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Abstract. Encryption key safety is the Achilles’ heel of modern cryptography. Simple backup copies 
offset the risk of key loss, but increase the danger of disclosure, including at the escrow’s site. 
Recoverable Encryption (RE) alleviates the dilemma. The backup is specifically encrypted so that 
recovery by brute force, i.e., without any hint from the key owner, remains possible. We propose RE 
using a noised secret, RENS in short. To dissuade indelicate attempts, the owner sets up the 
decryption complexity so that recovery time at the escrow’s facility, a computer or perhaps a cluster, 
becomes inhibitive. The actual recovery fits the time desired by the requestor, using distributed 
processing over a large cloud. A 10K-node cloud may suffice to recover the key in ten minutes, for 
the dissuasive set up of seventy days for a single computer.  Large public clouds are now available 
with acceptable price tags. Their sheer size makes the illegal use unlikely.  We show feasibility of RENS 
schemes possibly of interest to numerous applications. 

1. Introduction 

Most users want to preserve the data confidentiality. They use high quality symmetric or asymmetric 
encryption, but thereby incur the dangers of key loss. Usually this happens because of the owner’s 
laziness to do a backup or because of the owner’s computer misfortune. On the other tune, a 
company could face a data loss because of an employee departed with the keys. Health data are 
often encrypted, but access to may remain crucial, even if the owner is unable to help. Encrypted 
family’s data may need to survive the owner’s disappearance with the keys, e.g., while boating in SF 
Bay. A key may alternatively be a trusted ID, e.g., a Diffie-Helman one, the loss of that being 
potentially also catastrophic…   

A usual approach is to have a backup copy with some escrow (service) or Admin or in a cloud [JLS10].  
The Escrow or Admin or the owner simply retrieves the backup when needed. However, even a 
trusted escrow might reveal malicious or intruded by an adversary.  A cloud can be unsafe against 
intruders. If an illegal key usurper discloses it, a big trouble may result. Consequently, users usually 
seem to refrain from escrow services. On the other end, there is the fear of the definitive encrypted 
data loss. All these dilemmas make many rather not using any encryption [MLFR2]. In turn, this is also 
an invitation for trouble. Compound fear deters in particular many from the data outsourcing.  By 
similar token, many users prefer a low quality authentication, e.g., a weak or repetitive password, 
despite the risk incurred….  

The recoverable encryption (RE) in [JLS10] was intended to alleviate all these troubles. An RE scheme 
recovers private data from their specifically encrypted backup. The encryption is such that in the 
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absence of the owner, the brute-force recovery, i.e., without any additional knowledge of original 
data, is feasible. It remains excessively difficult or dangerous for illegal attempts. In [JLS10], RE was 
put into practice for the client-side encrypted data outsourcing to an LH* based cloud file. The 
private data in the scheme, termed LH*RE, was the encryption key. It was backed up as the shares of 
the secret randomly distributed among the LH*RE data records encrypted using the key, the whole file 
being spread over many cloud nodes. To recover the key, one needed to collect all the shares. The 
intruder had to break then into typically excessively many nodes.  

Below, we propose a different principle, leading to schemes collectively called RE through noised 
secret, RENS in short. Here, RE basically concerns a high quality encryption key. The backup storage 
requires a single computer or cloud node only, unlike for LH*RE. The owner may put the backup into a 
cloud or, alternatively, handle it to an Escrow or Admin. The recovery time D through the processing 
at a single computer (or cloud node) is adjustable at owner’s discretion. The owner should estimate D 
long enough to deter the practice, e.g., in order of months or years. To speed up, the recovery may 
use then a (multi-node) cloud. It speeds then almost linearly with the cloud size. The owner may 
define in this way some acceptable recovery time R, in seconds, minutes or, say, up to an hour.  In 
practice, the owner may set up D that N is at least in hundreds, thousands or dozens of thousands of 
nodes. Large clouds become easily available, e.g., Google and Yahoo claim having about 50K-clouds, 
Azur advertises the availability of millions of nodes…  

The owner chooses D assuring the number of basic steps of any key recovery procedure large enough 
to make it somehow costly. The owner may bear in mind also that using a large “army” of nodes 
should be rather visible, e.g., through many traces in logs. The overall hardship may inversely follow 
owner’s trust to the escrow or in the cloud safety. The owner may end up confident that the cloud 
cost and the likelihood of being caught through audit are high enough to deter illegal attempts. 

Technically, an RENS scheme hides the key within a noised secret. Like the classical secret-sharing, this 
one consists also of at least two shares formed also “classically”. One of these shares is however in 
addition noised. The term means that it is redefined in a specific way making it hidden among a large 
number M of pseudo-random noise shares. With very high probability, noise shares other than the 
noised one do not reveal the secret. The RENS recovery searches a noised share by brute force. It may 
need to inspect every noise share and at least half of those on the average. This average corresponds 
to the case of, so-called, single noise per share. It increases with additional multiple noising. No brute 
force method known at present can disclose a noised share faster than RENS recovery.  

The search time on a single computer or cloud node, whether the worst or the average, scales up 
about linearly with M.  The owner chooses M in proportion to D through the estimate of the recovery 
difficulty as defined by the throughput of the operations at a single computer or cloud node. The 
noised share search may speed up almost linearly with the cloud size N. The recovery time may 
speed up accordingly, i.e., possibly almost reaching D / N. To achieve the speed up, RENS schemes 
partition the search over the nodes. A static partitioning has N fixed upfront, before the recovery 
processing partitioning starts. A scalable one incrementally adjusts N during while partitioning.  The 
static scheme achieves the linear speed-up and the optimal respect of R, provided the homogenous 
throughput. If the owner’s estimate of a node throughput is accurate, then N is N ≅ D / R. The 
recovery may however miss the R target over a heterogeneous cloud. A scalable scheme applies 
then. When the static scheme applies, one can always apply the scalable one instead. However, it 
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should generate then usually a larger cloud for the same D, R and node throughput, up to about 
30 %. For many, this price may be acceptable for greater flexibility. Especially, since the speed up is 
then also linear and accordingly better. In sum, the scalable scheme is generally more versatile and 
appears preferable for a private cloud.  

