
Pattern Matching Using n-gram Sampling

 Of Cumulative Algebraic Signatures : Preliminary Results

Witold Litwin1, Riad Mokadem, Philippe Rigaux & Thomas Schwarz2

Extended Abstract
We propose a novel string (pattern) matching algorithm called n-gram search. We intend

it for the records stored once and searched many times in a database or a file, especially
organized into a Scalable Distributed Data Structure, (SDDS), over a grid or a structured P2P
net. We presume that the records are encoded into their cumulative algebraic signatures,
providing incidental confidentiality of stored data. The search starts with pre-processing the
pattern, calculating the logarithmic algebraic signature (LAS) of the pattern and the LASs of
every n-gram in it. The value of n ≥ 1 is a parameter that one may tune. The search attempts
to match the LASs of n-grams in the pattern towards dynamically calculated LASs, sampled
over n-grams in the records. A mismatch generates a shift of up to K-n symbols towards next
sample, where K is the pattern length. The whole process is parallel over the SDDS servers
and does not require any local decoding. For an M-symbol long record, the unsuccessful
search, measured as number of match attempts, costs O ((M-K) / (K-n+1)). The 2-grams
should typically suffice, leading to O ((M-K) / (K-1)). We show that the algorithm particularly
efficient for larger strings and records, i.e., with e-documents or DNA data. Preliminary
results show then the n-gram search about (K - n + 1) faster than our previous algorithms and
among the fastest known, e.g., probably often faster than Boyer-Moore.

Key words
SDDS, grid, structured P2P, scalable distributed pattern matching, algebraic signatures.

1 Algebraic Signatures
Let G be a GF(2f), i.e., a Galois Field with the elements 0,1…2f -1. We call these elements
symbols and naturally consider them as bytes (f = 8) or words (f = 16 or 32 etc). Let SK be a
string of K symbols p1..pK. Let α be a primitive element in G. The cumulative (1-symbol)
algebraic signature (CAS) of SK, [LMS5], noted here CAS (SK), is the string noted SK’ =
p’1..p’K where for every i = 1,2…K :

p’i = p1α +…+piα i.

Here the addition and the multiplication are in G. Accordingly, p’i is CAS of the prefix Si of
SK ending with pi. We write p’i = CAS (Si) or simply p’i = CAS (pi).

The CAS replaces each individual symbol p with another symbol p’ whose value encodes not
only p, but also some knowledge of several symbols preceding p. The rationale is that a single
comparison of two symbols may indicate now not only whether these symbols are different or
equal, but also whether two entire strings of the same length and ending with the compared
symbols differ or are likely to be equal. This property is of obvious potential interest for

1 Université Paris Dauphine
2 Santa Clara University

- 1 -

string searches. In particular one may immediately observe that the complexity of prefix
match operation, i.e., of the search for a record with a given prefix, of theoretically any length
l ≤ K, becomes independent of l and reaches O (1). This, because, for an unsuccessful search,
it suffices to compare only the last symbol of the searched prefix with that in the record at the
same offset. Any prefix match attempt in the original record (non-encoded) could need up to
O (l) comparisons.

The CASs have several practical properties completing the rationale. First we have for every
p’i with i > 1:

p’i = p’i-1
 + piα i = s (pi-1) + piα i.

We can thus reuse the signature of the previous symbol to encode the next symbol. This leads
to O (K) (linear) complexity of the CAS encoding . Next, for every i, we have:

pi = (p’i – p’i-1) / α i = (p’i + p’i-1) / α i = (p’i + p’i-1) * α f – 1 – i = (p’i XOR p’i-1) * α f – 1 – i

This property provides also O (K) speed to the CAS decoding. It results from the well-known
properties of any GF.

Consider now the substring Sk,l = pk…pl of S with 1 < k < l < K. To find the algebraic
signature that it would have if it was instead a string S l-k+1 = p1…pl-k+1, it suffices to compute:

AS (S l-k+1) = (p’l XOR p’k - 1) / α k-1

This property let us to efficiently match the pattern to any substring within the visited record.
For the fast calculus of multiplications and of divisions in GF(2f) with f = 8 or f = 16 the logα
and antilogα tables seems the most convenient tool. See [LMS5a] for details. In our case
above we have the formula:

AS (S l-k+1) = antilogα [(logα (p’l XOR p’k - 1) - k+1) mod 2f – 1]

Similar transformations hold for the other formulae above. Notice that for the logs, the
additions/subtractions are the usual ones.

