RESAR: Reliable Storage at Exabyte Scale
Reconsidered

Thomas Schwarz, SJ*, Ahmed Amerf, John Roset
*Marquette University, Milwaukee, WI, thomas.schwarz @marquette.edu
fSanta Clara University, Santa Clara, CA, aamer@scu.edu
{Xavier Institute of Engineering, Mumbai, India, johnrose @xavierengg.com

Abstract—Stored data needs to be protected against device fail-
ure and irrecoverable sector read errors, yet doing so at exabyte
scale can be challenging because of the large number of failures
that must be handled. We have developed and presented RESAR
(Robust, Efficient, Scalable, Autonomous, Reliable) storage, an
approach to storage system redundancy that only uses XOR-
based parity and employs a graph to lay out data and parity
[5]. Here we add to our prior work by giving a proof of our
analytic results for RESAR reliability. The results presented here
are valid for any size RESAR layouts and allow us to make an
exact comparison of spiral RESAR robustness with an equivalent
RAID 6 disk array.

I. INTRODUCTION

Very large storage systems contain millions of storage
devices, typically hard disks for cost reasons. At this scale,
device failure and discovery of latent sector errors becomes
frequent events, against which the system protects its data
by storing them redundantly. While occasionally higher levels
of redundancy are desirable, the consensus in the storage
community is that the system needs to tolerate two simul-
taneous failures without losing data. This small number is
achieved by declustering where the space on a disk is divided
into chunks, called disklets. A group of k disklets (typically
k =8, k = 16, or kK = 32) forms a reliability stripe to
which the standard declustered RAID Level 6 architecture adds
two parity disklets. The contents of these parity disklets are
calculated with an erasure correcting code based on Galois
field calculations. With a disklet size of 1GB, the complete
disklet can be read in about five seconds. If the system detects
a failure, the contents of all disklets in the failed disk are
reconstructed by reading k of the remaining k + 1 disklets in
the stripe (or reads k/(k + 1) of the remaining k + 1 disklets
for faster reads) and storing the result in a spare disklet. If
a system discovers a disklet with a latent sector error, it is
recovered in the same way.

Recently, we presented a new layout, called RESAR for
Robust, Efficient, Scalable, Autonomous, and Reliable storage
[5]. Unlike RAID 6 that places each data disklet in a reliability
stripe with two additional parity disklets, RESAR places each
data disklets in two reliability stripes. The parity in each
reliability stripe is calculated using normal bitwise exclusive-
or operations instead of the more involved Galois field calcula-
tions. Previously, we used simulation to compare the reliability
of a RESAR layout with that of the typical declustered RAID 6
architecture described above. The previous work gave the

probability of data loss after loss of a few disklets but did
not provide a proof. Here, we give the proof and further use
the analytic results to show that the robustness (probability of
incurring dataloss after suffering f disklet failures) of RESAR
is £ (k?+3k-+2) times better than that of an equivalent RAID 6
for very large systems.

In the remainder of this article, we explain the spiral
RESAR layout (Section II) and the recovery operations from
disklet failures (Section III). We then derive the dataloss
probability given f failed disklets for f < 5 (Section IV).
After determining analytically the probability of dataloss for
a RAID 6 layout given f disklet failures for any number
f (Section V), we use these exact results to compare the
robustness of the two architectures as its size goes to infinity
(Section VI).

II. SPIRAL RESAR LAYOUT

If data disklets represents information symbols and parity
disklets represent parity symbols, then a RESAR layout is an
error correcting code, namely a flat XOR-code. Greenan et al.
defined them as codes where parity symbols are calculated
from certain subsets of data symbols with an exclusive-or
operation [2]. We call these subsets reliability stripes.

Layouts based on flat XOR-codes that tolerate two simul-
taneous failures need to place each data disk in at least two
different reliability stripes. The intersection of two reliability
stripes cannot contain more than a single disklet. We can label
each data disk by the numbers of the two reliability stripes to
which it belongs. Similarly, we can label each parity disk with
the number of the reliability stripe to which it belongs. This
defines a graph structure derived from the disk layout where
each parity disk corresponds to a vertex and each data disk to
an edge between vertices.

