
Using Algebraic Signatures to Compress Built-In
Self Test on a Chip

Jaya Jeswani∗, John Rose, SJ∗, Thomas Schwarz, SJ†
∗Xavier Institute of Engineering, Mahim Causeway, Mahim, Mumbai, India

jayajeswani21@gmail.com, johnrose@xavierengg.com
†Marquette University, Milwaukee, WI, thomas.schwarz@marquette.edu

Abstract—Chip functionality testing can greatly benefit from a
Built In Self-Test (BIST). The Self-Test Using MISR and Parallel
Shift Register Sequence Generator (STUMPS) architecture uses
a compression technique to generate a set of test patterns, to
submit them to the circuit undergoing testing, and to compare
the output with that of a “gold” (known to be good circuit)
by loading and comparing the contents of a Multiple Input
Shift Register (MISR). We propose to use algebraic signatures
as the comparison signature implemented by the MISR. As we
will see, the MISR is still basically a Linear Feedback Shift
Register (LFSR), but can now be made to guarantee to discover
one or up to k output discrepancies, where k is a very small
number that determines the length of the MISR register. The
construction of the algebraic signature register is generic and
only the comparison value needs to be programmed.

Index Terms—BIST, MISR, Algebraic Signatures

I. INTRODUCTION

Since using outside equipment for testing VLSI circuits
is prohibitively expensive, modern circuits are usually tested
using a Built-In Self Test (BIST). The Self-Test Using MISR
and Parallel Shift Register Sequence Generator (STUMPS)
architecture consists of a pseudo-random number generator
that generates the test pattern, usually implemented as a Linear
Feed-back Shift Register (LFSR), a module to calculate a
signature of the output sequence, and testing logic [1], [4].

A number of techniques have been proposed to analyze the
output of the Circuit Under Test (CUT). The naı̈ve method
of comparing each individual CUT output with a desired
value is usually impractical, as it involves a large ROM
table of required outputs. Instead, we usually compress both
horizontally and vertically. (Actually, the term compaction
is preferred since compression suggests no loss of informa-
tion [11].) We sometimes compact horizontally by using a
concentrator-circuit to reduce n outputs into m with m < n.
We compact vertically by calculating a value from the various
outputs of the CUT generated by the various test patterns.
Common techniques are counting (the number of zeroes,
ones, or transitions), accumulators (where all outputs are
treated as binary magnitudes and added), parity checks, and
most importantly signature analysis. In signature analysis, the
(possibly compacted output) of the CUT is gated at each cycle
into an LFSR, which maintains a signature. All methods of
(vertical) compaction accrue loss of information that can result
in a false positive. This is often referred to as fault masking
or signature aliasing [2], [12].

We propose to use algebraic signatures [10] to control
false positives. Algebraic signatures are defined over small,
binary Galois fields GF(2l), whose elements are bit strings of
length l. While current signature schemes already use Galois
field operations when compacting the different output values,
an algebraic signature consists of k different Galois field
elements. They have the property that if the stream of CUT
output values to be compacted contains less than k errors, then
no fault masking is possible. We expect a faulty CUT to be
either so bad that the result of a test appears to be essentially
random or only shows erroneous output for a few test patterns.
The guarantee offered by the use of an algebraic signature is
very useful in the latter case, but using them does not put us in
worse shape in the first case. The calculation of the algebraic
signature is done by k internal LFSR-based Multiple Input
Signature Registers (MISRs), one of which can be (but does
not have to be) a simple bit-wise parity calculator.

In the remainder of the paper, we discuss in Section II
the basic BIST STUMPS architecture and then define and
implement algebraic signatures in Section III. In Section IV
we prove the key-property of algebraic signatures in order
to keep this contribution self-contained. Section V calculates
the masking probability in the important case of checking the
contents of a large ROM. We then conclude.

