

Simple Exceptional 16-Dimensional Jordan Triple Systems Author(s): Thomas J. E. Schwarz Source: *Proceedings of the American Mathematical Society*, Vol. 100, No. 4 (Aug., 1987), pp. 623-626 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2046695 Accessed: 16-07-2018 11:40 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

 $American \ Mathematical \ Society \ is \ collaborating \ with \ JSTOR \ to \ digitize, \ preserve \ and \ extend \ access \ to \ Proceedings \ of \ the \ American \ Mathematical \ Society$

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 100, Number 4, August 1987

SIMPLE EXCEPTIONAL 16-DIMENSIONAL JORDAN TRIPLE SYSTEMS

THOMAS J. E. SCHWARZ

ABSTRACT. We prove that every simple exceptional 16-dimensional Jordan triple system is a subtriple of an exceptional Jordan algebra.

We prove a reverse triality principle which, in the language of Jordan pairs, states that every (semi)linear automorphism of a 16-dimensional exceptional Jordan pair can be extended to an automorphism of the 27-dimensional Jordan pair of the exceptional reduced Jordan algebra $H_3(\theta)$, θ an octonion algebra. As an immediate application, we obtain that every 16-dimensional exceptional Jordan triple system is a subtriple of a 27-dimensional exceptional Jordan triple system. We will use the notations of [2] for Jordan pairs and those of [1, 2] for the exceptional reduced Jordan algebra. We make no assumption about our base field F. A similar, but different, situation has been examined in [4].

We recall some definitions: Let θ be an octonion (Cayley-Dickson) algebra over F. We have an involution $a \to \overline{a}$, trace $\operatorname{tr}(a) = a + \overline{a}$, and norm $n(a) = a\overline{a}$, $a \in \theta$. Let $H_3(\theta)$ be the set of 3 by 3 matrices with entries in θ that are symmetric under $X \to {}^t\overline{X}$ and have main diagonal entries in F. Every $X \in H_3(\theta)$ has the form

$$\sum_{i=1}^{3} \alpha_{i}[ii] + \sum_{(i,j,k) \text{ cyclic}} a_{i}[jk] \quad \text{with } \alpha_{i} \in F, a_{i} \in \theta,$$

where (i, j, k) is a cyclic permutation of (1, 2, 3), $a[ij] = aE_{ij} + \bar{a}E_{ij}$, $\alpha[ii] = \alpha E_{ii}$, in terms of the matrix units E_{ij} . $H_3(\theta)$ is a quadratic Jordan algebra with norm

$$N\left(\sum \alpha_i[ii] + \sum a_i[jk]\right)$$

= $\alpha_1 \alpha_2 \alpha_3 - \alpha_1 n(a_1) - \alpha_2 n(a_2) - \alpha_3 n(a_3) + \operatorname{tr}(a_1 a_2 a_3).$

Two copies of $H_3(\theta)$ define the associated Jordan pair <u>V</u>. A vector space semiautomorphism $\eta: H_3(\theta) \to H_3(\theta)$ is the plus part of a Jordan pair automorphism of V iff it is a semisimilarity of $H_3(\theta)$, i.e., fulfills

$$N(\eta(X)) = p\tau(N(X))$$

with $p \in F^*$, $\tau \in \operatorname{Gal}(F)$.

An isomorphism $\phi: \underline{V} \to \underline{V}^{\text{op}}$ with $\phi^2 = \text{id}$ is called involution of \underline{V} . (V^{op} is the Jordan pair with plus and minus parts exchanged.) An involution of \underline{V} (up to conjugacy by an automorphism) corresponds to a Jordan triple structure (up to isomorphy) of \underline{V} [3, 1.13; 6].

©1987 American Mathematical Society 0002-9939/87 \$1.00 + \$.25 per page

This content downloaded from 134.48.233.152 on Mon, 16 Jul 2018 11:40:02 UTC All use subject to http://about.jstor.org/terms

Received by the editors February 26, 1986 and, in revised form June 19, 1986. 1980 Mathematics Subject Classification (1985 Revision). Primary 17C99.

Let E_1 denote $(1[11], 1[11]) \in \underline{V} = (H_3(\theta), H_3(\theta))$. The Jordan pair $[M_{1,2}(\theta), M_{2,1}(\theta)]$ is isomorphic to the Peirce 1-space $\underline{V}_1(E_1)$ of \underline{V} , where $\underline{V}(E_1)^{\sigma} = \{a_2[31] + a_3[12] \mid a_2, a_3 \in \theta\}, \ \sigma = \pm 1$.

