, 0+ 1 = 1, 1+ 0 = 1, 1+ 1 = 0,
0 · 0 = 0 · 1 = 1 · 0 = 0, and 1 · 1 = 1. The multiplication in
F2l is then defined as the product of the two polynomials
resulting from the two bit strings, modula a generator poly-
nomial g(t) ∈F2 [t], which is irreducible (not the non-trivial
product of smaller polynomials), and has degree l. There is
actually quite a number of generator polynomials to choose
from. Choosing the right generator polynomial simplifies the
calculation of the product of two bit strings, but this is the
case only if we use the definition for the implementation.
Using pre-processing of various kinds we can simplify the
calculation [4]. Plank and Miller found that using the Intel
SIMD instructions yields multiplication implementations that
are blazingly fast and published the GF-Complete library in
C++ that implements them and other operations useful for
erasure coding for bit-strings of size 4, 8, 16, 32, 64, and 128
[8], [10]

The non-zero elements of F2l form a cyclic group with
multiplication. Thus, every non-zero element can be given as
a power α i,0≤ i < 2l−1 with a certain element α ∈F2l . In
fact, we can always achieve that α is the bit string 010 . . .0.
Of course, the one in F2l is the bit string 10 . . .0. If we can
represent two non-zero elements as powers of α, namely x =
α i and y = α j, then obviously xy = α i+ j, where the addition
is taken modulo 2l−1. This mathematical connection between
Galois field multiplication and addition in the integers modulo
2l−1 is the key to the coagulation of two reliability stripes, as
we will see.

B. Erasure Tolerant Linear Codes

A binary linear code is defined by a generator matrix G ∈
F r×s

2l of size r× s with coefficients in the Galois field F2l

with 2l elements.
A generator matrix maps an information word, a col-

umn vector x =t (x1,x2, . . . ,xs) ∈ F s
2l to a code word y =t

(y1,y2, . . . ,yr) ∈F r
2l by left multiplication

y =G ·x.

The generator matrix is systematic if s < r and the top r rows

D1 D2 D3 D4 D5 D6 D7 D8 P Q

Fig. 1. Two Failure Tolerant Storage Array with eight data elements and two
parity elements.

form an identity matrix, i.e. if

G=



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 0 0
...

...
...

...
0 0 0 1 0
0 0 0 . . . 0 1

cs+1,1 cs+1,2 cs+1,3 . . . cs+1,s−1 cs+1,s
...

...
...

...
cr,1 cr,2 cr,3 . . . cr,s−1 cr,s


If G is systematic, then the first s coordinates of G ·x are the
same. Thus, multiplication by G merely adds r−s coordinates
to x.

We employ linear codes in order to store data redundantly.
The data itself is a stream of bits stored in the pages of
memory or a storage device. We assume that this stream of
bits is divided into finite field elements. Figure 1 depicts eight
data pages D1, . . ., D8 as tall, rounded rectangles. The sixteen
smaller rectangles inside represent field elements, bit strings of
a given, constant size. To the ensemble of eight data pages, we
add two parity pages P and Q. We use a systematic generator
matrix to calculate the contents of the parity pages. The first
element in each data page is arranged into a row vector
x∈F 8

2l . We then multiply x with a systematic generator matrix
G ∈ g f 10×8. The result, y is a ten-dimensional row vector,
whose first eight coefficients are the same as the corresponding
coefficients in x. The two additional, i.e. the nineth and tenth
coefficient become the first part of the contents of the parity
pages P and Q, respectively. We continue the procedure with
the second field element in each data page, until we reach the
end. In other words, the contents of the P and Q parities are

calculated as a linear combination of the contents of the data
pages.

The purpose of the parity pages is of course to recover from
the failure or unavailability of data pages. Since the content
of the data pages are independent of each, the information in
an ensemble of s data pages and r− s parity pages is exactly
that of s pages. Thus, information has to be lost if less than s
pages are available. However, if the generator matrix is chosen
well, than any combination of s pages among the r contains
the original information in the data pages. Assume that a data
page is no longer readable. For example, we have encountered
a corrupted page. We select s readable pages in the ensemble.
One of them is a parity page. The contents of the parity page
is calculated from the data pages using a linear function. If we
call di the finite field symbol in the ith data page at the same
offset and similar p for the corresponding parity symbol, then

p = a1 ·d1 +a2 ·d2 + . . .+as ·ds.