An about 10K-node cloud may in this way provide the speed up from, say, D of up to two months to R 
less than ten min. A 100K-node cloud may allow for R of less than 1m etc. The average timing 
accelerates accordingly. For the static scheme, it is respectively D/2 and about R/2. Here for instance, 
it would speed up from 1 month to about five min or, even, to 30sec.  For the scalable scheme, the 
latter figure may be the same, but usually both the worst and average times should be faster than R 
and R/2 respectively, while the cloud generated should be accordingly larger. For a homogeneous 
cloud the difference for each factor is about 30%, as we have mentioned.  For a heterogeneous 
cloud, the figures depend on the throughput of nodes involved. The formal calculation appears 
complex and is among future work goals. 

Below we analyze the feasibility of RENS schemes. We define the basic concepts and the above 
mentioned basic schemes. We prove the correctness, the safety and other properties we have 
indicated. We point to variations of the basic schemes for future analysis. We discuss especially the 
use of multiple noised shares, unlike in the basic schemes.  The average timing increases with the 
number of noised shares towards D and R.  We show that some users may appreciate the feature. 
While no RENS scheme is implemented as yet, our study shows that those proposed fulfill the intent 
and should be of interest to numerous applications.  

Section 2 starts with the basic concepts. Next, we discuss the static partitioning and continue with 
the scalable one. In Section 3 we briefly discuss the use of multiple noises. In Section 4 we address 
the state-of-the art. Finally, in Section 5, we conclude and discuss the further work.      

2. Recoverable Encryption through Noised Secret   

The algorithm starts with the processing of the secret data by the owner, producing the (noised) 
backup. We call this step client-side (recoverable) encryption. The client sends the backup to the 
(backup) server: an escrow, admin.... that we usually note E in what follows. The owner usually 
accompanies the backup with some access path to the data encrypted using the key. The server-side 
recovery decrypts the backup, i.e., recovers the key, upon request.  

2.1. Client-Side Recoverable Encryption    

The only secret data, say S, to back up, we consider below, unless we state otherwise, are a high 
quality encryption key. The highest quality keys at present seem those of AES standard, 256b wide. 
We basically consider these keys for the examples that follow.  Nevertheless, the owner can backup 
shorter keys as well, e.g., DES ones. By similar token they could be larger, e.g., 500b Diffie-Helman 
ones, used for key exchange or as trusted IDs [JLS12].  The crucial for safety property is that the client 
(key owner) node, say X, should be able to consider S as an apparently randomly generated integer. 
The owner encrypts any data to remain secret with unproven apparent randomness through such a 
key. For instance, this can be an ID, a password, a pass phrase, any large file….  

To start with the backup, X chooses some dissuasive recovery time that we usually note D below.  X 
predicts D is large enough to be impractical. Technically, D is the owner’s estimate of the worst time 
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for an RENS recovery. The case occurs on a single computer e.g., in the escrow’s possession, or a 1-
node cloud. The average 1-node RENS recovery time should be then also rather dissuasive, being 
equal to D/2 at least, as it will appear. Depending on the trust to the escrow and cloud safety, the 
owner may choose D to last days, months or years.  

Next, X fixes the acceptable recovery time R, R << D.  The owner is willing to wait that long at most till 
the recovery completes.  The ratio D/R implies for the owner that the cloud size to use that is 
presumably N = D/R + ∆D/R.  The actual N depends on the accuracy of the owner’s throughput 
prediction. We elaborate on it later on. ∆  can be almost zero or somewhere between zero and about 
30%. It depends on the RENS scheme used.   

We now denote w (y) the bit width (length) of integer y. X generates a random number, say s0, where 
w(s0) = w(S). Below, we thus have w =256 by default. Next, X calculates s1 = Si XOR s0. Afterwards, X 
applies to s0 a good one way hash, say H, e.g., SHA 256 by default in what follows. This produces the 
hint, say h, h = H (s0).  In fact w(S) can be shorter than 256b, e.g., if one uses 128b DES keys. In which 
case SHA 256 pads S automatically.    

X presumes further that a cloud node or the escrow’s computer is a typical one according to the 
present technology, e.g., some 1-core Wintel node. X further knows the parameter termed 1-node 
throughput T we introduce soon.  T quantifies the computational speed of a typical computer for RENS 

purpose. One measures T per time unit, say per second. It will appear that typically T ≅ 220 then.   On 
this basis, X calculates a large integer M = Int (DT).   Next, X randomly chooses some integer m within 
interval I = [0, M[.  After that X defines integer f as f = s0 – m. Then, X forms the so-called below 
noised share s0

n = (f, M, h). Finally, X forms the backup S’ as S’ = (s0
n, s1) and sends S’ to the escrow.   

In essence, X first applies to S the “classical” secret-sharing, creating two (actual) shares s0 and s1. It is 
the common knowledge that S = s0 XOR s1. Then, X creates a finite noise space that is here interval I. 
Each value within I is a noise. The numbers f, f + 1…f + M-1 become noise shares. M quantifies the 
number of noise shares and becomes noise width, Figure 1. The actual share s0 is one of the noise 
shares. This is easy to see for I above. One may identify s0 from the noised one s0

n through the 
successful match H (s0

n) = h. This is possible, since for any noise share s ≠ s0, the practical collision 
probability of a good one way hash is zero, hence H (s) ≠ h. Also, since M is finite, one may generate 
every noise in the noise space and calculate the hash of every noise share. For I, one may simply loop 
through the values 0,1…M-1.  