Our main result is the following theorem.

THEOREM. Every Jordan pair automorphism $\Phi = (\Phi^+, \Phi^-)$ of $\underline{V}_1(E_1)$ can be extended to a Jordan pair automorphism of \underline{V} fixing E_1 .

Of course, every automorphism of \underline{V} which leaves $\underline{V}_2(E_1)$ invariant, also leaves $\underline{V}_1(E_1)$ invariant.

PROOF. A quasi-invertible element (x, y) of $\underline{V}_1(E_1)$ remains quasi-invertible in \underline{V} , and the corresponding inner automorphism $\beta(x, y)$ of \underline{V} maps E_1 to an idempotent in $V_2(E_1)$ which necessarily is of the form $(\alpha[11], \alpha^{-1}[11])$.

If θ is not split (1[31], 1[31]) is a frame of $V_1(E_2)$. Otherwise there exist two orthogonal idempotents e_1, e_2 of θ such that $e_1 + e_2 = 1$, in which case (($e_1[31], e_1[31]$), $(e_2[31], e_2[31]$)) is a frame of $V_1(E_1)$.

Petersson's Conjugacy Theorem [5] asserts that there exist an inner automorphism of $V_1(E_1)$ which maps the image under Φ of this frame to the frame itself. As inner automorphisms can be lifted we only have to follow Φ by this inner automorphism to be able to assume $\Phi^{\sigma}(1[31]) = 1[31]$. Then Φ leaves invariant the Peirce decomposition of $\underline{V}_1(E_1)$ with respect to (1[31], 1[31]). We define coordinate maps by

$$\phi_{12}^{\sigma}(x)[12] = \Phi^{\sigma}(x[12]), \qquad \phi_{31}^{\sigma}(y)[31] = \Phi^{\sigma}(y[31]).$$

We define

$$p^{\sigma} = \phi^{\sigma}_{12}(1) \in \theta^*.$$

We use the Jordan matrix identities

 $\begin{array}{l} (\mathrm{JM1}) \; Q^{\sigma}_{x[ij]} y[ij] = x \bar{y} x[ij], \\ (\mathrm{JM2}) \; \{x[ij], y[ji], z[ik]\} = x(yx)[ik] \end{array}$

for (i, j), (i, k) = (1, 2), (3, 1) to obtain

(1)
$$\phi_{ij}^{\sigma}(x\bar{y}x) = \phi_{ij}^{\sigma}(x)\phi_{ij}^{-\sigma}(y)\phi_{ij}^{\sigma}(x),$$

where (i, j) is either (1, 2) or (3, 1),

(2)
$$\phi_{12}^{\sigma}(x)(\phi_{12}^{-\sigma}(y)\overline{\phi_{31}^{\sigma}(z)}) = \overline{\phi_{31}^{\sigma}((zy)\overline{x})},$$

(3)
$$\overline{\phi_{31}^{\sigma}(x)}(\phi_{31}^{-\sigma}(y)\phi_{12}^{\sigma}(z)) = \phi_{12}^{\sigma}(\bar{x}(yz)).$$

Let us abbreviate ϕ_{31}^{σ} by ϕ^{σ} . Recall $\phi^{\sigma}(1) = 1$. A consequence of (1) is

(4)
$$\phi^{-\sigma}(x) = \overline{\phi^{\sigma}(\bar{x})}$$
 and $p^{\sigma}\overline{p^{-\sigma}} = 1.$

Setting x = z = 1 in (3) yields

(5)
$$\phi^{-\sigma}(x)p^{\sigma} = \phi_{12}^{\sigma}(x).$$

If we let z = 1 in (3), using (4) and (5), we obtain the crucial identity

(6)
$$\phi^{-\sigma}(x)(\phi^{-\sigma}(y)p^{\sigma}) = \phi^{-\sigma}(xy)p^{\sigma}$$

We let z = 1 in (2) to get

(7)
$$\phi^{\sigma}(xy) = (\phi^{\sigma}(x)p^{-\sigma})(\overline{p^{\sigma}}\phi^{\sigma}(y)).$$

This content downloaded from 134.48.233.152 on Mon, 16 Jul 2018 11:40:02 UTC All use subject to http://about.jstor.org/terms

If (6) holds for one σ , we can use (4) and (5) to define an automorphism of $\underline{V}_1(E_1)$. Indeed, the identity $(ac)(\bar{c}b) = (a(bc))\bar{c}$ for octonion algebras implies that (6) and (7) are equivalent. This enables us to show by a straightforward calculation that (6) for one σ implies (6) for $-\sigma$. By using the octonion identity $(a(bc))(c^{-1}a) = aba$ we may prove that (6) implies (1), (2), and (3). (Both octonion identities may be proved by explicit calculation in the Cayley-Dickson algebra.)