II. BIST ARCHITECTURE REVIEW

Testing Integrated Chips (ICs) designed by VLSI (Very
Large Scale Integration) technology is a complex and time
consuming task as circuits are huge. Built-In Self Test (BIST)
replaces the use of outside test equipment and results in overall
cost savings. We present the basic BIST layout (after [12]) in
Fig. 1. To initiate the self-test, the BIST test controller initial-
izes the Test Pattern Generator (TPG). Traditional BIST uses
pseudo-random patterns to generate a series of test patterns.
But this approach cannot be very accurate. In order to improve
fault tolerance, deterministic test pattern generators such as
hybrid BIST [5], reseeding [6], combinatorial Automatic Test
Pattern Generators (ATPG) [7], sequential ATPG [3], and
compressed ATPG [13] among other were introduced.

The TPG then drives the Circuit under Test (CUT). The
Output Response Analyzer (ORA) analyzes the output to reach
a verdict on whether the CUT passes or fails the test. The naı̈ve
method is to compare the outputs with the golden values (i.e.
the outputs of a good circuit) stored in a ROM. However, this



Input
Isolation
CircuitrySystem

Input

Test Pattern
Generator (TPG)

Test
ControllerBIST Start

Circuit Under Test 
(CUT)

Output Response 
Analyzer (ORA)

System 
Output

BIST Done

Pass / Fail

Fig. 1. Basic BIST architecture after [12].

method contributes exceedingly to the overhead of the BIST
circuitry. The techniques to compact to reach the verdict are
according to Stroud [12]:

• Comparison based ORA: The CUT output stream is
compared with data in a ROM. The major drawback of
this method is the need for a sizable ROM.

• Counting techniques: The ORA counts the number of
zeroes (or ones) in the output stream, usually for each
output bit separately.

• Accumulators: The CUT output is treated as a binary
number, the elements of the output stream are added up,
and the sum is compared to the result of a “gold standard”
(functioning) circuit.

• Parity checks: The bit-wise parity of the CUT outputs is
calculated and compared to that produced by a gold CUT.

• Signature based schemes: A generalization of accumu-
lators, the CUT outputs are algebraically manipulated
to generate a signature, which then is compared to the
signature resulting from testing a gold CUT.

These schemes can be augmented with other mechanisms,
such as concentrators, which are small circuits that process
several bits of CUT output into a single bit. For instance, we
can calculate the exclusive-OR of several output bits.

Signature based schemes frequently use a Multiple Input
Signature Register (MISR) with an internal feedback Linear
Feedback Shift Register (LFSR). We give a small example
in Fig. 2. At each clock cycle, the four bit input becomes
available and is directed to an exclusive-OR gate, to which
the output of the previous flip-flop is the other input. The
output of the left-most flip-flop is directed to the exclusive-
OR gate in front of the rightmost flip-flop. This output is also
added to the input to the second flip-flop. This MISR design
shifts the previous contents to the right. If there is an overflow
in the rightmost flip-flop, then it exclusively-ORs the one to
the leftmost and second leftmost flip-flop. As is well known,
we can represent the MISR operations in terms of multiplying
by t in the ring of polynomials over {0, 1}, i.e. in {0, 1}[t]
modulo a generator polynomial, which would be t4 + t+1 in
our case. This polynomial indicates that the rightmost output
should be connected to the first and the second flip-flop on
the left.

It turns out that a LFSR with maximum cycle when all
inputs are zero with the exception of the first one are given

D Q

QC

In 0 In 1

D Q

QC

D Q

QC

In 2

D Q

QC

In 3

Clear

Fig. 2. Four-bit MISR.

by an irreducible polynomial. In this case, the LSFR produces
what we call the 1-component algebraic signature of the input
stream based on Galois field calculations. BIST architectures
can be improved by lowering power consumption and gate
count, e.g. [8].

III. CALCULATING ALGEBRAIC SIGNATURES IN
HARDWARE

Algebraic signatures are hashes (signatures) with algebraic
properties [10].