We use a graph to visualize the layout of disklets into
reliability stripes and later manipulate them. Fig. 1 gives an
example. In the graph layout, parity disklets corresponds to
vertices and data disklets to edges. For example, disklet 9 on
the left belongs to a horizontal reliability stripe with parity
disklet P2 and a vertical reliability stripe with parity disklet
D1. In the graph visualization (Fig. 1), disklet 9 is represented
by an edge (labelled with its number). This edge is adjacent
to two vertices, that represent the parity disklets, P2 and DI,
respectively.



Fig. 1. Left: The two-dimensional layout for a disk array. O, 1, 2, ..., 15
are data disks and PO, ..., P3 and DO, ..., D3 the two set of parity disks.
Right: The corresponding graph visualization, where edges correspond to data
disks. For example, data disk 9 located in the stripes with parities P2 and
D1 corresponds to the edge between D1 and P2 on the right.

To our knowledge, the graph visualization was first ex-
ploited by Xu et al. in the definition of B-codes [9]. B-
codes are a precursor to Row-Diagonal parity codes [1] that
only use exclusive-OR operations for parity calculation and
guarantees two failure tolerance. An observation by Zhou et
al. characterizes minimal failure sets of disks in a 2-failure
tolerant flat XOR-code as those containing either a cycle of
edges or a path where the end vertices have also failed [10].
The graph visualization is a good way to determine the failure
resilience of these type of layouts [4].
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Fig. 2. A small bipartite RESAR layout with k = 4.

We base our RESAR layouts on a bipartite graph. RESAR
layouts are scalable and can incorporate an arbitrarily large
number of data disklets (or complete storage devices). Each
data disklet belongs to a horizontal and a diagonal parity stripe
with k data disklets and a single parity disklet.

We give an example of the graph representation of a RESAR
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Fig. 3. The graph representation of the RESAR layout in Fig. 2.

layout, Fig. 2, in Fig. 3. The graph layout consists of two
columns of parity disklets, the P- (Parity) on the left and the D-
(Diagonal) parities on the right. Data disklets are represented
by edges between the left and right column of vertices. Each
vertex (parity disklet) has edge-rank k, meaning that there are
k data disklets in each reliability stripe. Fig. 2 does not show
that the RESAR layout is circular, that is we connect the upper
and the lower edge of the graph in Fig. 2. Given the size of
the disk arrays, this move is in reality not important, as having
a few reliability stripes with less than k data disklets is not
likely to be noticed. Our analysis however assumes the circular
layout.

We use an enumeration of disklets not only to indicate how
the disk array would grow if more disks are added, but also
to control the placement of disklets in disks such that a single
rack failure cannot cause data loss. If the elements in Fig. 2
denote disklets and we place disklets 33, 35, 38, and 40 in the
same disk, then the failure of this disk causes data loss, since
all four disklets share their two reliability stripes with another
one of the four. Similarly, a rack failure can cause data loss
if we place these disklets in different disks, but in the same
rack.

Only for an archival workload would one use the static
layout where a disk is either a parity or a data disk. Normally,
we use declustering (originally called clustering by Muntz and



Fig. 4. Left: Failed data disklets with its neighbors. Right: Failed parity
disklet with its neighbors.
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Fig. 5. Cascading recovery of multiple failures in RESAR.