Not let us assume that Φ is τ -linear, $\tau \in \operatorname{Aut}(F)$. We extend Φ by defining

$$\begin{split} \Phi^{\sigma}(x[11]) &= \tau(x)[11], \qquad \Phi^{\sigma}(x[22]) = \tau(x)n(p^{\sigma})[22], \\ \Phi^{\sigma}(x[33]) &= \tau(x)[33], \qquad \Phi^{\sigma}(x[23]) = \overline{p^{\sigma}}\phi^{-\sigma}(x)[23]. \end{split}$$

In order to show that Φ is an automorphism of \underline{V} , it suffices to show that Φ^{σ} is an element of the structure group of $H_3(\theta)$ [3, 1.8] or equivalently a semisimilarity of $H_3(\theta)$ [1, p. 10], i.e.

$$N(\Phi^{\sigma}(X)) = n(p^{\sigma})\tau(N(X)) \text{ for } X \in H_3(\theta).$$

In order to prove this we first note that (1) implies $\phi^{\sigma}(x^2) = (\phi^{\sigma}(x))^2$; hence,

$$\operatorname{tr}(\phi^{\sigma}(x))\phi^{\sigma}(x) - n(\phi^{\sigma}(x)) = \phi^{\sigma}(\operatorname{tr}(x)x - n(x)) = \tau(\operatorname{tr}(x))\phi^{\sigma}(x) - \tau(n(x)).$$

This implies $tr(\phi^{\sigma}(x)) = \tau(tr(x))$ and $\tau(n(x)) = n(\phi^{\sigma}(x))$. Therefore we have only to show

$$\operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_1))(\phi^{\sigma}(a_2))(\phi^{-\sigma}(a_3)p^{\sigma})] = n(p^{\sigma})\tau(\operatorname{tr}(a_1a_2a_3)).$$

This is proven by the following calculation, in which we use the linearity as well as the associativity of the trace, which states that tr(a(bc)) = tr((ab)c) for $a, b, c \in \theta$:

$$\begin{split} \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_{1}))(\phi^{\sigma}(a_{2}))(\phi^{-\sigma}(a_{3})p^{\sigma})] \\ &= \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_{1}))(\operatorname{tr}(\phi^{\sigma}(a_{2})) - \overline{\phi^{\sigma}(a_{2})})(\phi^{-\sigma}(a_{3})p^{\sigma})] \\ &= \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_{1}))(\operatorname{tr}(\phi^{\sigma}(a_{2})))(\phi^{-\sigma}(a_{3})p^{\sigma})] \\ &- \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\phi}(a_{1}))(\overline{\phi^{\sigma}(a_{2})})(\phi^{-\sigma}(a_{3})p^{\sigma})] \\ &- \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_{1}))(\phi^{-\sigma}(\overline{a_{2}}))(\phi^{-\sigma}(a_{3})p^{\sigma})] \\ &- \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_{1}))(\phi^{-\sigma}(\overline{a_{2}}))(\phi^{-\sigma}(a_{3})p^{\sigma})] \\ &- \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_{1}))(\phi^{-\sigma}(\overline{a_{2}}a_{3})p^{\sigma})] \\ &- \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_{1}))(\phi^{-\sigma}(\overline{a_{2}}a_{3})p^{\sigma})] \\ &- \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_{1}))(\phi^{-\sigma}(\overline{a_{2}}a_{3})p^{\sigma})] \\ &- \operatorname{tr}[(\overline{p^{\sigma}}\phi^{-\sigma}(a_{1}))(\phi^{-\sigma}(\overline{a_{2}}a_{3})p^{\sigma})] \\ &= \operatorname{tr}[\phi^{\sigma}(a_{2})]\operatorname{r}[\phi^{\sigma}(a_{2})]\operatorname{tr}[\phi^{-\sigma}(a_{3}a_{1})] - n(p^{\sigma})\operatorname{tr}[\phi^{-\sigma}(a_{1}(\overline{a_{2}}a_{3}))] \\ &= n(p^{\sigma})\tau(\operatorname{tr}(a_{2}\operatorname{tr}(a_{2}a_{1})) - \operatorname{tr}(a_{1}\overline{a_{2}}a_{3})) \\ &= n(p^{\sigma})\tau(\operatorname{tr}(a_{1}a_{2}a_{3})). \end{split}$$

