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Extended Abstract 
We propose a novel string (pattern) matching algorithm called n-gram search. We intend 

it for the records stored once and searched many times in a database or a file, especially 
organized into a Scalable Distributed Data Structure, (SDDS), over a grid or a structured P2P 
net. We presume that the records are encoded into their cumulative algebraic signatures, 
providing incidental confidentiality of stored data. The search starts with pre-processing the 
pattern, calculating the logarithmic algebraic signature (LAS) of the pattern and the LASs of 
every n-gram in it. The value of  n ≥ 1 is a  parameter that one may tune. The search attempts 
to match the LASs of n-grams in the pattern towards dynamically calculated LASs, sampled 
over n-grams in the records. A mismatch generates a shift of up to K-n symbols towards next 
sample, where K is the pattern length. The whole process is parallel over the SDDS servers 
and does not require any local decoding. For an M-symbol long record, the unsuccessful 
search, measured as number of match attempts, costs O ((M-K)  / (K-n+1)).  The 2-grams 
should typically suffice, leading to O ((M-K) / (K-1)). We show that the algorithm particularly 
efficient for larger strings and records, i.e., with e-documents or DNA data. Preliminary 
results show then the n-gram search about (K - n + 1) faster than our previous algorithms and 
among the fastest known, e.g., probably often faster than Boyer-Moore. 
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1 Algebraic Signatures 
Let  G be a GF(2f), i.e.,  a Galois Field with the elements 0,1…2f -1. We call these elements 
symbols and naturally consider them as bytes (f = 8) or words (f = 16 or 32 etc). Let SK be a 
string of K symbols p1..pK.  Let  α  be a primitive element in G.  The cumulative (1-symbol) 
algebraic signature (CAS) of SK, [LMS5], noted here CAS (SK), is the string noted SK’ = 
p’1..p’K  where for every i = 1,2…K :  

p’i = p1α +…+piα i. 

Here the addition and the multiplication are in G.  Accordingly, p’i  is CAS  of the prefix Si of 
SK ending with pi. We write p’i = CAS (Si) or simply  p’i = CAS (pi).  

The CAS replaces each individual symbol p with another symbol p’ whose value encodes not 
only p, but also some knowledge of several symbols preceding p. The rationale is that a single 
comparison of two symbols may indicate now not only whether these symbols are different or 
equal, but also whether two entire strings of the same length and ending with the compared 
symbols differ or are likely to be equal.  This property is of obvious potential interest for 
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string searches. In particular one may immediately observe that the complexity of prefix 
match operation, i.e., of the search for a record with a given prefix, of theoretically any length 
l ≤ K, becomes independent of l and reaches O (1). This, because, for an unsuccessful search, 
it suffices to compare only the last symbol  of the searched prefix with that in the record at the 
same offset. Any prefix match attempt in the original  record (non-encoded) could need  up to 
O (l) comparisons.   

The CASs have several practical properties completing the rationale. First we have for every  
p’i with i > 1: 

p’i = p’i-1 
 + piα i = s (pi-1) + piα i. 

We can thus reuse the signature of the previous symbol to encode the next symbol.  This leads 
to O (K)  (linear) complexity of the CAS encoding . Next, for every i, we have: 

pi = (p’i – p’i-1) / α i =   (p’i + p’i-1) / α i = (p’i + p’i-1) * α f – 1 –  i = (p’i XOR p’i-1) * α f – 1 –  i

This property provides also O (K) speed to the CAS decoding. It results from the well-known 
properties of any GF. 

Consider now the substring  Sk,l = pk…pl of S with 1 < k < l < K. To find the algebraic 
signature that it would have if it was instead a string S l-k+1 = p1…pl-k+1, it suffices to compute: 

AS (S l-k+1) = (p’l XOR  p’k - 1) / α k-1 

This property let us to efficiently match the pattern to any substring within the visited record. 
For the fast calculus of multiplications and of divisions in GF(2f) with f = 8 or  f = 16 the logα 
and antilogα tables seems the most convenient tool. See [LMS5a] for details. In our case 
above we have the formula: 

AS (S l-k+1) = antilogα [ (logα (p’l XOR  p’k - 1) -  k+1) mod 2f – 1] 

Similar transformations hold for the other formulae above. Notice that for the logs, the 
additions/subtractions are the usual ones. 

