
Permutation Development Data Layout (PDDL)

Thomas J.E. Schwarz, S.J.
Jesuit School of Theology

1756 LeRoy Avenue
Berkeley, CA 94709

schwarz@scudc.scu.edu

Jesse Steinberg Walter A. Burkhard
Gemini Storage Systems Laboratory

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0114
�jsteinbe, burkhard�@cs.ucsd.edu

Appeared inProc. of the ACM/IEEE High Performance Computing Architecture Conference (HPCA’99), Orlando,
Florida, January, 1999.

Abstract

Declustered data organizations in disk arrays (RAIDs)
achieve less-intrusive reconstruction of data after a disk
failure. We present PDDL, a new data layout for declus-
tered disk arrays. PDDL layouts exist for a large variety
of disk array configurations with a distributed spare disk.
PDDL declustered disk arrays have excellent run-time per-
formance under light and heavy workloads. PDDL maxi-
mizes access parallelism in the most critical circumstances,
namely during reconstruction of data on the spare disk.
PDDL occurs minimum address translation overhead com-
pared to all other proposed declustering layouts.

1 Introduction

Many applications require high availability and throughput
from cost effective storage subsystems. Disk arrays offer
higher throughput compared to a single disk since a single,
large access is serviced by a number of disks. They store in-
formation redundantly so that a single or even multiple disk
failure does not leave data inaccessible. By adding a (vir-
tual) spare disk to the ensemble, we increase data availabil-
ity even more [8]. We propose a noveldata layout, Permu-
tation Development Data Layout (PDDL), which distributes
client data, redundant data and spare blocks throughout the
disk array [12]. The layout is implemented without large ta-
bles or involved calculations. In addition, its performance is
either the best or similar to that of the best of other proposed
layouts. In contrast to other layouts, it explicitly provides a
virtual spare disk.

2 Disk Array Declustering

Disks arrays store data redundantly. We group a fixed num-
ber of consecutive disk blocks into astripe unit. A stripe
(a.k.a. reliability stripe, reliability group, parity group, or

cluster) contains a fixed number of stripe units; in a stripe,
all stripe units but one store client data. The remaining
stripe unit, theparity unit, stores the bit-wise parity of the
other stripe units. If we cannot access a stripe unit in a
stripe, then we access all the others in the stripe and re-
calculate the data on the inaccessible stripe unit. For this
reason, we position the stripe units of a stripe on different
disks. In a RAID Level 5 [11], a stripe contains stripe units
on all the disks. If a disk fails, all the other disks must pro-
cess additional accesses for every read from the failed disk.
The surviving disks then carry not only their own load, but
also the read load of the failed disk.

In a declustered disk array [1, 2, 6, 7, 10], the number
of stripe units per stripe is smaller than the total number
of disks. Any usable data layout (the assignment of stripe
units to stripes) fulfills a number of fairly natural criteria:
(1) Each stripe contains the same numberk of stripe units.
(2) Each disk contains the same numberb of stripe units.
(3) Single Failure Correction: No two stripe units in a stripe
reside on the same disk; otherwise, a single disk failure can
cause data loss. (4) Even Reconstruction Load: For any two
disks, the number of stripes� with stripe units on these two
disks is independent of the two disks chosen; the workload
increase after a disk failure is proportional to� and evenly
distributed accordingly. Properties (1) to (4) characterize a
balanced block design [5]. We need to impose certain other
conditions in order to use balanced block designs for disk
array layouts: First, all writes to a single stripe unit also
update the parity unit. In order to distribute the write load
evenly we demand, that (5) all disks carry the same number
of parity units. We frequently insert a virtual spare disk
(distributed sparing, [8]) into the disk array. We accomplish
this by reserving a set of stripe units, calledspare units,
which will be only used after a disk failure. After a failure,
we reconstruct the stripe units including the parity units of
the failed disk and place them in this spare space. If no disk
has failed, then the spare space on a disk is never accessed,
so that the utilization of the disk decreases correspondingly.

1



disk �

Spare

disk �

Data

disk �

Data

disk �

Parity

disk �

Data

disk �

Data

disk �

Parity

Figure 1. PDDL: Two Virtual RAID Level 4 Stripes with One Virtual Spare Disk

We demand that this decrease be distributed uniformly or,
equivalently, that (6) each disk contains the same number
of spare units.

Run-time among different data layouts varies consider-
ably. Since disk arrays derive their performance benefits
from the increased throughput, an obvious design goal is
to maximize read and write throughput. However, not only
are read and write operations different since writes need to
update parity, but also the operation conditions of the disk
array differ depending on whether we work in the fault free
mode, whether we have to reconstruct data and place it in
the spare space just after a disk failure, or whether we use
spare space after the blocks on a failed disk have been re-
covered.