Assume that data page x has failed. We can calculate dx from
the other di and p if (and only if) ax is not-zero. Thus, by
making sure that all ai are non-zero, we can use this parity
page to recover the contents of a single bad data disk.

In general, if all s× s sub-matrices of G are invertible, then
any s pages in the ensemble of r + s pages can be used to
regenerate the data in the original s data pages. In this case,
the resulting code is r− s-erasure correcting.

C. Two Failure Correcting Codes

In most settings, it turns out that the capability of restoring
a single data page in a group is not sufficient. On the other
hand, a capacity of restoring three inaccessible pages is usually
not needed. We therefore concentrate here on two-failure
correcting codes and systems.

Subject to the last observation, different generator matrices
will have different performance. First, the first parity page
can be calculated using the ”true parity”, meaning choosing
all coefficients to be equal to 1. This leaves the selection of
the second parity row in G.

We call the generator matrix and the resulting code two-
failure correcting, if the contents of any two pages can be
recalculated from the other s pages in an s+2 ensemble. We
have the following, surprisingly simple criterion:

Lemma 1: Let

G=



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 0 0
...

...
...

...
0 0 0 1 0
0 0 0 . . . 0 1
1 1 1 . . . 1 1
c1 c2 c3 . . . cs−1 cs


Then G is two-failure correcting if and only if the coefficients
c1, c2, . . ., cs are all different and non-zero.
Proof: We assume that two pages are not available. By what
we have already observed, we can assume that these are two

data pages. We can recover these data pages if and only if the
s×s square matrix G′ obtained by removing the corresponding
rows from G is invertible. We can use repeatedly cofactor
expansion along the first s−2 rows to show that

det(G′) =
∣∣∣∣1 1
ci c j

∣∣∣∣= c j− ci,

where i and j are the missing rows. This shows that all
coefficients in the last row have to be different in order to
reconstruct two missing data pages. If we instead loose the
first parity page and a data page, we can reconstruct if (and
only if) the last-row coefficient corresponding to the data page
is not zero, as we have already seen.

D. Multiplicative Structure and Field Extensions

The algebraic structure imposed by multiplication is sur-
prisingly simple. In Mathematical language, the multiplicative
group (all non-zero elements of the field with the multiplica-
tion) is cyclic. This means that all element x ∈F2l , x 6= 0 can
be written as β i, i ∈ {0, . . . ,2l − 2} with a primitive element
β ∈F2l . By choosing a primite element β , we can quickly
generate all 2l−2 elements.

The complexity of the implementation of multiplication
depends on the size of the elements, i.e. their length as bit
strings. Sometimes it is advantageous to see a given field as
a ”field extension” F2lk of F2l . The multiplicative group of
the former has 2lk − 1 elements and the latter 2k − 1. Not
surpisingly, 2k−1 divides 2lk−1 as d = ∑

l−1
ν=0(2

ν)k = 2kl−1
2k−1 . If

β is a primitive element of F2lk , then β d and all of its powers
is an element of F2l ⊂ F2lk . It follows that β d is a primitive
element for F2l .

III. STORAGE ARRAY ORGANIZATION

Erasure coding was first deployed for storage systems, with
Patterson et al. invention of Redundant Arrays of Inexpensive
Disks (RAID) that proposed to gather a small number of small,
inexpensive disks to take on the role of a large, expensive disk.
Originally intended to be a faster replacement of a single disk,
the reliability aspect became the most important one and the
”inexpensive” disks became ”independent” disks. The original
RAID Level 5 consisted of a small number m of disk drives to
which was added a parity disk for an ensemble of m+1 disks.
A dedicated parity disk however needs to be updated whenever
any data changes. To equalize the otherwise unbalanced load,
each disk is divided into a multiple of m+1 regions, so that
each disk carries the same amount of parity regions than all
others [7].

In large storage installations, this balancing can be left to
random placements. A stream of incoming data is placed in
pages, these pages are assigned to storage components (using
the meta-data server, see below), placed into reliability stripes,
and as the stripe fills up with user data, the parity data is
calculated and placed eventually into parity pages. Ideally,
once a user page is written, it will no longer be changed.
However, if a user page changes, it is still possible to calculate
the new parity pages from (1) the content of the previous

contents of the user page, (2) the current content of the parity
page to be calculated, and (3) the new content of the user
page. In a disk based system, this means reading the one data
block and the two parity blocks and then writing all these
blocks. Between reading and writing, the disk needs to make
a full rotation, making this a cumbersome operation. In a large
storage installation, we do not need to store old and new data
pages in the same location, which incidentally allows us to
order the operations in such a way that a crash during an
update never looses data, even if a failure occurs.