2 The n-gram Search  
2.1 Preprocessing 
Let S’k be the CAS of the searched string SK (the pattern). Let n be a parameter. We basically  
consider that n = 2 below. An n-gram within Sk  is any substring pi

…pi+n-1 ; i = 1…K-n+1. We 
define similarly the n-grams in the visited record. Once called,  the algorithm starts by pre-
processing SK as follows.  
- If S is some string, let the logarithmic algebraic signature (LAS) of S be logα AS (S).  We 
put LAS (pK-n+1

…pK), i.e., logα  of the signature of the terminate n-gram of SK into some 
variable V. For any other n-gram, except the rightmost one, we hash LAS  into the following 
table T.   
- T has L entries: T [0…L-1]. We fix  L as K + 2δ  with δ  chosen somehow arbitrarily as 
δ = Int (0.25K). If P is an n-gram then we hash P  to T (i) with i =  AS (P) mod (K + &). The 
rationale for our choice of δ  is to have only a few collisions on the primary entries, thus 
T [0...K+δ -1]. We use the last δ entries of T for the overflows, managed using the well-
known separate chaining collision resolution method.  
- Each entry T (i) is  the triplet denoted (s, p, d).  We have: 
   - s is LAS  of the rightmost n-gram in SK hashed  to T (i). Different LAS’s, of different n-
grams thus, may indeed hash to the same i. A choice different from ours could lead to an 
incorrect search result, as it will appear. 
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   -  p  is the offset  of the hashed n-gram with respect to  that of the terminal n-gram in SK. We 
use p as basis for the shifts within the searched record described below.  
   - d is zero or is the pointer towards the next overflow location on the collision chain starting 
at T (i).   Thus T (i +d) contains the logα signature etc. of an n-gram P’ of SK, hashed to T (i) 
that happens to already store the data of n-gram  P, also hashed there, while having a 
signature different of that of P’.  

2.2 Processing 
We describe the processing for a single record R of length M. In an SDDS and SDDS-2005 
our description corresponds to the processing of the non-key field only. Each R is supposed 
stored pre-encoded into its CAS (R). 
1. Let Rn

i denote the n-gram in R ending with pi. Likewise, Sn
i is the n-gram in the pattern. We 

typically call it simply S.  We start with the matching  for i = K. We consider that the n-grams 
match iff their AS’s, hence LAS’s, are equal (no bad jokes, please). We thus test whether 
V = LAS (Rn

K). We calculate the latter using the algebraic formulae of the previous section. 
Thus, if pR

i  is the symbol at the offset i in R  we simply have: 

LAS (Rn
K) = pR

K  XOR pR
K-n.  

2. If these n-grams match, we compare the AS’s of the entire S and of R1,K, i.e., we test 
LAS (S)  = pR

K.  If OK, we finally test for the collision, by matching every corresponding 
symbol in (encoded) S and R. If this last test is also OK, the search is successful.  
3. Otherwise, we hash LAS (Rn

K)  into i and we test the LAS against s’s in the chain starting at 
T (i). If we do not find any (equality) match, then the search shifts forward in R by K – n +1 
positions. We will now thus compare S to the substring p’K – n +1…p’2K – n +1  in R. Otherwise 
the search  shifts by p (j) positions where j is the index of the matching entry in T. Notice that 
this shift has to be smaller than the previous one, by at least one. 
4. The shift means that we basically loop over steps (1) to (3)   for every new substring. The 
difference is that to calculate the signature of the terminal n-gram in the substring we XOR 
with p’K –n and divide the result by α 

K –n.  We perform the latter using the logarithm, as 
explained in the previous section.  
5. The looping ends when either the search is successful or the last shift aligning S on the 
suffix of R still shows no match. This means an unsuccessful search. Notice that the last shift 
may bounce a part of S beyond R. If it happens, the attempt leading to this shift is the last to 
consider.  Otherwise, the (last) attempt uses the LSA of the entire pattern only.  