A. Galois field GF(2n) implementation

Algebraic signatures are defined over a Galois field
GF(2n). The elements of said Galois field are bit vectors
(an−1, an−2, . . . , a2, a1, a0), which are mathematically iden-
tified with a polynomial an−1t

n−1+an−2t
n−2+ . . .+a2t

2+
a1t+ a0 ∈ {0, 1}[t] with binary coefficients of degree n. We
add and subtract two such polynomial by taking the exclusive-
or of the coefficients, which is just the bit-wise exclusive-
or for the corresponding bit vectors. However, we need the
representation as polynomials in order to define multiplication,
which is via a so-called “generator” polynomial φ of degree
n+1. A generator polynomial is any irreducible polynomial of
degree n+1. While switching generator polynomials results in
different signatures, mathematically, the underlying fields are
isomorphic. The product of two polynomials of degree less
than n in {0, 1}[t] is their product modulo φ. In addition, we
want φ to be such that for α = 000 . . . 010 ≈ t we have

{αi|0 ≤ i ≤ 2n − 1} = GF(2n)∗.

In other words, φ is such that all non-zero elements of GF(2n)
can be represented as a power of α. The mathematical theory
of finite fields is very rich [9]. All finite fields with the same
number of elements are mathematically isomorphic, i.e. have
the same structure. For any prime power, there exists one (and
mathematically only one) Galois field with this number of
elements. There is always a φ with the stated property.

B. Definition of Algebraic Signatures

An algebraic signature of a finite sequence B =
(βi)i=0,1,...,m with respect to a non-zero element γ ∈ GF(2n)
is defined as

sigγ(B) =

m∑
ν=0

βiγ
i.

The N -fold composite algebraic signature is a vector

sigγ,N =
(
sigγ0(B), sigγ1(B), sigγ2(B), . . . sigγN−1(B)

)



a0

D Q

Q

a1

D Q

Q

a2

D Q

Q

a3

D Q

Q

a4

D Q

Q

a5

D Q

Q

D Q

Q

D Q

Q

D Q

Q

FF0 FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8

D Q

Q

FF9

Fig. 3. Implementation of a 10-bit MISR for the α-signature of a 6-bit input stream.

Vandermonde’s determinant formula implies that the N -fold
composite algebraic signature changes for sure if we change
up to N elements in the sequence [10].

We use α = 00 . . . 010 as the defining element in the
signature calculation, i.e., we calculate sigα(B). Multiplication
by α corresponds to multiplication by t for polynomials,
which corresponds to shifting left by one for a bit-vector. The
result needs to be taken modulo φ. If the coefficient of tn

is one after multiplication, taking modulo φ is implemented
by exclusive-or-ing with φ, otherwise the result of the shift
remains unchanged. In Python used as pseudo-code, we have

def mult_alpha(mu):
mu = mu << 1
if mu & (1 << n):

mu ˆ= phi
return mu

We present a schematics of the multiplier in Fig. 3.
The calculation of the α signature can be done using

Horner’s method

sigα(B) = (. . . (((β0α+ β1)α+ β2)α+ β3) . . .)

which in pseudo-code is

def sig_alpha(B):
sig = B[0]
for i in range(1, m+1):

sig = mult_alpha(sig) ˆ B[i]
return sig

C. Example

We present the implementation of a 10-bit MISR that
calculates the algebraic signature of a 6-bit input stream
A = (a0, a1, a2, a3, a4, a5) in Fig. 3. The contents of the
MISR are maintained in the flip-flops FF0 to FF9. Originally,
the contents of the registers are all zero.

We need to implement multiplication in GF(210), which is
done by selecting a primitive polynomial φ of degree 10 with
coefficients in {0, 1}. Since we will XOR with φ, it behoves us
to select a primitive polynomial with the least possible number
of non-zero coefficients. It turns out that polynomials with two
non-zero coefficients are not irreducible, but often trinomials
will do. We can use the table by Zierler and Brillhart [15]
to find that φ(t) = t10 + t3 + 1 is a primitive polynomial of

degree 10 over {0, 1}. A small Python script that generates all
powers of t modulo φ(t) confirms this fact.