The share s0 is the m-th noise share in this order.  The value of m is however random and not in the 
backup. It may be equally likely anywhere in I. The brute-force recovery, not knowing m, has to guess 
it. The RENS recovery does this then by (hint) match attempt h =? H (s), for every noise share s implied 
by the guessed m. As it is easy to see, since every noise in the noise space is equally likely, regardless 
of the way of picking up these noises, any brute-force guessing may need to attempt a match for 
even every of M noises and M / 2 at the average at least. Especially, since H is a one-way hash, so it is 
not possible at present to determine s0 as H-1 (h). Also, since by general properties of the secret-
sharing, a noise share other than the noised one cannot reveal the secret.  

Practical values of M appear in hundreds of billions at least, e.g., M = 240 ÷ 250, given the usual SHA 
256 speed, [B11]. These choices should effectively let the 1-node RENS recovery time that is, to 
remind, a brute force one, to be typically by far too long in practice. As it will appear, any alternate 
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brute force recovery methods may lead to even longer possible and average timing. As we will 
elaborate, all this reasonably guarantees to the owner the correctness and safety of R choice. The 
former means that the 1-node brute-force RENS recovery eventually always returns s0, but not faster 
than in the expected timing, providing the correct estimate of T. The latter means that no brute-force 
recovery could proceed faster. 

By analogy to the secret-sharing terminology, we call the owner’s action above noised secret-sharing. 
One can see that the characteristic difference is that the latter, unlike the former, generates one 
share, s0 above; with a noised part. This part consists here at least of the rightmost w (M-1) bits of s0. 
The actual value of the noised part is hidden somewhere within a purposely large noise space, I 
above. The value of a noised share, unlike that of a “classical” one is therefore purposely somehow 
fuzzy. It is the noise width that defines the fuzziness. As we stressed already, H is a one-way hash, not 
allowing at present to calculate s0 as H-1 (h). As we also discussed, for any noise share s guessed as 
the (hidden) noised share s0, the match attempts are then the fastest practical way to find whether s 
is s0.    

 

Figure 1.  2-share (a) Secret-Sharing and (b) Noised Secret-Sharing. 

Example 1. X wishes a backup of some AES key, thus becoming S here.  Also, X wishes D to be at least 
a month, i.e., at least 222s. Next, X fixes R to be less than 10m, say D = 29

 = 512s. This lets X to expect 
the use of at least N = 213, i.e., of 8K-node wide cloud.  These D and N seem to X big enough to deter 
an unwelcome recovery.   

X also believes throughput T of RENS recovery to be 220 match attempts per second.  A match attempt 
involves the hash, a match attempt h ?= H (s) for some noise share s and most often some progress 
over S. Given SHA 256 speed figures, such T seems reasonable for a popular about 2 GHz 1-core 
Wintel node, [B11].   X fixes therefore M to M = 242. This is the noise width here and I = [0, 242[ is the 
noise space. Next, X produces a 256b long random integer as the actual s0, calculates h and s1 = S XOR 
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s0 as the other actual share. Then, X chooses a random integer within I = [0, 242[, becoming m.  Next, 
X computes f and forms the noised share s0

n. Finally, X forms S’ and sends it out.  

The brute-force attacker of the backup can see in f the bits of s0 which are perhaps out of the noise. 
These are here all but the rightmost 42, i.e., the left 214b. The attacker may XOR these with same 
bits of s1 recovering these bits of key S. For a high quality key, AES, especially, those bits do not let to 
infer the noised value of the rightmost 41 bits of s1 and s0, hence of the rightmost 41 bits of S besides 
as well. The only use of the visible bits one can make for the recovery is (i) to guess a noise, then, (ii) 
try out through a decryption attempt of the actual data whether S calculated that way is the right 
one. Any such verification we are aware of is by far longer than the hint match attempt. The guessed 
value m may be equally likely anywhere within I. There are then also “only” M equally likely noise 
shares. However, we hash over w (s0) being here 256b. By the property of a high quality one way 
hash, the value space of H is as large. There is no possibility at present to create a pre-computed 
inverted file that   would have all or most of the hashes for a key. Same is true, more generally, for 
any other pre-computed decryption method known. If it was possible, an even instant disclosure of 
the noised share could follow. Altogether, as we already stated, no guessing of the noised share can 
be at present faster than through RENS match attempts.   

Example 2. Now suppose that the secret data are a DH private ID F, e.g., as used in CSCP, [JLS11] and 
Section _.  This ID is necessary for the data access.  A DF number is the 512b long integer. The owner 
then first chooses a key that becomes S and encrypts F. Then, X backs up S as above. The escrow 
could be the Admin of CSCP scheme. The owner may accompany then the backup with the encrypted 
F.  

Actually, RENS backup would remain safe, in the discussed sense, even if the method was applied to F 
directly. The reasons are similar to those above discussed for AES key. The only alternate method to 
hint matching would be then the guessing and match attempts through verification in CSCP cloud 
catalogs. But these can only be slower by far than through hint matching. Thus the direct application 
of RE is not limited to encryption keys. The result can however remain then also safe or not 
depending on the case.     

Example 3. To illustrate the latter point, suppose now that one attempts as S the string F within the 
quotes, F = “The quick brown fox jumps over the lazy dog”. The choice of I as above could noise the 
6-byte substring “zy dog” only. Likely, only seldom folks would not grab the secret from the visible 
string, without any hint matching.  In contrast, it cannot happen, if F is first encrypted through a high-
quality key becoming then S. 

2.2.  Server-Side Decryption 

2.2.1. Overview  

As discussed, to determine S by brute force from noise shares one has to search over I for a noise 
share s such that s = s0. For the server, say E, for the secret data under consideration, to determine it 
through the match attempts as above is the fastest way. For a brute force search, every noise is also 
equally likely. As we stressed, first, the server needs to explore thus I until the good luck. Next, the 
server may need to loop through all M-1 values, and M/2 on the average. Assuming the discussed 
choices of M by X, the chances of a fast success by 1-node recovery are extremely unlikely. More 
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precisely, the probability of discovery after attempting only up to M/X noises is 1/X 5. The server 
considers therefore upfront the actual time to do it by itself too long in practice.  