IV. OUR PROPOSAL

Our task is to coagulate a number of stripes
di,1,di,2, . . .di,m, pi,qi i = 0,1, . . . ,r into a single stripe
without wasting the calculation of the parities pi and
qi. Furthermore, the calculation of the Q-parities for the
constituent stripes that will make up the coagulated stripe
need to be the same.

A. Definition

Since the P-parity of the new stripe is the exclusive-or
(XOR) of the data pages, this is trivially solved. The P-parity
of the coagulated stripe is the XOR of the P-parities of the
constituent stripes. The Q-parities are calculated using non-
zero, mutually different Galois field elements, which are given
as powers β i of a primitive element, thus are determined by
their discrete logarithm i where i is in {0,1, . . . ,2l−2}.

We calculate the Q-parities of the constituent parities with
coefficients β d , β 2d , β 3d , . . ., β md . The Q-parity of the
coagulated stripe is then calculated with coefficients

β d β 2d . . . β md

β d+1 β 2d+1 . . . β md+1

...
...

. . .
...

β d+r−1 β 2d+r−1 . . . β md+r−1

which presupposes that r < d and md + r is smaller than the
number of non-zero elements in the underlying Galois field.
As a result, the Q-parity q of the coagulated stripe is calculated
from the Q-parities qi as

q = β
0 ·q0 +β ·q1 +β

2 ·q2 + . . .β r−1 ·qr−1.

This is particularly useful if the underlying Galois field is
composite and β d is the primitive element of the subfield,
because the calculation of the constituent stripe Q-parities are
then performed in a smaller field that can be optimized.

B. Operations

Under normal circumstances, incoming data is organized
into streams and each stream is written into data pages. The
data pages are placed into constituent stripes. As the pages
are written, the P- and Q-parities are calculated. The reasons
to break incoming data into streams are two-fold: We want to
place related data into the same stripes, because related data
is more likely to change in the same transaction. We want to
have several streams because the calculation of Q-parities at

least is slower than writing to a page (unless magnetic disks
are used) we might need to paralize the calculation.

Fresh or freshly changed data stays in small constituent
stripes as they are more likely to be changed or deleted.
At a convenient time, constituent stripes are collected and
coagulated.

When a page (or a set of pages) in a coagulated stripe
is changed, its constituent stripe will be removed from the
coagulated stripe. To this end, we first calculate the P- and Q-
parities of the constituent stripe. To fix notation, assume that
this is constituent stripe i in the notation above with P-parity
pi and Q-parity qi. The data pages in the constituent stripe
are di,1, di,2, . . . , di,m and the corresponding coefficients β d+i,
β 2d+i, . . . , β md+i for the calculation of the Q-parity in the
coagulated stripe. The Q-parity of the constituent stripe is

qi = β
d ·di,1 +β

2d ·di,2 + . . .+β
md ·dim.

The contribution to the Q-parity of the complete coagulated
stripe is, as we have seen above, β i ·qi. Similarly, for the P-
parity, the contribution of the constituent string is just pi, the
P-parity of the constituent string.

We then replace the P-parity and Q-parity of the coagulated
stripe by

p = p+ pi

q = q+β
i ·qi.

(As these calculations are made in the Galois field, addition is
the same as subtraction.) With these changes, the new P- and
Q-parities of the coagulated stripe are the correct parities for
a coagulated stripe where the data pages of the ith constituent
stripes are zero pages (i.e. made up only of zero bytes).

We call a coagulated stripe where one or more constituent
stripes are made up of zero pages a coagulated stripe with
holes. To fill a hole, we calculate the P- and Q-parities of
a new constituent stripe, select a hole i and use the same
calculations as before.

C. Use of Field Extensions

While our calculations work in any Galois field F2l of
characteristic two, we can make use of field extensions to
simplify Q-parity calculations in the constituent stripes. Then
β d and its powers are in a smaller GF field. We can decompose
each symbol in a data page, representing an element of the
larger Galois field into smaller bit strings each representing
an element of the smaller Galois field {0,β d ,β 2d , . . .} and
use the faster implementation of the multiplication there.