Example. We first consider the search in a French text, choosing arbitrarily R = ‘Universite 
de Technologie Paris Dauphine’ and S = ‘Dauphine’, Figure 1. We choose n =2, i.e. digram 
search. We start with the pre-processing of ‘Dauphine’. We put aside the LAS  of the terminal  
digram ‘ne’ in a variable for fast access. Since the length of the pattern is K = 8,  the choice of 
dim [T] = 12 should suffice with the hash mod 103. We thus hash into T, one after the other, 
LAS’s of the digrams ‘in’, ‘hi’, ‘ph’…’Da’. We do not show the result here. We notice 
however that no digrams collided, rendering  the same LAS. If it happened, the later one 
would not enter T, as if it was simply a repetition of the former digram in the pattern.  
The search using the digrams needs then 6 attempts and thus 5 shifts, Figure 1a. This, 
assuming no collision of a visited LAS with some in T, what we did not test. We underlined 
the examined digrams. We show the successive shifts one after the other in two lines under 
the pattern.  The 5th attempt visiting ‘up’ finds it in T at the offset 4 with respect to the end of 
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the pattern. After the shift, the pattern aligns on the suffix of the record. This attempt 
calculates the signature of the entire pattern only.  

(a) Universite de Technologie Paris Dauphine 
Dauphine      Dauphine      Dauphine 

  Dauphine      Dauphine   Dauphine 
 

(b) Universite de Technologie Paris Dauphine 
Dauphine  Dauphine   Dauphine   Dauphine 
  Dauphine   Dauphine        Dauphine 
 

Figure 1   n-gram search in (encoded) French text using (a)  n = 2 and (b) n =1. 

The scan using n = 1 needs 7 attempts, Figure 1b. Notice that Boyer-Moore algorithm, 
[BM77], would need the same number of attempts. Whether it could be in the end faster or 
slower using wall clock speed remains to be studied.  

Notice also that digrams here perform also better by one attempt than 3-grams (not shown). 
All this illustrates the tunable behaviour of the algorithm. It is, besides, the only tunable 
pattern match algorithm we are aware of. In our case, n = 2 is optimal, otherwise, if a single 
symbol is highly discriminative, n = 1 may be a better option. Generally, larger n appears 
preferable for patterns longer with respect to the size of the alphabet used. The symbols repeat 
then many times in the pattern. For n = 1, a typical shift  moves in this case the search forward 
by a small fraction of the pattern only. A larger n, keeps the average pace close to K - n +1. 
Recall that to calculate and manipulate an LSA for an n-gram in R or S costs the same for any 
n under the consideration.    

The example at   AGACAGAT AGACAGAT 
         AGACAGAT AGACAGAT 

(c) AGCATATAAAGCGAGTGCGGAGCAT     

  AGACAGAT   AGACAGAT 
   AGACAGAT    AGACAGAT 
    AGACAGAT    AGACAGAT 
     AGACAGAT     AGACAGAT 
       AGACAGAT    AGACAGAT 
         AGACAGAT 
           AGACAGAT 

 

Figure 2 illustrates this facet of our approach for a DNA sequence. It is inspired by the one in 
[CL4]. We have four letter alphabet of nucleotides: A, C, G, T.   The pattern is ‘AGACAGAT’. 
Choosing n = 1 leads to 12 attempts. Choosing n =2 reduces the search cost three times to 4 
attempts. Unlike for the text, the best choice is here however n = 3. It leads to 3 attempts only, 
hence accelerates the search by factor of four. No larger n does better.  Notice that Boyer-
Moore would need again the same number of attempts as for n =1. It thus should be typically 
much slower than our trigram search. The comparative analysis in depth remains however to 
be studied.  

3 Performance 
If we choose n so that n-grams are selective, then the signature of the visited one usually will 
not be in T. The typical shift will be the longest possible under the method which is K-n+1. 
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Our basic choice of n = 2, i.e., of using digrams, amounts to K -1. The reason for this choice is 
that it should be typically more selective than of n = 1, or much more selective, as we have 
just seen. The ratio may be about the square of matching probability. The latter choice may 
then lead to many successful matches in T. This lowers the average shift length and increases 
uselessly the search cost. Assuming good practical selectivity of the digrams, the unsuccessful 
search speed of our algorithm should be O ((M – K)  / (K -1)) attempts. This cost is the basic 
component of the overall search cost over the SDDS bucket, (the database or the file…), 
when, as usual, only a small fraction of existing records matches. The same cost characterizes 
the scan for all the occurrences of the pattern in a record. The pattern pre-processing itself 
costs O (2K – n + 1). It involves, we recall, the calculus of the LAS of the pattern and of its n-
grams.   