E believes it to be a large value, let us say D again, although E does not necessarily know it.  E 
distributes therefore the match attempts over an N-node cloud.  The constraint on N is that it leads 
to the recovery time of R at worst.  There are then two generic RE distribution schemes we qualify 
respectively of static and scalable partitioning. For the static partitioning, N is fixed upfront of 
spreading out the RE and does not change afterwards. The scalable partitioning scales up N 
incrementally, while the RE calculus spreads out. The static partitioning appears preferable for a 
public cloud with nodes known to be identical and possible to allocate to a single client at a time. The 
scalable one applies there as well, but generates on the average a 30 % larger cloud. In contrast, it 
may be the only practical on a private or, more generally, rather heterogeneous cloud. The nodes are 
there usually diverse, with the throughput for a task cumbersome to predict at best.   

Upon receiving the backup, the server simply stores it, together with some data that let to identify a 
legitimate backup requestor. Those data are not the object of our work. When the requestor issues 
the query for the backup, the requestor sends in particular R. For both schemes, the cloud service 
follows then the same phases whose content however differs. For the static scheme, we begin with; 
the Init phase fixes N. Next, the Map phase distributes the computation of match attempts over the 
N nodes. Every node continues with the Reduce phase, where it searches for the luck. Finally, every 
node performs the Termination phase. This one aims at the ASAP-end of the computation. The 
Map/Reduce terminology reflects the current popular vocabulary.    

2.2.2.  Static Partitioning 

We call load L at a node the number of values among M assigned to the node for match attempts. 
We call (node) throughput and note T the number of attempts the node supposedly performs per 
time unit, a second typically as we said.  We call node capacity B, the size of the bucket of attempts 
that the node achieves in time R, given T. We have obviously B = R*T. Next, we call (node) load factor 
α  the value L / B. Obviously, the node performs (on the average, or for sure …) all its map attempts 
in time R only if α ≤ 1. The goal of the scheme is to get α ≤ 1 and α ≅ 1 at every node participating in 
the calculus.  This goal generates the smallest, hence in this sense optimal, cloud respecting R.  
Finally, we say that a node overflows iff it has α > 1. Notice that our terminology maps purposely our 
problem towards that of designing a scalable distributed data structure (SDDS) or a file generally 
[LNS96].   

2.2.2.1. Init Phase 

When E requests the cloud service, E gets access to one cloud node. We call this node coordinator, C 
in short. E sends data S’’ = (t, F, I, R) to C. E hides s0 to avoid the disclosure of S by the cloud, for 
obvious reasons.   

C determines on itself the 1-node load factor, say αM induced by all M attempts. Basically, it knows 
somehow its T, computes trivially B from and calculates αM = M / B, since M = L in this case. If by any 
chances, it happens that αΜ < 1, C performs the (entire) recovery. Otherwise, C presumes that its T 
will be also T of every other node assigned to the calculation. It then calculates N as N = αM. Finally, C 

                                                           
5 For the basic scheme, we call later, with a single noise. For the variant called with multiple noising, this 
probability can be even much smaller. 
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requests the allocation of N-1 nodes.  After that, C labels every node of the N-node cloud constituted 
in this way with the unique node number i ; i = 0,1…N-1. C itself becomes node 0. 

Example 4. We continue with the assumptions of the previous examples. C knows T to be T = 220 per 
second, as X supposed besides.  It computes B from R got in S” as B = 229 (match attempts per 
second). M received leads to αM = 242 - 29 = 8K. This is far above α = 1 and in fact a quite heavy 
overflow (overload). C requests therefore the allocation of 8K-1 cloud nodes. It labels itself node 0 
and numbers the nodes got 1,2…8K-1. It finally advances to next phase.  

2.2.2.2. Map Phase 

C sends the message, say D, to every node of the cloud. D contains S’’, i and request (program) P 
defining the two remaining phases for each node.  It also contains some (physical) address of C, 
letting every node to send C the positive match message. 

Because of the termination protocol, this phase may get interrupted at any time by a message with 
the result. It then goes to Termination phase at once.   

2.2.2.3. Reduce Phase 

Every node starts this phase, by executing P, immediately after D reception. C itself starts it in parallel 
to Map phase or after. P requests node i to attempt matches for every m ∈[0, M[ such that i = m mod 
N. In practice it means a loop over every value m = i, i + M, i + 2M… while m < M.  If a match succeeds 
for some s, the node sends s to C and exits to Termination phase. What the node does anyway, 
otherwise. 

Because of the termination protocol, every node during this phase may also get interrupted at any 
time by a message from C requesting to go to Termination phase at once.   

2.2.2.4. Termination Phase 

The coordinator sends s found to E. When C gets s, it requests the calculus end at every node and its 
de-allocation. Details of where and how depends on the cloud used.  Also, every node, that managed 
to terminate the match attempts unsuccessfully, wraps up its state enough to get de-allotted by the 
coordinator. Details of where and how depends on the cloud used. 

When E gets s, it completes the recovery by XORing s as s0 successively with each fragment s0,i and 
finally sends the result to X. 

2.2.3.  Discussion 

It is rather easy to see that the scheme is correct and safe in the discussed senses. It is safe as for 
same N, there is at present no way to disclose s0 faster than through the RENS match attempts. Next, 
no cloud intruder can discover S since the server does not send out s0.  The scheme is correct, since it 
always recovers s0. Also, it does not miss R provided that every actual T remains the expected one. All 
these properties result from the reasons already discussed, especially for the hypothetical 1-node 
recovery and because of the details that follow.  