As an example consider the field extension F28 ⊂ F216 .
The element of the first are bit-strings of length eight, whereas
the elements of the latter are bit-strings of length sixteen. If
β is a primitive element of F216 , then β 257 is a primitive
element of F28 . With this choice of fields, a constituent stripe
has a maximum length of 255 whereas the coagulated stripe
can consists of up to 257 constituent stripes. If we actually
were to select maximum stripe sizes, the coagulated stripe
could consist of 65535 data pages (plus two parity pages),

sizes that would exceed the needs and capabilities of most
storage systems.

For a more realistic example, we consider F24 ⊂ F28 .
With these choices, constituent reliability stripes contain up to
fifteen user pages and the coagulated stripes contain up to 255
user pages. The choice of such a small base field is motivated
by the efficiency with which the Plank-Greenan-Miller method
[8] can generate the Q-parity, as the Intel PSHUFB instruction
(and its correspondent instructions in other instruction sets)
uses arrays of nibbles for its operation. The parity overhead
goes from 11.8% to 0.8% through coagulation. Finally, there
is no technical reason to combine both examples and have two
levels of coagulation, which reduces the overhead to as little
as 0.003%, though in practice, the length of reliability stripes
is limited by the total number of independent devices and the
cost of reading all the other pages in the stripe during data
reconstruction.

V. IMPLEMENTATION

The original RAIDs were composed of a small number of
disks and today still remain a popular product for the small
office or home office market. However, our proposal takes
aim at data centers with a large number of constituent devices.
Because we assume them to be no longer magnetic hard drives
but electronic, the failure characteristics will be different. We
will still have to contend with rare page failures, where a page
cannot be read, with rare device failures, and more importantly,
with communication failures where the overall system can
no longer communicate with a device. We assume that the
underlying storage network is fault tolerant. This assumption
excludes the possibility of a network partition, where devices
in each partition still function, but cannot communicate with
devices in the other partition while they still might be able
to process requests from some clients. Our assumption means
that only a few devices will be inaccessible at a time.

Even if the underlying storage technology changes, the prin-
cipal architecture of the system as examplified with Ceph [13]
will remain. A distributed storage architecture is supervised
by a meta-data server. This meta-data server is responsible
for breaking up user data into pages, place pages into relia-
bility stripes, insure that all pages in a reliability stripe are
physically stored at different devices, move pages between
devices whenever the size of the installation changes, and also
to coagulate stripes with inactive data. As the experience with
Ceph has shown, the underlying data storage has to be using
a specialized file system [1].

The practical length of a coagulated reliability stripe will
be determined by (1) the capability to find pages on different
components (Otherwise a component failure will lead to data
loss), (2) the costs of reconstructions since all but one of the
pages need to be read, and finally, (3) the overall increase
in the probability of loosing more than two pages in a
stripe including those whose failure was discovered during the
reconstruction attempt. Of these, the second reason is likely to
be the most restricting one. After each failure, the storage array
enters a period of vulnerability where any unrelated failure is

more likely to lead to dataloss. For good overall reliability, this
period of vulnerability needs to be kept as short as possible
[15]. If a reliability stripe has n data pages, and a container
with many pages fails, then we need to read n times the
contents of a container. As we can assume that assignment of
pages to reliability stripes is governed by random assignments,
this reconstruction load is reasonably evenly distributed over
the whole storage array. Nevertheless, this additional load
needs to be managed. As we cannot set apart a large part
of the IO capacity of the array for reconstruction load, the
stripe size n is limited. This limit can be extended by smart
caching that redirects data influx to a cache for a limited time.
As the underlying devices become more reliable, we will also
see this limit increase.

VI. CONCLUSION

Currently, much data storage in the world is stored on
devices, using magnetic technology (disks, tapes), but the
future is electronic. While electronic devices tend to be more
failure resistent, we still will have to face their fallability. This
means storing data redundantly. Device failure can be silent,
for instance, corruption of a single page. Such a failure can
only be detected by accessing the page. We can assume that
easily detectable failures such as loss of network access are
more frequent.