With each clock cycle, new inputs A become available.
Each clock cycle also moves the contents of the previous flip-
flop into the successive one. The inputs and the output of the
previous flip-flop are eXclusive-OR-ed (XOR-ed). If flip-flop
FF9 in Fig. 3 contains a one value, then we also need to XOR
with φ(t). This is easily done. The leading coefficient and
the one stored in FF9 are XOR-ed, giving us zero. We can
therefore safely ignore this value. The constant 1 and t3 are
XOR-ed to the contents of the shift register. This is simply
achieved by XOR-ing the output of FF9 with the a0 and with
a3 together with the output of FF2 respectively.

Notice that the design would not change if the input would
be a 10-bit value.

D. Zero component signatures

The calculation of the α0 = 1 signature is of course much
easier, since sig1(A) is just the exclusive-or of the components
of A. Consequentially, this part of the algebraic signature
MISR only needs to have as many flip-flops as there are bits
in A. Fig. 4 gives the simple design.

E. Second component signature

For the second component, at each clock cycle we shift
the contents of the MISR by two. The overflow after shifting
is now two-bits long. We again use ten flip-flops to store the
contents of the MISR, but now need to process overflow if FF8
or FF9 are one. If FF8 is one and FF9 is zero, then we need to
add φ(t) to the MISR contents, if FF8 is zero and FF9 is zero,
then we need to add t ·φ(t) to the MISR contents, and if both
FF8 and FF9 are one, then we need to add φ(t)+ t · phi(t) to
the MISR contents. Of course, if both of them are zero, then
there is no overflow and we need no additional processing.

For example, assume that the MISR contains currently the
values m0 = 1, m1 = 0, m2 = 0, m3 = 1, m4 = 0, m5 = 0,
m6 = 1, m7 = 1, m8 = 1, and m9 = 1. In vector form,
starting with the constant coefficient, the MISR contents are
(1001001111). Shifting by two positions to the right gives
(001001001111), which is remedied by adding (XOR-ing)
the primitive polynomial φ, corresponding to 10010000001
and by adding t · φ(t), corresponding to 010010000001 The
result is (11111001100), but the two rightmost bits are always
guaranteed to be zero, so we do not need to store them, leaving
us with the ten bits (111110011).



FF0
D Q

Q

a0

FF1
D Q

Q

a1

FF2
D Q

Q

a2

FF3
D Q

Q

a3

FF4
D Q

Q

a4

FF5
D Q

Q

a5

FF6
D Q

Q

a6

Fig. 4. Implementation of a 6-bit register for the α0 = 1 signature of a 6-bit input stream.

In the hardware implementation, we need to XOR the
current contents of FF8 with the inputs to FF0 and FF3 and
to XOR the current contents of FF9 with the inputs to FF1
and FF4. Note that our trinomial has the nice property that we
do not need to XOR two outputs to a single flip-flop, but this
would be no hindrance.

0

In 0

1

In 1

2

In 2

3

In 3

4

In 4

5

In 5

6

In 6

7

In 7

0

In 0

1

In 1

2

In 2

3

In 3

4

In 4

5

In 5

6

In 6

7

In 7

0

In 0

1

In 1

2

In 2

3

In 3

4

In 4

5

In 5

6

In 6

7

In 7

Fig. 5. 8-bit MISRs for the α0-, α- and α2 signature on top of GF(28). The
rectangular boxes denote flip-flops.