First, it easily appears that the scheme realizes the perfect static hash partitioning over the cloud. It is 
very simple and potentially allows for the optimally small cloud for any given R. The average recovery 
time, say Ra is then about R / 2. The rationale is that every noise share at every node is equally likely 
to be the noised one. This results from the randomness of m within I, compound with that of the high 
quality one way hash. At worst, all the noises mapped to a node may be visited until the match 
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succeeds.  The average value is then clearly M/N/2. This leads also to the average 1-node recovery 
time of R/2. 

For R and Ra, first the incidence of messaging time of the Map phase and of that of the Termination 
phase appear negligible with respect to the timing of Reduce phase. That is why, we may effectively 
have R ≅ D / N and Ra = R/2.  This provided that α = 1. The actual respect of this constraint and more 
generally, of α ≤ 1, to avoid exceeding R, so having also Ra > R/2, depends for every node n on how 
close Bn really is with respect to B0. If B0 > Bn often or even B0 >> Bn for some n, many nodes overflow 
and C is likely to miss R, perhaps heavily. How precisely likely the event is remains subject of further 
work.  

Vice versa, many nodes can get under-loaded and the cloud size may by far exceed the optimal one 
for R. Necessary condition for the optimality is the same computational power at each node. This is 
more likely to occur on a public cloud than on a private or hybrid one.  However, even on a public 
cloud it may not exist. For instance, - if several virtual machines may share a node. Notice that all 
these comments equally apply to possible discrepancy between the owner’s initial estimate of the 1-
node throughput and the actual ones.   A good side of a larger than the optimal cloud given node 
under-load, is that the average recovery time becomes somehow faster than R/2 as well.   

One direction towards more general respect of R, i.e., less stringent on nodes throughput, is probably 
to calculate N, using α < 1. The theory of (static) hash files hints towards this direction and to α = 0.8 
÷ 0.9 as promising choice. The probability of an overflow is then negligible under good hash 
assumption. On the other hand, it is possible to generate static partitioning adapted to different Bn’s. 
However, again as for files, this seems of doubtful utility. We leave both issues for further work.   

Unlike above, the termination phase in practice may need to deal also with failures. A message may 
get lost or a node with the lucky number may fail before its processing. Also the prediction may 
heavily fail, as discussed. For all these reasons C may not get any result in a reasonable time out.  It 
then needs some dialog with participants, for the recovery. We leave the extensions to the 
termination phase dealing with these issues for future analysis as well.  

Finally, every hash function may generate collisions. If it happened, the calculus could pick up an 
incorrect noise share, as the calculus could stop at the first encountered.  The basic scheme would 
then incorrectly decrypt the secret. The scheme does not consider this possibility. The reason is that 
the probability of collision with a good one-way hash, SHA 256 especially, is in general so negligible 
that one usually presumes it zero in practice. Nevertheless, one may feel a collision still possible. One 
way to amend the scheme is then to also hash S itself. The hash of the decrypted S and the original 
one should coincide. If not one restarts the search for the noised shares and attempt the decryption 
for every share matching the hint. 

Example 5. On the basis of Example 4, we consider the use of the CloudLayer cloud, [C12]. The hourly 
pricing in Jan. 2012 guarantying the exclusivity of a node to the renter was 0.30c. This exclusivity, 
called in CloudLayer terminology private option, is crucial for expected T stability and homogeneity 
among the nodes. Crucial in turn to the success of the static scheme as discussed. On this basis, we 
extrapolate a little the pricing scheme, considering that 5m is the minimal charge per node used. 
Since R was 10m, C may provide the cloud bill estimate as up to about 400$ and 200$ on the average. 
This is in general easily affordable for valuable data for a private user. It is obviously a cheap price for 
a commercial one.  For a larger cloud, the price would hike up accordingly. Still it could be reasonable 
in rush cases one can imagine.   
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2.2.4.  Scalable Partitioning 

We now suppose that every node n is able to split as we detail soon. It is also the only to know its B 
that we note Bn. The scheme goes through the same phases as the static one. 

2.2.4.1.  Init Phase 

When E requests the service, E gets access to one cloud node. This node labels itself node 0. It 
constitutes the initial cloud with N = 1 node only. As previously, E sends data S’’ = (t, M, R), while 
hiding s0 for the same reasons.  

2.2.4.2. Map Phase 

Node 0 determines A0, its load as L0 = M / A0, its capacity B0 as R /A0 and its load factor α0 = L0 / B0.   
If by any chances, α ≤ 1, node 0 executes the calculus, sends the result to E and goes to termination 
phase. Otherwise, node 0 overflows and splits. Node 0 creates then the parameter termed node level 
and usually noted j, with j = 0 initially. Next, the node asks for the allocation of a new node, it labels 
node 1. Then it sets j to j = 1 and sends to node 1, the data (B’, j, a0), where a0 is some (physical) 
address of node 0, letting node 1 to send data there.  From now on, the cloud has N = 2 nodes. 
Observe that the initial cloud had in fact N = 20 nodes and now scaled up to the size of N = 21 nodes.  

Next node 0 recalculates L0 as M / (2 A0) and α0 accordingly. The reason is that that the reduce phase 
if started for N = 2, i.e. for the cloud of these nodes only, would lead to M / 2 attempts per node at 
max. As it will appear node 1 will have the same load. Node 0 splits again if it overflows, i.e., α > 1 
still. Otherwise, it starts Reduce phase. To split, node 0 creates new node and labels it node 2. This in 
fact the result of the new (logical) node address computation as 0 + 2j = 2. Finally, node 0 
performs j := j + 1 and sends (B’, j, a0) to node 2. Node 2 stores j as its own initial level. Hence, both 
nodes end up at level 2.       