(a) AGCATATAAAGCGAGTGCGGAGCAT 
  AGACAGAT    AGACAGAT 
        AGACAGAT 

(b) AGCATATAAAGCGAGTGCGGAGCAT 
  AGACAGAT AGACAGAT 
         AGACAGAT AGACAGAT 

(c) AGCATATAAAGCGAGTGCGGAGCAT     

  AGACAGAT   AGACAGAT 
   AGACAGAT    AGACAGAT 
    AGACAGAT    AGACAGAT 
     AGACAGAT     AGACAGAT 
       AGACAGAT    AGACAGAT 
         AGACAGAT 
           AGACAGAT 

 
Figure 2 n-gram search in (encoded) DNA sequence for (a) n = 3, then (b) n =2 and (c) n =1. 

One aspect specific to the method is the possibility of a collision between n-grams in the 
pattern on their LSA’s. We recall that this happens if two different digrams have the same 
signature. Collisions obviously slow the average search speed. We recall from the theory of 
algebraic signatures in [LS4] that the probability of a collision is zero if two n-grams differ by 
only one symbol (the algebraic signatures were the first signature scheme known for this 
property and its more general formulation for l-symbol signatures not dealt with here.).  
Otherwise the collision probability for n > 1 is 2-f, e.g., 1/256 for byte based texts (ASCII, 
EBCDIC…) and 1 / 64K for Unicode. Also, n-grams with two symbols switched, the digrams 
like ‘xy’ and ‘yx’ especially, never collide.  
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Figure 3 : Average shifts for DNA (one nucleotide per byte) for n-grams with n ≥ 4. 

DNA data is often stored as a byte string with characters ‘A’,’C’,’G’, and ‘T’.  We found an 
encoding of these characters that guarantees that there are no collisions for n-grams with n ≤ 
4.  In addition, we found both theoretically and practically, that the size of the shifts goes to 
255.004 with increasing size n while for small n the shift size is approximately n+1.  As a 
consequence, only very few (namely 1/(n+1) or 1/255.004) of all locations in the DNA string 
need to be searched.  Figure 3 shows our result for large n.    

4 Related Work 
SDDS-2005 already allows storing the SDDS files with records encoded into their CAS’s. The 
goal was the protection against incidental viewing of data at the servers, while preserving the 
parallel distributed non-key scan capability at the servers. With CAS encoding, it is impossible 
to incidentally see the content of a record, e;g., while studying a storage dump of some utility 
after a crash. One needs to find the α value, not stored at the servers, and (voluntarily) decode 
the records. This is analogous  to open a sealed envelope in real life with someone’s else 
letter, with all the legal consequences of eavesdropping, if caught.  

SDDS-2005 offers several string search algorithms, including for the pattern matching. The 
latter uses a Karp-Rabin alike sequential shift, [KR87], [CL4]. The scan calculus is different, 
especially since our data are encoded. Its complexity is nevertheless the same: O (M –K).  
Experiments with the Karp-Rabin version defined in [CL4] have shown the actual time also to 
quite similar4. It appears in fact slightly faster in our case for patterns longer than 32 bytes. 
This algorithm requires about twice less pre-processing of the pattern than the n-gram search. 
It only calculates the LAS of the pattern, with the complexity of O (K). The n-gram search  
should thus be usually substantially faster within each record for K >> 1, and M >> K. As we 
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have seen, the improvement ratio should be close to  K – 1, hence linear with pattern length. 
The actual timing per record over the scan of the whole bucket remains to be found.  One can 
expect a smaller ratio in practice, because of the time to move among the records the bucket 
structure. We recall that this one is a RAM B-tree in SDDS 2005. 

In the open literature, pattern matching is among the fundamental problems of computer 
science with several prominent contributions, [CL4]. The popular algorithms do not require 
any specific record pre-processing (encoding). The Boyer-Moore algorithm seems particularly 
efficient in practice. Its scan and shift complexity can be about ours for n = 1, namely, 
whenever the “bad character” shift becomes prominent with respect to the “good suffix” 
suffix case. In all the already discussed conditions, the choice of the best n > 1 should make 
an average n-gram shift perhaps several times longer. The n-gram search time should then be 
often faster. Likewise, it should then outperform the other well-known algorithms. As we 
said, the precise comparison remains however an open research problem. 

5 Conclusion 
The algebraic signature based n-gram pattern matching appears particularly efficient for 
longer patterns in the context  of the database search. It should be a useful new tool for text, 
image, DNA… string search, especially in the scalable distributed (P2P, grid…) environment. 
It seems possibly faster than the prominent algorithms. It also enhances the data security.  
Further work should precisely determine its best application conditions.  
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