F. A more complicated example

The Galois field GF(28) has no trinomial generator, but
we can use φ(t) = t8 + t5 + t3 + t2 + 1 as a primitive
generator polynomial. We are implementing 8-bit MISRs for
the zero component (α0-signature), the first component (α-
signature) and the second component (α2-signature. The zero-
component signature is the exclusive-or of the input lines. In
consequence, we store each coordinate in its own flip-flop and
whenever new input is available, we replace its contents with
the exclusive-or of the old contents and the input. Fig. top
shows the implementation minus the timing hardware.

The MISR for the α-signature is also straightforward. The
signature is accumulated in eight flip-flops. Whenever we
process new input, we shift the contents of the flip-flop to the
right after an exclusive-or with the new input. Fig. 5 middle
shows the result. Since we follow the convention that we
shift to the right, the lowest coordinate is kept in the leftmost
flip-flop. Whenever we have a one in the right-most flip-flop
(corresponding to input line 7), we add (via an exclusive-or)

the generator polynomial minus the leading component. Since
the generator polynomial is φ(t) = t8 + t5 + t3 + t2 + 1,
we lay an exclusive-or of the output of the last flip-flop,
namely 7, to the flip-flops 1, 2, 3, and 5. Since we use
the Mathematical convention of starting polynomials with
the highest power of t, the order is reversed. We need one
exclusive-or gate for all input lines and one for each monomial
in the generator polynomial with the exception of the constant
and the leading monomial. This is the number of ones in the
binary representation minus two. In our case, we have 8 + 3
exclusive-or gates.

The MISR for the α2-signature is slightly more complicated.
As explained before, we shift the contents of the eight flip-
flops by two positions to the right. If the second-last flip-flop
has a current state of one, then we add t5 + t3 + t2 + 1 to
the current state, if the last flip-flop has current state of one,
then we add t · (t5 + t3 + t2 + 1) = t6 + t4 + t3 + t to the
contents. We can express this algebraically. We denote with
f in
i the input to flip-flop i and with f out

i its output. We call
ini the input bit i. Then we have

f in
0 = f out

6 ⊕ in0

f in
1 = f out

7 ⊕ in1

f in
2 = f out

0 ⊕ f out
6 ⊕ in2

f in
3 = f out

1 ⊕ f out
6 ⊕ f out

7 ⊕ in3

f in
4 = f out

2 ⊕ f out
7 ⊕ in4

f in
5 = f out

3 ⊕ f out
6 ⊕ in5

f in
6 = f out

4 ⊕ f out
7 ⊕ in6

f in
7 = f out

5 ⊕ in7.

The number of times that we guide f out
6 and f out

7 to another
flip-flop is each equal to the number of monomials in the
generator polynomial minus one. We connect the output of
all other flip-flops to another flip-flop as many times as there
are flip-flops minus two. We also connect each input-line to its
flip-flop. In our example, we need 2×4+8−2 = 14 exclusive-
or gates. In general, if we have an b-bit MISR and r non-zero
monomials in the generator polynomial excluding the leading
one, then the number of exclusive-or gates is 2×(r−1)+b. We
show an implementation of the second component signature
at the bottom of Fig. 5.



IV. ERROR DETECTION WITH ALGEBRAIC SIGNATURES

Assume an k-component α-signature using a Galois field
GF(2l) that therefore consists of lr bits. We assume that 2l

is larger than the number n of test pattern generated. Assume
that the output sequence

(
si

)
0≤i<n

contains up to k values

different from the “golden” values
(
gi

)
0≤i<n

. Let i1, i2,

. . ., in be the indices where there is a difference. This gives
the following system of equations, when we recall that the
difference operation is the same as the addition operation in
GF(2l).

(si1 + gi1) + (si2 + gi2) + . . .+ (sik + gik) = 0

αi1(si1 + gi1) + αi2(si2 + gi2) + . . .

· · ·+ αi1(sik + gik) = 0

α2i1(si1 + gi1) + α2i2(si2 + gi2) + . . .

. . .+ α2i1(sik + gik) = 0

... = 0

α(k−1)i1(si1 + gi1) + α(k−1i2(si2 + gi2) + . . .