Node 1 acts similarly, starting with the prediction of its A1 hence α1. The node created, iff α > 1, is 
however node 3, as 3 = 1 + 2j, with j used being j = 1, i.e., that set upon node 1 creation. After the 
creation node 3 ends up at level 2 as well. If both, node 0 and 1 split, the cloud has now 22  

From now on, every node i that did not entered the Reduce phase, recursively loops over the 
overflow testing and splitting. The general rule they act upon, compatible with the above detailed 
processing at node 0 and 1, is in fact as follows.  

1. Every node n ; n = 0,1… after its creation or last split, calculates its L as Ln = M / (2j An) and 
tests whether αn > 1. For this purpose, a newly created node n, starts with the prediction of 
An. If there is no overflow, the node goes to Reduce phase. 

2. Node splits. It creates node n’ = n + 2j, sets j to j + 1 and sends (B’, j, a0) to node n’.         

In this way, for instance, as long as node 0 overflows, it continues to split, creating successively the 
nodes 2j  with j starting at j = 0, i.e., nodes n = 1, 2, 4, 8… Node 1 will start with j = 1 and append 
nodes 1+2j that are n = 3, 5, 9, 17…  Likewise node starts with j = 2 and creates nodes n = 2 + 2j  = 6, 
10… In general, every split appends one new node to the cloud. Each new node gets a unique logical 
address as one can easily figure out. Iff all the splitting nodes end up with the same j, these addresses 
form a contiguous space 0, 1…N-1 where N = 2j. This happens, if they have the same A. Finally, 
observe that every split halves L, hence α, of the splitting node n. The new node n’ starts with the 
same L. But not necessarily with the same α, as A may differ among the nodes.    
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Because of the termination protocol, every node during this phase may also get interrupted at any 
time by a message requesting to go to the termination phase at once.   

2.2.4.3.  Reduce Phase 

In this step every node n matches t and h (s) for every s ∈ [0, N-1] and such that n = s mod 2j. Thus, 
for j = 2 for instance, node 0, loops somehow over s =0, 4, 8… Likewise, node 2 for j = 1 loops over 
2,6,10…. If node 1 did not split even once then, hence it carries j = 1 and thus loops over the 
remaining values of [0, M[ which are 1,3,5,7…  If the match succeeds at any node n > 0, i.e., t = h (s) 
for some s, then node n > 0 sends s as s0 to node 0 and exits the step. Otherwise it must succeed at 
node 0. Node 0 sends s0 finally to E. If no match succeeds, a node only exits the step. 

Because of the termination protocol, every node during the above calculus may also get interrupted 
at any time by a message requesting to go to the termination phase at once.   

Observe that every value in [0, M-1] is mapped for matching attempt to one and only one node. 
Normally, i.e., without any failures, the step must thus end up in a positive match at some node, as 
we already hinted in fact. For each value, there is also always only one match attempt, at most. This 
efficiency is clearly due to the conjunction of the Map and Reduce steps algorithmic.   

2.2.4.4. Termination Phase 

Basically, this step frees all cloud nodes used. It serves also to save computation power spent for 
nothing usually otherwise. This would be the case of every node among N other than the lucky one.  
For both purposes, node 0 broadcasts the termination message to all nodes it has created. Each of 
these nodes does the same.  Obviously, every cloud node will get the message, regardless of cloud 
growth. Each node acts accordingly, regardless of the phase it was. 

Optionally, as for the static scheme, this step may also include protection against the failure of 
receiving the successful match message by (unlucky then itself) node 0 from some node within some 
expected time. It lets indeed node 0 to localize any node that could not receive the map message or 
the successful match message from that node got lost on its way to node 0, or which would be the 
lucky one, but failed during the computation.  We leave details for the future analysis, as for the 
static scheme.  

Example 6. We continue with the data of Example 4. We have thus α0 = 242-29 = 213, initially. Node 0 
splits therefore 13 times till α0 = 1. The splits append successively nodes 1, 2, 4…4096. Then node 0 
enters the Reduce phase. It attempts the matches for noise shares 0, 8192…242 - 213. Likewise, node 1 
has α = 212 initially. It splits consequently 12 times, appending nodes 3, 5…4097.  It then also enters 
the Reduce phase. It attempts the matches for the values 1, 8193…242 – 213 +1. And so on, for node 2, 
3…4095. The latter node has α = 2 initially, hence it splits only once. As the result, we get N = 213. This 
is the optimal (size) cloud here, with every α = 1. N is as small as it could be for the static scheme.  
Notice that such α happens for the scalable one, any time we have α0 = 2i and all T’s equal. 

Consider now the same initial data for node 0. It would split therefore as above. Suppose in contrast 
for node 1 that T1 = 8T0, e.g., it is an 8-core node, compared to 1-core. The capacity B of the node 
increases then eight fold as well. Then, we have initially α1 = 29 only. Node 1 would split therefore 
only nine times, generating nodes 3, 5…513. Nodes 1025, 2049 and 4097 would not exist. The cloud 
would have at least three nodes less. It would be smaller than that generated by the static scheme. 
Reduce phase at node 1 would process shares 1, 1025, 2049, 3073, 4097… 
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Finally, consider that in turn, node 0 happens to be eight times faster than node 1. The splits of the 
latter would generate three additional nodes. The static scheme would simply fail with respect to the 
goal.   

2.2.5.  Discussion 

As for the static scheme, it is rather easy to see that one is correct and safe in the discussed senses. 
All this for the reasons already discussed and because of the details that follow.  

First, it is easy to see that the scheme always realizes the hash partitioning. It does it regardless of 
the number of splits, triggered indirectly, through α values, by T heterogeneity.  It should typically 
allocate more nodes than the N optimal for the static scheme, say NS = M / T.  The randomness of D 
hence of M choice provides that of M mod R, for any N and any n = 0,1,…N-1. Hence, any αn ∈ ]0.5, 1] 
is equally likely.  This yields α on the average α = 75 % at best6. Instead of fixed α = 100 % for the 
static scheme. The average difference is thus about 1/3N more nodes. The worst case α is almost 
50 % at every node. If this corresponds also to the same T at every node,  the scalable scheme 
generates than a cloud twice as large. Lower load factor leads in turn to faster match at the average. 
It is clear that it is under R/2. More precise determination of α and N in various conditions remains a 
future goal.  