Liu [3]), where we create disklets, contiguous sets of blocks on
a disk, which then are assigned by the layout. The Ceph system
[6] uses a metadata server that deals with assigning actual
disklets to the virtual disklets in the graph layout. The reason
is the dynamic nature of large storage systems, where disks
and other components failure is a more than daily occurrence
[8] and batches of new components are introduced. Algorithms
such as CRUSH have been developed to deal with this problem

[7].
III. RECOVERY FROM DISK FAILURES IN RESAR

To recover the data from a failed drive we must recover the
data in each of the disklets in the drive. Since each data disklet
is in two reliability stripes (see Fig. 4 for a depiction in the
graph visualization), we can recover using either reliability
stripe if all the other data disklets and the parity disklet in
the corresponding stripe are still available. This flexibility is
useful to avoid using a heavily loaded disk for recovery and
is also a reason for the greater robustness of this layout. A
parity disklet on a failed disk can be reconstructed in another
disk if all its data disklets can be recovered. RESAR can use
both stripes to halve the reconstruction time.

We use the graph visualization to discuss recovery. The
graph represents disklets, not disks, and a single disk failure
results in multiple disklet failures. As we mentioned, a good
disklet-to-disks mapping ensures that these disklet failures
resulting from the failure of a single disk are widely spread
over the (rather large) graph. We can recover the data from
a disklet (and then place the recovered disklet on another
disk drive) if it is represented by a vertex (and is therefore a
parity disklet) if all the edges (data disklets) adjacent to it are
available. We can recover the data from a disklet represented
by an edge (i.e. a data disklet) if one of the adjacent vertices
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Fig. 6. Irreducible failure patterns. The barbell and the triangle on the right
are irreducible failure patterns with the minimum number of failed disklets,
namely three.

and all the edges adjacent to it are available. Cascading
recovery in a RESAR layout happens if a disklet can only
be recovered after some of its neighbors have been recovered.
Fig. 5 gives in column (a) a case with several failures in our
graph layout. Failed elements are marked in red. In the upper
failure cluster, there is one vertex on the left, which has lost
three adjacent edges. For this reason, this vertex (or to be more
precise, the reliability stripe represented by this vertex) cannot
be used for recovery, but each data element in this stripe is
also located in another reliability stripe. Two of the failed
data elements can be recovered directly in the following step
(column (b)), and the remaining failed element’s data can be
recovered in the third step (column (c)). The failed vertex in
this cluster can only be reconstructed if all its adjacent edges
are available. The lower failure cluster contains a failed vertex
from which a path of failed edges emanates. This pattern
resolves itself only in the fourth step.

The most frequent failure mode is that of a single block or
of a disk. In both RESAR and a RAID Level 6 layout, we
deal with the single block failure with the same efficiency. In
the first case, we select one of the stripes and read the other
blocks in the stripe, whereas in the second case, we select n
out of the n 4+ 1 remaining blocks in the reliability stripe. If
we have a non-declustered layout, RESAR has an advantage.
We need to recover all the blocks on the failed disk (and write
them elsewhere in the array). For this, we read half the blocks
in the remaining disks of one of the two reliability stripes and
half the blocks in the remaining disks of the other reliability
stripe. The RAID Level 6 has more difficulties, since there is
only one stripe. Each of the n + 1 disks in it has to contribute
n/(n+1) of the read load. This means that a non-declustered
RAID Level 6 layout takes longer in order to recover. The
same is not true for a declustered array. The previous paper [5]
determines entanglement, the number of blocks on two disks



that are in the same reliability stripe. It turns out that with high
levels of declustering, RAID Level 6 has less entanglement
than RESAR. Then, RESAR reconstructs most of the blocks
on the failed disk faster, but has to wait for reading from disks
highly entangled with the failed disk.

Arguments about failure tolerance are made much easier
in the graph visualization than in the layout itself, as was
previously observed [10]. Disk and sector failure induce a
failure pattern in the graph. We are especially interested in
patterns that represent data loss and that are minimal in the
sense that removing one element of the pattern yields a pattern
of failure from which we can recover. Any failure pattern
that implies data loss is or contains at least one minimal
failure pattern. A key observation is that an edge, that is
part of a minimal failure pattern, either has end-vertices that
also have failed or an end-vertex where one other adjoining
edge has also failed. This allows us to classify all minimal
failure patterns. They form either a cycle consisting of failed
edges, or a path that starts and ends at a failed vertex and
otherwise consists of failed edges in between. The smallest
minimal failure patterns are the barbell and the triangle. Fig. 6
illustrates these concepts.