. . .+ α(k−1i1(sik + gik) = 0

The coefficient matrix of this system is a Vandermonde
matrix and therefore invertible. Hence, the differences siν+giν
have to be zero. Therefore, in fact, the output sequences cannot
be different from the gold values if the k-component algebraic
signature is not different from its gold value.

V. ANALYSIS OF OUTPUT RESPONSE ANALYZERS ON
ROM CONTENTS

We evaluate the various ORA possibilities for a small
ROM consisting of 1024 = 210 words of 8 bit each. We
compare MISRs build on Galois fields with 28, 210, 211 and
212 elements and generator polynomials in hexadecimal form
of 0x12d, 0x803, 0x1003, and 0x2009 respectively. We
compared the error detection capability of four configurations,
a single α-signature, a double signature with Exclusive-Or and
the α-signature, an alternative double signature with the α- and
α2-signatures, and a triple signature. If we use our methods
on a ROM with l lines and size b, then the normal MISR
would use b bits, giving a compression rate of 1 : l. If we
use triple algebraic signatures and MISRs with c bits, then the
compression rate goes down to 3c : lb.

We simulated many runs of one million error sets with a
given number b of bit errors. We did not assume that all b
errors were in different words, only that the total number of
flipped bits is b. For each error set, we calculated the various
signatures and determined whether the signatures had changed
and the errors would have been detected. Table I gives the
number of times (per million) that a chip passes the test while
being faulty, together with 95% confidence intervals.

All signatures detect if exactly one bit of the ROM contents
is in error. The double signatures built on top of GF(28)
(abbreviated as GF8 in Table I) sometimes fail to detect a
double bit flip, this is completely attributable to having the
same error occur in words of distance 511 or a multiple thereof
apart. Similarily, the double signatures on top of GF(210) fail
to detect two flipped bits for sure. This is because the antilog
table rolls over after 210 − 1 increments and there are 210

ROM words in error. While the mathematical properties are
the same for a double signature consisting of the exclusive-or
and the α-signature as for a double signature consisting of the
α- and the α2-signature, their behavior is not. We also observe
that the capability of error detection depends on the even-ness
of b.

For implementation, we would use Field-Programmable
Gate Arrays (FPGA). We use a device xc5vlx20t-2ff323
belonging to the Virtex5 family of XILINX. Each EXclusive
OR (EXOR) requires four gates and each Flip-Flop (FF)
requires eight gates, [14]. For example, the circuit in Fig. 2
has five EXOR gates and four FFs and therefore needs 52
gates. Using these numbers, we obtain the gates counts for
our various ORA configuration presented in Table II. These
gate counts do not contain the overhead imposed by timing
and synchronization.

Selecting the optimal configuration supposes an approxi-
mate knowledge of the probability of programming errors. If
we deem that two flipped bits has too low a probability to
be taken into account, then a single 8b-MISR implementing
a zero-component is sufficient. If this is not the case, then
under most circumstances, the double configurations would
be sufficient, under the proviso that the number of non-zero
elements in the Galois field is equal or larger than the number
of words in the ROM. We would thus pick the GF11 double
or the GF11 double-alternative configuration, preferring the
latter because the small increase in the number of gates (272
versus 288) is dwarfed by the overall better error detection
capabilities. However, a strong case can also be made for the
larger GF12-based ORAs.

Finally, if the probability of bit-flips in the programming of
the ROM is large or the costs of a faulty device that passes the
self-test is high, then we would need to invest in an additional
signature component.

VI. CONCLUSION

We have proposed a method to lower the probability of error
masking in Output Response Analyzers in case of few errors
and evaluated it in terms of probability of detecting b flipped
bits and gate count. Our ORA are guaranteed to find 1, 2,
3 and by extension larger numbers of flipped bits in the test
output. They also do well for larger numbers of errors.