If however for some node n, Tn is under T0, then node n will split more times than for the static 
scheme, increasing N accordingly. The average timing is perhaps affected, not the worst case 
obviously. The static scheme in this case would simply fail with respect to the R respect, i.e., would 
be incorrect. In contrast, if for some n, Tn >T0, enough to create αn ≤ 1, then the scalable scheme may 
end up with even smaller N than for the static one. The latter could indeed comparatively uselessly 
split the calculus at that node, under its assumption of Tn = T0. Clearly the scalable scheme is more 
versatile. The experiments on actual clouds are probably the only way to evaluate both schemes 
more accurately. The static scheme should be quite easy to try out on a Hadoop implementation. The 
scalable partitioning is however beyond the current capabilities of these implementations to our best 
knowledge. Hence, it seems to require a dedicated tool.    

The scalable scheme is correct with respect to R if no Tn slows down during the calculation. 
Otherwise, the lucky node may get αn > 1 for time long enough to finally miss R. The scheme has the 
potential to be amended for such situations so that every node monitors T once the match attempts 
started, while α ≤ 1. If it finds T decreasing enough to make α > 1, then it splits. This capability may 
be quite attractive. There is no such possibility for a static scheme, obviously.  

Finally, choosing a scalable scheme on a public cloud may still be advantageous despite perhaps the 
cloud even twice as wide. The reason may be the pricing structure. On CloudLayer for instance,  
[C12], it should be in practice necessary to choose the so-called private option for a static 
partitioning, making the allocation of a node exclusive. This is the precondition for the homogeneous 
throughput, crucial for the static partitioning.  The usual allocation mode termed public may lead to 
heterogeneity. Several virtual machines may share a node then.  However, the public mode is three 
times cheaper than the private one.  Choosing a public option with scalable partitioning may then 
anyhow save somewhere between 1/3 and 2/3 of the bill.   

                                                           
6 Open question at present: why not ln2 = 0.69, known for dynamic files generated also by half to half splits? 
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3. Multiple Noising 

This variant that we only sketch here, noises share s0 with F > 1 noises. The rationale is that higher F 
makes the 1-node average recovery time closer to D.  By the same token, it becomes less likely that 
the recovery happens in a small fraction of D. Likewise become the chances of the success using a 
cloud several times smaller than that generated for sure recovery within R limit. Otherwise, a user 
could perhaps consider the figures likely enough to encourage illegitimate attempts. 

The multiple noising, we also call now F-noising, generalized the use of a single noised share above. 
In essence, the owner creates now F noised shares. Every noised share is an actual share of an (F+1)-
share secret hiding the secret key, say S as before. The owner defines these shares in a specific way 
we show below, using for each a random noise in I = [0, M[. The owner produces also as usual share 
SF and the F hints. All this enters the backup. The recovery makes at most M match attempts that 
suffice to discover all the noised shares. Each attempt compares the hash of a noise share to all the 
hints. Once all the noised shares discovered, the escrow produces S from SF as usual.  

Formally, the owner starts by choosing M and one random share, say s0, e.g., 256b-wide for AES. 
S/he also defines random noises m0…mF-1 within I. Next, the owner calculates f = s0 – m0 ; si = f + mi 
for i = 1…F-1 ; sF = S XOR s0 XOR...XOR sF-1 ; and hi = H (si) for i = 0…F-1. Finally, the owner forms the 
backup as S’F = (f, M, SF, h0…hF-1). The recovery proceeds basically as before, providing every cloud 
node with M and all the hints, while SF remains at the escrow. The matches attempt possibly every 
value within I’ = [f, f + M[. Each attempt matches the hash with every hint. The node sends back the 
successful matches. The final step recovers S as S = SF XOR s0 XOR…XOR sF-1.   

The algorithm is correct. All the noises are within I, hence all noise shares are within [f, f + M[. The 
partitioning, assuming cloud use, maps every noised share to some node. Assuming no node failures, 
the match attempts must find each noised share, as if it was the one used for the basic schemes.    
The algorithm is also safe. All F noises are random, hence are the F noised shares. Also, by virtue of 
secret-sharing, one can determine sF only after the collection of all F noises. No si can be computed 
through H-1 and no one can determine any si faster than above by an inverted file or some pre-
computation, more generally.    

The result of F > 1 comparisons per match attempt per m is that the probability pF (Z) of positive 
matches for all the F noised shares within fraction Z of M is p1(Z)F. The average 1-node recovery time, 
say Da increases from 0.5D to DF/ (F +1). Similar figure holds for R for the static partitioning. As long 
as the time for F comparisons is negligible with respect to the noise share hash time, the cloud size, 
say NF, should be the same as for the single noise, i.e., NF = N1 ≅ D /R.  Otherwise, the throughput 
decreases so initial α increases and NF > N1 nodes. The formal study of NF is left for future work. For 
the scalable partitioning, if αa is the average load factor, αa ≅ 0.75 we recall, one has now Ra = αaDF/ 
(F +1).   

For, e.g., six noises, Ra may reach therefore Ra = (6/7) R = 0.85, increasing thus by 35 % of R over the 
basic one. Chances to recover the secret too fast to the owner’s taste decrease accordingly. An 
owner for whom 1 in 10 chances to recover in 0.1D for F = 1, seems an invitation to gamble, may be 
happier. Indeed, a cloud ten times smaller than the one normally generated for given R could then 
still bring the luck for a single noised share with the same probability. The counterpart of higher Da is 
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that the average cloud bill hikes with F, even for NF = N1.  Closing on the worst case, i.e., the duration 
reaches R. 