The data layout mediates between the file system view
of storage, typically a very large virtual disk organized as a
linear address space of stripe units, and the actual placement
of these stripe units on the various disks in the disk array.

PDDL uses almost no storage or calculation to determine
its mapping. Recent declustering schemes PRIME of Al-
varez, Burkhard, Stockmeyer and Cristian [2] and DATUM

of Alvarez, Burkhard, and Cristian [1] also use straight-
forward, efficient calculation to map stripe units to disks
thereby avoiding table lookup. Previous schemes include
Parity Declustering of Holland and Gibson [6] which uses
table lookup to specify balanced incomplete block design
together with parity rotation. TheRandom Permutation
scheme of Merchant and Yu [9] uses pseudo-random per-
mutations for data layout.

3 PDDL Data Layout

The PDDL approach assumes there aren disks logically
partitioned intog virtual RAID Level 4 stripes each con-
tainingk stripe units. Figure 1 present the configuration for
n � � disks withg � � RAID Level 4 stripes, each consist-
ing of k � � disks. Each stripe consists of dedicated data
disks and a dedicated parity disk. We assume that stripe
units are accessed via disk logical block addresses (LBA).
PDDL numbers the virtual disks of the virtual RAID from�
ton� �� To address a virtual stripe unit , we need to have a
virtual disk numberdv and a virtual LBAbv� Since we have
n physical disks, we number them similarly. We address a
physical stripe unit in the same fashion by a physical disk
numberdv and a LBAbv� PDDL provides a one-to-one cor-

respondence between physical and virtual stripe units. This
mapping fulfills our seven design goals for a data layout.

The PDDL mapping does not change the LBA. Thus, a
physical and a virtual stripe unit address under PDDL have
only different physical and virtual disk numbers. PDDL
uses abase permutation as an initial mapping for disk ad-
dresses with LBA 0. For all other LBAs, PDDL adds the
LBA to the disk address obtained from the base permuta-
tion as shown in Figure 2. This code implements the PDDL
mapping for the disk array of Figure 1; the mapping is typ-
ical and exemplifies the run-time efficiency possible. The
mapping is cyclic and repeats aftern LBAs.

int permutation� � � � �� �� �� �� 	� 
� � � 


int virtual�physical� int disk � int stripeUnit �

�

return � � permutation�disk� � stripeUnit � � � � 


�

Figure 2. PDDL Address Translation

Suppose we need to access stripe unit�� of the virtual
spare disk�. We would calculate�� � ���	� � � and
access stripe unit�� on disk�� Suppose we must write to
stripe unit�� on disk
 of the virtual RAID. A disk array
write also updates the parity unit, which is located in our
case on disk� of the virtual RAID. We first apply the base
permutation to the disk numbers
 and� and obtain� and
� respectively. We calculate then�� � ���	� � � and
�� � ���	� = 
� Thus, we access the data of stripe unit
�� of disk� and the parity unit�� on disk
�

For each virtual LBA there is exactly one spare unit. Ac-
cordingly, every disk has the same number of spare units —
��nth of its stripe units. Similarly, there will be the same
number of parity units on each disk. This gives us criteria
(1), (2), (3), (5), and (6).

Criteria (4) is not true for every base permutation, and
finding suitable base permutations is the challenge to utilize
the PDDL approach. Sometimes, the best we can do is to
use two (or more) base permutations, where the data layout
is generated by rotating through the base permutations [12].
In all cases, the PDDL address translation calculation is ef-
ficient and the storage requirements minimal.



Number Stripe Width
of Stripes 5 6 7 8 9 10

1 1 1 1 1 1 1
2 1 1 2 1 1 ?
3 1 1 1’ 2 2 1
4 1 1 1 1’ 1 1
5 1 1 1’ 1 3 2
6 1 1 1 3 6 1
7 1 1 2 5 ? 1
8 1 2 4 ? 1 ?
9 2 2 5 1 ? ?
10 1 1 1 ? ? 1

Table 1. PDDL data layouts; an apostrophe
denotes a solution for a non-prime number of
disks obtained or compiled by Furino [5]

4 Existence of PDDL Base Permutations

The PDDL data layouts implement near resolvable incom-
plete block designs [5]. The way we generate layouts is
known as “permutation development.” Bose [3] in 1939
gave a general method to create base permutations when
n is a prime number. Forn composite, the literature [5]
contains some base permutations. We have extended this
search to include configurations composed of a small num-
ber of base permutations. Our results are summarized in
Table 1. Each row is for a particularg and every column
for a particulark; the entry designates the number of base
permutations generating a PDDL data layout. The question
mark entries indicate that we do not have a suitable set of
base permutations for this configuration.

If the number of disksn is not a prime number but a
prime power, then we can created PDDL layouts using cal-
culations within finite fields. This is very attractive for pow-
ers of 2 (e.g. for 32 or 64 disks) since we can implement
the virtual to physical address translation using only a few
XOR and shift operations. Indeed, we believe this is among
the fastest address translation schemes possible, if not the
fastest. For other prime powers, the resulting implementa-
tion is more complicated, but still very fast.