2 The n-gram Search
2.1 Preprocessing
Let S’k be the CAS of the searched string SK (the pattern). Let n be a parameter. We basically
consider that n = 2 below. An n-gram within Sk is any substring pi

…pi+n-1 ; i = 1…K-n+1. We
define similarly the n-grams in the visited record. Once called, the algorithm starts by pre-
processing SK as follows.
- If S is some string, let the logarithmic algebraic signature (LAS) of S be logα AS (S). We
put LAS (pK-n+1

…pK), i.e., logα of the signature of the terminate n-gram of SK into some
variable V. For any other n-gram, except the rightmost one, we hash LAS into the following
table T.
- T has L entries: T [0…L-1]. We fix L as K + 2δ with δ chosen somehow arbitrarily as
δ = Int (0.25K). If P is an n-gram then we hash P to T (i) with i = AS (P) mod (K + &). The
rationale for our choice of δ is to have only a few collisions on the primary entries, thus
T [0...K+δ -1]. We use the last δ entries of T for the overflows, managed using the well-
known separate chaining collision resolution method.
- Each entry T (i) is the triplet denoted (s, p, d). We have:
 - s is LAS of the rightmost n-gram in SK hashed to T (i). Different LAS’s, of different n-
grams thus, may indeed hash to the same i. A choice different from ours could lead to an
incorrect search result, as it will appear.

- 2 -

 - p is the offset of the hashed n-gram with respect to that of the terminal n-gram in SK. We
use p as basis for the shifts within the searched record described below.
 - d is zero or is the pointer towards the next overflow location on the collision chain starting
at T (i). Thus T (i +d) contains the logα signature etc. of an n-gram P’ of SK, hashed to T (i)
that happens to already store the data of n-gram P, also hashed there, while having a
signature different of that of P’.

2.2 Processing
We describe the processing for a single record R of length M. In an SDDS and SDDS-2005
our description corresponds to the processing of the non-key field only. Each R is supposed
stored pre-encoded into its CAS (R).
1. Let Rn

i denote the n-gram in R ending with pi. Likewise, Sn
i is the n-gram in the pattern. We

typically call it simply S. We start with the matching for i = K. We consider that the n-grams
match iff their AS’s, hence LAS’s, are equal (no bad jokes, please). We thus test whether
V = LAS (Rn

K). We calculate the latter using the algebraic formulae of the previous section.
Thus, if pR

i is the symbol at the offset i in R we simply have:

LAS (Rn
K) = pR

K XOR pR
K-n.

2. If these n-grams match, we compare the AS’s of the entire S and of R1,K, i.e., we test
LAS (S) = pR

K. If OK, we finally test for the collision, by matching every corresponding
symbol in (encoded) S and R. If this last test is also OK, the search is successful.
3. Otherwise, we hash LAS (Rn

K) into i and we test the LAS against s’s in the chain starting at
T (i). If we do not find any (equality) match, then the search shifts forward in R by K – n +1
positions. We will now thus compare S to the substring p’K – n +1…p’2K – n +1 in R. Otherwise
the search shifts by p (j) positions where j is the index of the matching entry in T. Notice that
this shift has to be smaller than the previous one, by at least one.
4. The shift means that we basically loop over steps (1) to (3) for every new substring. The
difference is that to calculate the signature of the terminal n-gram in the substring we XOR
with p’K –n and divide the result by α

K –n. We perform the latter using the logarithm, as
explained in the previous section.
5. The looping ends when either the search is successful or the last shift aligning S on the
suffix of R still shows no match. This means an unsuccessful search. Notice that the last shift
may bounce a part of S beyond R. If it happens, the attempt leading to this shift is the last to
consider. Otherwise, the (last) attempt uses the LSA of the entire pattern only.

Example. We first consider the search in a French text, choosing arbitrarily R = ‘Universite
de Technologie Paris Dauphine’ and S = ‘Dauphine’, Figure 1. We choose n =2, i.e. digram
search. We start with the pre-processing of ‘Dauphine’. We put aside the LAS of the terminal
digram ‘ne’ in a variable for fast access. Since the length of the pattern is K = 8, the choice of
dim [T] = 12 should suffice with the hash mod 103. We thus hash into T, one after the other,
LAS’s of the digrams ‘in’, ‘hi’, ‘ph’…’Da’. We do not show the result here. We notice
however that no digrams collided, rendering the same LAS. If it happened, the later one
would not enter T, as if it was simply a repetition of the former digram in the pattern.
The search using the digrams needs then 6 attempts and thus 5 shifts, Figure 1a. This,
assuming no collision of a visited LAS with some in T, what we did not test. We underlined
the examined digrams. We show the successive shifts one after the other in two lines under
the pattern. The 5th attempt visiting ‘up’ finds it in T at the offset 4 with respect to the end of

3 The choice of 2i primary location, e.g., 16 instead of 10, could lead to faster hashing, but at this stage we
neglect such optimisations.