More generally, multiple noising brings to the arena the familiar concept of assurance. One can 
define this one for our purpose as the probability A (Z) that 1-node recovery lasts at least the time 
Z D. We have A (Z) = 1 - p1(Z)F. Thus, e.g., the popular 90 % assurance, corresponds to F = 7 for 
Z = 70%, to F =11 for Z = 80 %, but already to F = 22 for Z = 90 % as well. The likelihood that a smaller 
cloud, e.g., even only two times smaller, may still bring the luck becomes insignificant, e.g., under 1 % 
already for F = 7. One can think in consequence about the concept of resilience to a smaller cloud, 
e.g., over 99% for our figures here. We leave all these aspects of RENS schemes for future studies. This 
is also the case of the overhead the F values imply on the cloud size.    

4. Related work 

The RE idea appeared apparently in [JLS10].  It was applied to the client-side encrypted data 
outsourcing to a cloud. The outsourced data formed an LH*RE file. As its name suggests it is an LH* 
based scalable distributed data structure (SDDS) [LNS96], [A+11]. The private data for LH*RE, was the 
client’s encryption key. The backup encrypted the key as the secret whose shares were randomly 
distributed among the LH*RE encrypted data records. The whole file was supposed spread over many 
cloud nodes. To recover the key, one needed to collect all the shares. A duly authorized cloud client 
could do it through the LH*RE scan operation, a Map/Reduce action in the current terminology. The 
brute-force cloud intruder in contrast had to break into the nodes. The intrusion had to typically read 
almost all nodes of the file. Break-ins that wide appeared excessively difficult in practice. With 
respect to RENS schemes, the first difference was the necessity of a multi-node cloud for the backup 
storage. A larger cloud was more resilient against disclosure. Also, the scheme was designed only for 
the encryption keys of a file structured through an LH* based hash-partitioning. These constraints do 
not exist for RENS schemes. One can see then a safe outsourcing of any SDDS file together with its 
RENS key. This could be of interest to many applications.   

The scheme termed CSCP in [JLS11] also provides the client-side encrypted cloud outsourcing. Unlike 
for LH*RE, CSCP keys are however shared among authorized clients. CSCP uses a variant of the DH 
protocol for client authentication. A private DH number constitutes the trusted ID and lets the client 
to safely share or backup any key.  Its loss inhibits these capabilities and may lead to key loss. To 
offset the danger, each private ID is basically backed up as is with an Admin. This may frustrate users, 
as we discussed.  The RENS backup appears to nicely blend with CSCP scheme. Same observation 
applies to the popular SharePoint, using DH similarly for group messaging.  Again, such schemes 
seem of interest to many applications 

The RE concept roots also somehow in the classical cryptography concepts of one-way hash with 
trapdoor and of cryptograms or crypto puzzles. Popular search engines and Wikipedia provide 
numerous references discussing these concepts, e.g., [C11] among most recent ones. RE may be seen 
as a one way hash where the cloud constitutes conceptually a distributed scalable trapdoor. Also, 
one may see RE as a scheme for cryptograms (crypto puzzles) that the owner makes complex at will 
through the quantity of noise injected. At the same time, the decryption algorithm makes the 
resolution scalable and distributed also somehow at will. This leads to perhaps other RE schemes 
exploring numerous ideas in these domains. Main ideas in RE opens up also perhaps as a backfire a 
research direction for those domains that does not seem to be initiated as yet.   



15 
 

The risks of key escrow (a.k.a. key archive, key backup, key recovery) we have mentioned are hardly a 
new issue. They were studied for decades, especially intensively in the late nineties, [A+97, DB996, 
W+96].  The wave was triggered by the famous Clipper chip envisioned for storing cryptographic keys 
by government or private agencies. The concept of recoverable encryption in this context was 
somehow implicit in the taxonomy in [DB96], becoming explicit in a revision of that work [DB97]. 
However, our recoverability is basically an optional service. The initial meaning was that it should be 
mandatory, for the law enforcement, [L99].  

That idea was criticized for its inherent dangers, complexity, and overreach. As an alternate, Shamir 
proposed government key escrow using only partial keys. A government agency could recover the 
key by making a brute force attack on the unknown part of the key feasible. Rivest & al proposed in 
turn a non-parallelizable crypto-puzzles, allowing access after a guaranteed minimum amount of 
time only, [RSW96]. On the other hand, it was observed also that key escrow for the benefit of 
someone else may need to verify that the escrowed key is indeed the true key [BG97]. This does not 
apply to our case however, since there is no adversarial relation between the beneficiary of key 
recovery and the creator or owner of the data. Finally, Blaze proposed a yet different approach, 
through the massive secret sharing scheme distributing shares of escrowed keys to many (key) share-
holders [B96].  None of these techniques was scalable or was ever intended to be.  

With respect to illegal recovery attempts, it is also in principle possible to avoid legitimate cloud 
providers all together, by creating a botnet instead. The danger seems however also unlikely. There is 
now a proliferation of anti-botnet tools. Almost every computer has a high quality antivirus 
protection for peanuts. More and more users exercise caution on Internet. Finally, using botnets is 
now recognized as an undoubtful cybercrime, leading increasingly likely into jail.    

5. Conclusion 

Encryption key safety is the Achilles’ heel of modern cryptography. To reduce the danger of key or of 
any related private data loss, backups are necessary. Copies increase however in turn the disclosure 
risk. Recoverable encryption alleviates the dilemma through the emerging cloud technology. We 
believe the concept of interest to many applications. 

Future work should analyze RENS schemes more in depth. Experiments on public and private clouds 
are a necessity. They will contribute to assess the practical interest of both schemes. Next, one 
should address the enhancements we have sketched. Especially those coping with failures as well as 
those adapting the distribution to the throughput changes during Reduce phase.     
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