IV. COUNTING FAILURE PATTERNS IN RESAR

We assume a spiral RESAR layout with an edge degree of
k. We recall that this means that each reliability stripe contains
k data disklets. We assume that there are N P-parities for a
layout with an equal number N of D-parities, IV x k edges and
a total of NV x (k+2) elements. If we number P-parities from
0 to N — 1 and the D-parities also from 0 to N — 1, then the
k edges adjacent to P-parity ¢ are adjacent to the D-parities ¢,
i+1 (mod N),...,i+k—1 (mod N).

A. Three Failures

There are two minimal three-failure patterns. The first one
is the triangle. However, there is no triangles in the spiral
RESAR layout. The graph is bipartite as edges connect a P-
parity with a D-parity. If there would be a triangle, then one of
the vertices of this triangle has to be a P-parity. Two edges of
the triangle connect this P-parity to two D-parities, but these
cannot be connected to form the third edge of the triangle.

The second one is the barbell, consisting of two vertices
(necessarily a P- and a D-parity) and an edge, see Fig. 7.
There are as many of these as there are edges, namely

pResar(n7 k’ 3) = k X N.

B. Four Failures

There are two minimal four failure patterns, the square and
the two-path. The square consists of four edges arranged in
a cycle. The two-path consists of two P- or two D-parities
connected by two edges, Fig. 7 second column. We can count
them easily by counting the middle vertex (that does not form
part of the failure pattern). Once this one is selected, the
pattern is uniquely determined by selecting the two adjacent

vertices to it, which do form part of the failure pattern. Since
there are 2N parity total, we have

f2p(k, N) = 2N <’;>

of these patterns.

To determine the number of squares, we first observe that
two of the vertices on it are horizontal and two are vertical
parities, connected by the four edges that form the square.
While the spiral layout wraps around, it is large, and it makes
sense to speak of the upper left vertex. Edges always start at
the left and either go horizontally or horizontally and down.
Fig. 7 in its third column shows a square layout. Taking the
upper P-vertex as a reference point, we call the relative offsets
of the diagonal parities with respect to it ¢ and j, ¢ < j,
respectively. In Fig. 7, ¢ = 1 and 5 = 3. Let [ stand for
the relative offset of the other horizontal parity. Clearly 0 <
l <17 < j < k. Any set of integers fulfilling this chain of
inequalities characterizes a unique square with this upper left
vertex. For ¢ = 0, no square can exist. For i = 1, [ has to be
also 1, and j can take any value in {2,3,...,k — 1}, giving
k — 2 possibilities. For general ¢, there are ¢ possibilities for
the selection of [ and k£ — ¢ — 1 possibilities for selecting j. In
total, there are

k—2
;i(lﬂ—i— 1) = %(k72)(k7 1)k

possibilities for a square with given upper corner. The total
number of squares is therefore

1 .
s(k, N) = 5N - (6 — 4k — 3k + k7).

Finally, four failure patterns can contain a minimum three
failure pattern. There are

mfp3(k, N)(N(k + 2) — 3) = kN(N(k + 2) — 3).

Since the intersection between the classes (three failure
pattern plus additional disk), squares, and two-paths, is empty,
the total number is

KN k2N 11EN

pResar(n7k,4) = T + k‘QNQ + T + 2]<3N2 — T

C. Five Failures

Because the graph is bipartite, it cannot include a pentagon,
i.e. a cycle consisting of five edges. The only minimal 5-
failure pattern is therefore the three-path, consisting of two
failed vertices, connected by three failed contiguous edges.
The pattern determines the middle edge uniquely. Once we
have selected a middle edge, we can select the two adjacent
edges, which then in turn determine the endpoints. Since there
are Nk edges (the potential middle edges), which can be
connected to kK — 1 edges on each side, we have a total of

3p(k, N) = N -k - (k — 1)



Barbell Two path

Square Three path

Fig. 7. Minimal failure patterns with up to five failures in a spiral RESAR layout (with k& = 4).