- 3 -

the pattern. After the shift, the pattern aligns on the suffix of the record. This attempt
calculates the signature of the entire pattern only.

(a) Universite de Technologie Paris Dauphine
Dauphine Dauphine Dauphine

 Dauphine Dauphine Dauphine

(b) Universite de Technologie Paris Dauphine
Dauphine Dauphine Dauphine Dauphine
 Dauphine Dauphine Dauphine

Figure 1 n-gram search in (encoded) French text using (a) n = 2 and (b) n =1.

The scan using n = 1 needs 7 attempts, Figure 1b. Notice that Boyer-Moore algorithm,
[BM77], would need the same number of attempts. Whether it could be in the end faster or
slower using wall clock speed remains to be studied.

Notice also that digrams here perform also better by one attempt than 3-grams (not shown).
All this illustrates the tunable behaviour of the algorithm. It is, besides, the only tunable
pattern match algorithm we are aware of. In our case, n = 2 is optimal, otherwise, if a single
symbol is highly discriminative, n = 1 may be a better option. Generally, larger n appears
preferable for patterns longer with respect to the size of the alphabet used. The symbols repeat
then many times in the pattern. For n = 1, a typical shift moves in this case the search forward
by a small fraction of the pattern only. A larger n, keeps the average pace close to K - n +1.
Recall that to calculate and manipulate an LSA for an n-gram in R or S costs the same for any
n under the consideration.

The example at AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT

(c) AGCATATAAAGCGAGTGCGGAGCAT

 AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT
 AGACAGAT
 AGACAGAT

Figure 2 illustrates this facet of our approach for a DNA sequence. It is inspired by the one in
[CL4]. We have four letter alphabet of nucleotides: A, C, G, T. The pattern is ‘AGACAGAT’.
Choosing n = 1 leads to 12 attempts. Choosing n =2 reduces the search cost three times to 4
attempts. Unlike for the text, the best choice is here however n = 3. It leads to 3 attempts only,
hence accelerates the search by factor of four. No larger n does better. Notice that Boyer-
Moore would need again the same number of attempts as for n =1. It thus should be typically
much slower than our trigram search. The comparative analysis in depth remains however to
be studied.

3 Performance
If we choose n so that n-grams are selective, then the signature of the visited one usually will
not be in T. The typical shift will be the longest possible under the method which is K-n+1.

- 4 -

Our basic choice of n = 2, i.e., of using digrams, amounts to K -1. The reason for this choice is
that it should be typically more selective than of n = 1, or much more selective, as we have
just seen. The ratio may be about the square of matching probability. The latter choice may
then lead to many successful matches in T. This lowers the average shift length and increases
uselessly the search cost. Assuming good practical selectivity of the digrams, the unsuccessful
search speed of our algorithm should be O ((M – K) / (K -1)) attempts. This cost is the basic
component of the overall search cost over the SDDS bucket, (the database or the file…),
when, as usual, only a small fraction of existing records matches. The same cost characterizes
the scan for all the occurrences of the pattern in a record. The pattern pre-processing itself
costs O (2K – n + 1). It involves, we recall, the calculus of the LAS of the pattern and of its n-
grams.

(a) AGCATATAAAGCGAGTGCGGAGCAT
 AGACAGAT AGACAGAT
 AGACAGAT

(b) AGCATATAAAGCGAGTGCGGAGCAT
 AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT

(c) AGCATATAAAGCGAGTGCGGAGCAT

 AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT
 AGACAGAT AGACAGAT
 AGACAGAT
 AGACAGAT

Figure 2 n-gram search in (encoded) DNA sequence for (a) n = 3, then (b) n =2 and (c) n =1.

One aspect specific to the method is the possibility of a collision between n-grams in the
pattern on their LSA’s. We recall that this happens if two different digrams have the same
signature. Collisions obviously slow the average search speed. We recall from the theory of
algebraic signatures in [LS4] that the probability of a collision is zero if two n-grams differ by
only one symbol (the algebraic signatures were the first signature scheme known for this
property and its more general formulation for l-symbol signatures not dealt with here.).
Otherwise the collision probability for n > 1 is 2-f, e.g., 1/256 for byte based texts (ASCII,
EBCDIC…) and 1 / 64K for Unicode. Also, n-grams with two symbols switched, the digrams
like ‘xy’ and ‘yx’ especially, never collide.

- 5 -

Thomas Schwarz
This is another algebraic property of signatures.