Under these circumstances, using a single parity for re-
dundancy is not sufficient as a hidden failure is likely to
be only discovered during a reconstruction triggered by an
open failure. However, unlike for disk based storage facilities
where time between disk failures is measured in hours instead
of days, adding more redundancy is not needed. As parity
generation is involved and its storage is costly, we foresee
the need for 2-failure tolerant codes. These codes will pack
data pages into a reliability stripe and add two parities to it.
The best choice for parity generation is the exclusive-or for
one, the P-parity, and a linear combination of the data pages
calculated over a Galois field, the Q-parity.

The length of the reliability stripe is one of the factors that
determines data survival rates. As stripes get longer, more data
needs to be accessed to deal with a missing page, increasing
the “reconstruction load”. However, the parity overhead also
goes down.

In this paper we have shown how to aggregate a number
of small reliability stripes into a larger, “coagulated” stripe.
The increase is appropriate for stripes with (largely) inactive
data. The coagulation process only uses already calculated
parities and is reversible. It is simple and can be integrated
into existing storage systems like Ceph. Our method is based
on the basic algebraic structure of Galois fields.

REFERENCES

[1] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis, “File systems unfit as distributed storage backends:
lessons from 10 years of ceph evolution,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles, 2019, pp. 353–369.

[2] V. Estrada-Galinanes, E. Miller, P. Felber, and J.-F. Pâris, “Alpha
entanglement codes: practical erasure codes to archive data in unreliable
environments,” in 2018 48th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN). IEEE, 2018, pp.
183–194.

[3] V. Estrada Galinanes and P. Felber, “Helical entanglement codes: An
efficient approach for designing robust distributed storage systems,” in
Stabilization, Safety, and Security of Distributed Systems: 15th Inter-
national Symposium, SSS 2013, Osaka, Japan, November 13-16, 2013.
Proceedings 15. Springer, 2013, pp. 32–44.

[4] K. M. Greenan, E. L. Miller, and T. Schwarz, “Optimizing Galois
field arithmetic for diverse processor architectures and applications,” in
IEEE International Symposium on Modeling, Analysis and Simulation
of Computers and Telecommunication Systems. IEEE, 2008, pp. 1–10.

[5] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A.
Patterson, “Coding techniques for handling failures in large disk arrays,”
Algorithmica, vol. 12, no. 2-3, pp. 182–208, 1994.

[6] I. Iliadis, R. Haas, X.-Y. Hu, and E. Eleftheriou, “Disk scrubbing versus
intradisk redundancy for RAID storage systems,” ACM transactions on
storage (TOS), vol. 7, no. 2, pp. 1–42, 2011.

[7] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proceedings of the 1988 ACM
SIGMOD international conference on Management of data, 1988, pp.
109–116.

[8] J. Plank, K. Greenan, and E. L. Miller, “Screaming fast Galois field
arithmetic using Intel SIMD extensions,” in Proceedings of the 11th
Conference on File and Storage Systems (FAST 2013), Feb. 2013.

[9] J. S. Plank, “A tutorial on Reed–Solomon coding for fault-tolerance in
RAID-like systems,” Software: Practice and Experience, vol. 27, no. 9,
pp. 995–1012, 1997.

[10] J. S. Plank, E. L. Miller, K. M. Greenan, B. A. Arnold, J. A. Burnum,
A. W. Disney, and A. C. McBride, “Gf-complete: A comprehensive
open source library for Galois field arithmetic version 1.02,” University
of Tennessee, Tech. Rep. UT-CS-13-716: [PMG+13], 2014.

[11] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” Journal of Physics: Conference Series, vol. 78, no. 1, p.
012022, jul 2007. [Online]. Available: https://dx.doi.org/10.1088/1742-
6596/78/1/012022

[12] T. J. E. Schwarz, “Reliability and performance of disk arrays,” Ph.D.
dissertation, UC San Diego, 1994.

[13] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 307–320.

[14] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP AutoRAID
hierarchical storage system,” ACM Transactions on Computer Systems
(TOCS), vol. 14, no. 1, pp. 108–136, 1996.

[15] Q. Xin, E. L. Miller, T. Schwarz, D. D. Long, S. A. Brandt, and
W. Litwin, “Reliability mechanisms for very large storage systems,” in
20th IEEE/11th NASA Goddard Conference on Mass Storage Systems
and Technologies, 2003.(MSST 2003). Proceedings. IEEE, 2003, pp.
146–156.

[16] T. Zhou and C. Tian, “Fast erasure coding for data storage: A com-
prehensive study of the acceleration techniques,” ACM Transactions on
Storage, mar 2020.