An advantage of our proposal is its generic nature. While
test pattern generators need to be tailored to the circuit,
our MISR organization is independent of the CUT. Only its
dimension and of course the “golden value” vary between
circuits. Given that design costs are an important part of total
chip costs, this is an indisputable advantage.



TABLE I
PROBABILITY OF FAILING TO DETECT AN ERRONEOUS ROM. THE NUMBERS GIVE THE AVERAGE NUMBER OF FAILURES TO DETECT AN ERROR PATTERN

BY SIGNATURES PER ONE MILLION CASES AND THE 95% CONFIDENCE INTERVAL GIVEN BY ITS DEVIATION FROM THE CENTER POINT.

Errors per Million
ROM Err 2 3 4 5 6 7 8 9 10
GF8 single 3812.76

±12.35
3910.56
±11.06

3902.31
±12.70

3903.51
±13.08

3896.99
±10.54

3909.72
±11.87

3907.38
±13.99

3900.35
±13.08

3907.07
±11.82

GF8 double 371.12
±4.17

0± 0 165.64
±2.49

0± 0 88.45
±9.08

0± 0 58.04
±1.39

0 ±0 43.44
±1.30

GF8 double alt. 369.88
±3.101

71.81
±1.34

21.83
±0.88

15.66
±0.74

14.85
±0.79

15.42
±0.74

15.19
±0.78

15.54
±0.72

14.96
±0.76

GF8 triple 0± 0 8.13±0.51 0± 0 0.41±0.13 0± 0 0.2± 0.09 0± 0 0.19±0.08 0.17±0.08
GF10 single 849.26

±5.47
431.38
±4.16

504.91 ±
4.34

485.48
±4.31

492.38
±4.52

488.82
±4.77

485.76
±4.56

488.94
±3.95

490.88
±4.27

GF10 double 0.22
±0.10

0± 0 20.79±
0.89

0± 0 11.13
±0.63

0± 0 7.12
±0.49

0± 0 5.55
±0.44

GF10 double alt. 0.24±0.08 2.18±0.30 0.55±0.14 0.23±0.08 0.23±0.10 0.17±0.07 0.3± 0.10 0.32±0.12 0.24±0.10
GF10 triple 0.28±0.11 0± 0 0.32±0.13 0± 0 0± 0 0± 0 0.02±0.03 0± 0 0± 0
GF11 single 853.57

±5.7
248.2
±3.48

243.86
±3.11

245.22
±2.64

245.13
±3.13

244.07 ±
2.83

245.98
±2.87

246.05
±3.04

243.22
±3.28

GF11 double 0± 0 0± 0 10.3±0.64 0± 0 5.51±0.51 0± 0 3.73±0.37 0± 0 2.65±0.32
GF11 double alt. 0± 0 4.31±0.39 0.48±0.13 0.09±0.06 0.08±0.05 0.08±0.05 0.07±0.05 0.06±0.05 0.05±0.04
GF11 triple 0± 0 0± 0 0.46±0.13 0± 0 0.02±0.03 0± 0 0± 0 0± 0 0± 0
GF12 single 852.11

±5.48
120.71
±2.03

122.45
±2.19

122.31
±2.07

123.77
±1.92

123.66
±1.96

120.6
±2.20

122.22
±2.45

121.34
±2.31

GF12 double 0± 0 0± 0 5.34± 0.4 0± 0 2.78±0.29 0± 0 1.87±0.29 0± 0 1.4± 0.22
GF12 double alt. 0± 0 1.78±0.27 0.24±0.01 0.05±0.04 0± 0 0± 0 0.04±0.04 0± 0 0± 0
GF12 triple 0± 0 0± 0 0.32±0.12 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

TABLE II
GATE COUNTS FOR THE VARIOUS ORA IMPLEMENTATIONS CONSIDERED.