Average Shifts

0

50

100

150

200

250

300

0 200 400 600 800 1000

Search String Length - Field Length

A
ve

ra
ge

 N
um

be
r o

f S
hi

fts

Figure 3 : Average shifts for DNA (one nucleotide per byte) for n-grams with n ≥ 4.

DNA data is often stored as a byte string with characters ‘A’,’C’,’G’, and ‘T’. We found an
encoding of these characters that guarantees that there are no collisions for n-grams with n ≤
4. In addition, we found both theoretically and practically, that the size of the shifts goes to
255.004 with increasing size n while for small n the shift size is approximately n+1. As a
consequence, only very few (namely 1/(n+1) or 1/255.004) of all locations in the DNA string
need to be searched. Figure 3 shows our result for large n.

4 Related Work
SDDS-2005 already allows storing the SDDS files with records encoded into their CAS’s. The
goal was the protection against incidental viewing of data at the servers, while preserving the
parallel distributed non-key scan capability at the servers. With CAS encoding, it is impossible
to incidentally see the content of a record, e;g., while studying a storage dump of some utility
after a crash. One needs to find the α value, not stored at the servers, and (voluntarily) decode
the records. This is analogous to open a sealed envelope in real life with someone’s else
letter, with all the legal consequences of eavesdropping, if caught.

SDDS-2005 offers several string search algorithms, including for the pattern matching. The
latter uses a Karp-Rabin alike sequential shift, [KR87], [CL4]. The scan calculus is different,
especially since our data are encoded. Its complexity is nevertheless the same: O (M –K).
Experiments with the Karp-Rabin version defined in [CL4] have shown the actual time also to
quite similar4. It appears in fact slightly faster in our case for patterns longer than 32 bytes.
This algorithm requires about twice less pre-processing of the pattern than the n-gram search.
It only calculates the LAS of the pattern, with the complexity of O (K). The n-gram search
should thus be usually substantially faster within each record for K >> 1, and M >> K. As we

4 It is not the only version. For instance, Rivest in his book presents, what he calls a slightly different Rabin-Karp
algorithm. Another known variant, e.g., taught by Ingold (Fribourg U.), uses a division by a large prime.

- 6 -

have seen, the improvement ratio should be close to K – 1, hence linear with pattern length.
The actual timing per record over the scan of the whole bucket remains to be found. One can
expect a smaller ratio in practice, because of the time to move among the records the bucket
structure. We recall that this one is a RAM B-tree in SDDS 2005.

In the open literature, pattern matching is among the fundamental problems of computer
science with several prominent contributions, [CL4]. The popular algorithms do not require
any specific record pre-processing (encoding). The Boyer-Moore algorithm seems particularly
efficient in practice. Its scan and shift complexity can be about ours for n = 1, namely,
whenever the “bad character” shift becomes prominent with respect to the “good suffix”
suffix case. In all the already discussed conditions, the choice of the best n > 1 should make
an average n-gram shift perhaps several times longer. The n-gram search time should then be
often faster. Likewise, it should then outperform the other well-known algorithms. As we
said, the precise comparison remains however an open research problem.

5 Conclusion
The algebraic signature based n-gram pattern matching appears particularly efficient for
longer patterns in the context of the database search. It should be a useful new tool for text,
image, DNA… string search, especially in the scalable distributed (P2P, grid…) environment.
It seems possibly faster than the prominent algorithms. It also enhances the data security.
Further work should precisely determine its best application conditions.

Acknowledgments. The support for this work came from EGov IST project.

References
[BM77] Boyer R.S., Moore J.S. A fast string searching algorithm. CACM, 20, 1977.
[CL4] Crochemore, M., Lecroq, T. Pattern matching and text compression algorithms.

Computer Science and Engineering Handbook. A. Tucker (ed.) CRC Press Inc., 2004
 [KR87] Karp, R. M., Rabin, M. O. Efficient randomized pattern-matching algorithms.

IBM Journal of Research and Development, 31, 2, March 1987.
[LMS5] W Litwin, R.Mokadem & Th.Schwarz. Cumulative Algebraic Signatures for fast

string search. Protection Against Incidental Viewing and Corruption of Data in an SDDS.
VLDB DBIS-P2P 2005, Springer, LNCS series.

[LMS5a] W Litwin, R. Moussa, T Schwartz. LH*RS – A Highly-Available Scalable
Distributed Data Structure. ACM-TODS, Sept. 2005.

[LS4] Litwin, W., Schwarz, Th. Algebraic Signatures for Scalable Distributed Data
Structures. IEE Intl. Conf. On Data Eng., ICDE-04, 2004.

- 7 -