Twopath cum two onepath

Fig. 8. Special five-failure patterns in a spiral RESAR layout (with & = 4).

minimal five failure patterns. Five failure patterns can contain
also three failure patterns and four failure patterns.There are

N./g.(N'(k‘2L2)_3>

patterns containing a barbell (we accommodate for over-
counting later), and

1
—N-
12

patterns containing a square. However, the resulting classes are
however no longer disjoint. The Two-path-cum-two-barbells

(6 — 4k — 3k* + k%) (N - (k+2) — 4)

in Fig. 8 contains a twopaths and two barbells. Its number is
exactly that of the two-paths, namely f2p(k, N) = 2N (£). In
total, we have

25

35 1
e (10, K, 5) = —kN —6k2N + k3N —
p esal (n7 9 ) 3 + 3 3

ENZ — 1—914:2N2
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5 1 1
+6k3N2 + 6k“N? + 2kN? + 2k2N3 + 5k?’N?’.

V. ROBUSTNESS OF RAID 6

We compare our scheme with that of a RAID 6 layout. A
RAID 6 layout consists of n reliability stripes with k data disks
each and an additional 2 parity disks. By distributing parity,
we can avoid write bottlenecks. A stripe’s data survives if k
of the 2 + k disks in it are still available. There is a total
of n(k + 2) disks and for f failures ("(k; 2)) ways to select
them. There is no data loss, if the stripes have no failure, one
failed disks, or two failed disks in them. We count the number
of failure patterns that do not lead to dataloss. Let 7 be the
number of stripes with a single failure and j be the number of
stripes with a double failure. Therefore i+2j = f. Given i and
J, we select first the stripes, giving us () - (”]_7) possibilities,
and within the stripes, one or two failed disks correspondingly.
This gives us a total of (7)- (”]_1) . (}’3‘1”'2)z . (k’Q"Q)] possibilities.
The probability of dataloss with f failed disks is therefore

pRAID(n7 I k) =
ny (n—i\ (k+2\% (k+2\J n(k +2)
O e ) ("),

VI. COMPARISON

We compare the robustness of the RESAR and the RAID 6
layout by calculating the limit of the quotient of the dataloss
probabilities as its size n goes to infinity, that is, we calculate

Jm prea (12, K, )/ Pra(n, K, f)-

1—

D

i>0,>0,2j+i=f



It turns out that the robustness factors are the same for three
and four failed elements

hm pResar<na k) 3>/pRAID(n) k7 3) =
n—roo
nhHH;o pResar(”? k, 4)/pRAID(na k, 4) =

. k? + 3k 4 2
hm pResar<n7 k) 5>/pRAID(n) k7 5) = - 4

n—oo 6

We evaluate the function in Fig. 9. As we can see, the RESAR
layout is quite a bit more robust, especially as k increases.
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Fig. 9. Robustness factor for three, four, and five failed elements.

VII. CONCLUSIONS

We have presented detailed calculations of the probability
of data loss in a novel storage layout called RESAR, presented
previously [5]. As these calculations are combinatoric, we
only succeeded in exact formulae for up to and including five
failed storage elements. Our previous work [5] extended the
determination of dataloss probability by using simulation. The
results were then used in order to determine the robustness
of RESAR and RAID 6 in the declustered case, where each
disk contains several disklets and where we distribute the
disklets according to the RESAR and the RAID 6 architecture.
Declustering makes sense as it decreases the time to repair and
therefore the window of vulnerability after a failure, where
the system is susceptible to additional failures that can lead to
dataloss.

Nevertheless, exact results are preferable to particular results
obtained by simulation and therefore only valid for the sim-
ulated disk arrays. This paper thus fills an important lacuna
in [5]. It shows in a mathematically exact manner that the
RESAR layout has a much higher failure tolerance than the
standard RAID 6 layout.
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