MISR type bits EXORs FFs Gates
GF8 single 8 14 8 120
GF8 double 16 14 16 184
GF8 double alt 16 25 16 228
GF8 triple 24 33 16 260
GF10 single 10 12 10 128
GF10 double 20 23 20 252
GF10 double alt 20 24 20 256
GF10 triple 30 62 30 488
GF11 single 11 13 11 140
GF11 double 22 24 22 272
GF11 double alt 22 28 22 288
GF11 triple 33 39 33 420
GF12 single 12 14 12 152
GF12 double 24 26 24 296
GF12 double alt 24 30 24 312
GF12 triple 36 42 36 456

We did not evaluate error detection capabilities in depen-
dence of the generator polynomial of the Galois field, but now
suspect that there is a dependence. That smaller number of
errors sometimes have higher probability of remaining unde-
tected is a phenomenon worth further investigation. Because of
time and space constraints, we did not evaluate our proposal
against “normal” circuits. One reason is of course that the
behavior should depend heavily on the circuit under test and
that therefore one has to evaluate many different circuits to
start drawing generic conclusions.

REFERENCES

[1] P. H. Bardell, J. Savir, and W. H. McAnney, Built-in Test for VLSI.
Wiley, 1987.

[2] D. K. Bhavsar and R. W. Heckelman, “Self-testing by polynomial
division,” Journal of Digital Systems, vol. 6, no. 2-3, pp. 139–160, 1982.

[3] H. Cho, G. D. Hachtel, and F. Somenzi, “Fast sequential ATPG based
on implicit state enumeration,” in Test Conference, 1991, Proceedings.,
International. IEEE, 1991, p. 67.

[4] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and
J. Rajski, “Logic BIST for large industrial designs: real issues and case
studies,” in Proceedings of the IEEE International Test Conference,
1999, pp. 358–367.

[5] G. Jervan, P. Eles, Z. Peng, R. Ubar, and M. Jenihhin, “Hybrid BIST
time minimization for core-based systems with STUMPS architecture,”
in Proceedings, 18th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems,. IEEE, 2003, pp. 225–232.

[6] E. Kalligeros, X. Kavousianos, and D. Nikolos, “Multiphase BIST: a
new reseeding technique for high test-data compression,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, no. 10, pp. 1429–1446, 2004.

[7] Y. C. Kim, V. D. Agrawal, and K. K. Saluja, “Combinational test
generation for acyclic sequential circuits using a balanced ATPG model,”
in Fourteenth International Conference on VLSI Design, 2001. IEEE,
2001, pp. 143–148.

[8] N. R. Kiran, G. Harish, A. Karthik, and S. Yellampalli, “Low power
and hardware cost STUMPS BIST,” in 9th International Symposium on
VLSI Design and Test (VDAT), vol. 1. IEEE, 2015, pp. 1–4.

[9] R. Lidl and H. Niederreiter, Finite fields. Cambridge University Press,
2008.

[10] W. Litwin and T. Schwarz, “Algebraic signatures for scalable distributed
data structures,” in Proceedings, 20th International Conference on Data
Engineering. IEEE, 2004, pp. 412–423.

[11] E. J. McCluskey, “Built-in self-test techniques,” IEEE Design & Test of
Computers, vol. 2, no. 2, pp. 21–28, 1985.

[12] C. E. Stroud, A Designer’s Guide to Built-in Self-test. Kluwer Academic
Publishers, 2002, vol. 19.

[13] P. Wohl, J. A. Waicukauski, S. Patel, and G. Maston, “Effective diag-
nostics through interval unloads in a BIST environment,” in Proceedings
of the 39th Annual Design Automation Conference (DAC), 2002.

[14] XILINX, “Gate count capacity metrics for FG-
GAs; XAPP059, version 1.1, 1997,” [Online],
www.xilinx.com/support/documentation
/application_notes/xapp059.pdf

[15] N. Zierler and J. Brillhart, “On primitive trinomials (mod 2),” Informa-
tion and Control, vol. 13, no. 6, pp. 541–554, 1968.