It is easy to show that a Jordan pair automorphism which is the identity on $\underline{V}_2(E_1)$ and $\underline{V}_1(E_1)$ is the identity on \underline{V} and that the identity on $\underline{V}_1(E_1)$ can be lifted only

This content downloaded from 134.48.233.152 on Mon, 16 Jul 2018 11:40:02 UTC All use subject to http://about.jstor.org/terms

to an automorphism given by

$$\begin{split} \Phi^{\sigma} \left(\sum \alpha_{i}[ii] + \sum_{(i,j,k) \text{ cyclic}} a_{i}[jk] \right) \\ &= \alpha_{\sigma} \alpha_{1}[11] + \alpha_{-\sigma} \alpha_{2}[22] + \alpha_{-\sigma} \alpha_{3}[33] + \alpha_{-\sigma} a_{1}[23] + a_{2}[31] + a_{3}[12], \end{split}$$

where $\alpha_{\sigma} \in F$, $\alpha_{-\sigma} = \alpha_{\sigma}^{-1}$. This remark concludes the proof of the theorem.

As a consequence of the proof, we note that for linear Φ , (7) implies that ϕ^{σ} is an element of the structure group of the alternative algebra θ . At the same time, it is an element of the automorphism group of the Jordan algebra $\theta^{(+)}$, and hence an element of $O^1(n)$, the rotation group of n. Every element of $O^1(n)$ can be written as

$$U_{a_1} \circ J \circ \cdots \circ U_{a_{2r}} \circ J,$$

where $J(x) = \bar{x}$, $n(a_1) \cdots n(a_{2r}) = 1$, $U_a(x) = axa$, and can be extended by

$$Q^{+\sigma}_{[22]+a_1[31]} \circ \cdots \circ Q^{-\sigma}_{[22]+a_{2r}[31]}$$

to a Jordan pair automorphism (see [1, Chapter 2]). This remark leads to a shorter proof of our result for linear automorphisms.

We apply our result to Jordan triple systems.

COROLLARY 1. Every involution of $\underline{V}_1(E_1)$ can be extended to an involution of \underline{V} .

PROOF. Let ε denote the switching involution of \underline{V} . If η is an involution of $\underline{V}_1(E_1)$, then $\varepsilon \circ \eta$ is an automorphism of $\underline{V}_1(E_1)$ which can be extended to an automorphism $\varepsilon \circ \hat{\eta}$ which is the identity on $\underline{V}_2(E_1)$. As $\eta^2 = \mathrm{id}$, $(\eta \circ \varepsilon) \circ (\varepsilon \circ \eta) = \mathrm{id}$, hence $(\hat{\eta} \circ \varepsilon)$ is the identity on $\underline{V}_2(E_1)$ and $\underline{V}_1(E_1)$. Therefore $\hat{\eta}^2 = \mathrm{id}$.

COROLLARY 2. Every simple exceptional 16-dimensional Jordan triple system is a Jordan subtriple system of an exceptional simple reduced Jordan algebra.

PROOF. A simple exceptional 16-dimensional Jordan triple system is given by an involution of a simple exceptional 16-dimensional Jordan pair.

References

- 1. J. Faulkner, Octonion planes defined by quadratic Jordan algebras, Mem. Amer. Math. Soc. No. 104 (1970).
- N. Jacobson, Structure theory of Jordan algebras, The University of Arkansas Lecture Notes in Math., vol. 5, Fayetteville, 1981.
- 3. O. Loos, Lecture Notes in Math., vol. 460, Springer-Verlag, Berlin and New York, 1975.
- E. Neher, Klassifikation der einfachen reellen Ausnahme-Jordan-Tripelsysteme, J. Reine Angew. Math. 322 (1981), 145-169.
- 5. H. Petersson, Conjugacy of idempotents in Jordan pairs, Comm. Algebra 6 (1978), 673-715.
- 6. T. Schwarz, Special simple Jordan triple systems, Algebras Groups Geom. 2 (1985), 117-128.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210-1101

Current address: Department of Mathematics, California State College, Bakersfield, California 93309