5 Extensions of PDDL

PDDL has the drawback that the number of disksn and the
stripe widthk have to satisfyn � � �mod k�� We can
combine DATUM with PDDL to extend the PDDL’s useful
domain in a technique referred to as DATUM wrapping. As-
sume thatn is slightly larger thann� � gk � �� We then
use the DATUM data layout withn disks and stripe width
n�� Sincen� andn are very close, the DATUM mapping is

very efficient and remains very small even for largen� We
number the DATUM stripes units and treat these numbers as
virtual disk numbers in a virtual array withn� disks. We
then arrange data according to PDDL within this virtual ar-
ray. In effect, the physical disks are the physical disks of
the DATUM layout, the stripes units within DATUM replace
the physical disks of PDDL, and the virtual disks of PDDL
are the interface abstraction.

We assumed tacitly that there is only onecheck (parity)
disk in PDDL. However, for high reliability environments,
this does not provide sufficient redundancy. PDDL as
well as DATUM, PRIME, Parity Declustering, and Pseudo-
Random layouts can be extended to include the extra redun-
dant data.

6 Performance Evaluation

We have tested PDDL as well as DATUM, PRIME, Parity
Declustering and RAID Level 5. We used RAIDframe [4]
simulating a small disk array with 13 HP 2247 (1.03GB)
disks; PDDL can be used for large ensembles of disks as we
see in Table 1 but DATUM becomes less efficient for larger
ensembles. The other schemes accommodate large ensem-
bles. We tested the data layouts with synthetic workloads
consisting of random accesses to a fixed number of con-
tiguous disk blocks. PDDL’s response times were at least
comparable and often better than all others except DATUM

operating at very heavy workloads.
As a result of our experiments, we believe that the intu-

itively attractive goal of maximum parallelism (one of the
design goals for a good declustering scheme in [6]) needs
to be modified. While a single large data access benefits
from being serviced by as many disks as possible under
light workloads, as the workload increases the completion
of a single job can be actually faster if it is partitioned over
fewer disks. This phenomena has been mentioned recently
by Triantifillou and Faloutsos [13]. We introduce the notion
of the footprint, or, disk working-set, the number of disks
accessed by accessing a contiguous set of stripe units in the
disk array. The size of the footprint should increase only
gradually as the number of contiguous stripe units within
the query increases.

7 Comparisons

Distributed sparing dramatically increases reliability and
performance [8]. Any of the previous schemes can be mod-
ified to include distributed sparing. However, only PDDL
distributes the spare space over alln disks of the ensem-
ble thereby incurring the smallest loss of client data space
penalty. The other declustering schemes require modifica-
tion; the most obvious approaches require roughlyg times



as much spare space. PDDL uses almost no extra space
within its mapping implementation. As Table 1 shows,
PDDL schemes exist for a wide variety of disk array param-
eters. Using DATUM wrapping, we can find PDDL schemes
for most commercially interesting dimensions, namely with
stripe widthk up to 10 and number of disksn up to about
60.

8 Conclusion

PDDL is a new disk array declustering data layout. PDDL
layouts exists for a large number of commercially interest-
ing disk array configurations. PDDL uses very little storage
and shows minute overhead as it calculates the data lay-
out. The run-time performance of PDDL is very compet-
itive with all other good declustering schemes except for
very heavy workloads when DATUM is the clear winner.
However, we note that DATUM is most efficient when used
with small ensembles. For situations were light to moderate
workloads are expected for small to large disk ensembles,
PDDL presents an excellent declustering choice.

References

[1] G.A. Alvarez, W.A. Burkhard, F. Cristian: “Tolerating
Multiple Failures in RAID Architectures with Opti-
mal Storage and Uniform Declustering”,Proceedings
of the 24th Annual ACM/IEEE International Sympo-
sium on Computer Architecture, pp. 62-72, 1997.

[2] G.A. Alvarez, W.A. Burkhard, L.J. Stockmeyer, F.
Cristian: “Declustered Disk Array Architectures with
Optimal and Near-Optimal Parallelism”,Proceedings
of the 25th Annual ACM/IEEE International Sympo-
sium on Computer Architecture, pp. 109-120, 1998.

[3] R.E. Bose: “On the Construction of Balanced Incom-
plete Block Designs”,Annals of Eugenics, vol. 9, pp.
353-399, 1939.

[4] W. Courtright, G. Gibson, M. Holland, J. Zelenka: “A
Structured Approach to Redundant Disk Array Imple-
mentation”,Proceedings of the International Sympo-
sium on Performance and Dependability, pp. 11-20,
1996.

[5] S. Furino, Y. Miao, J. Yin:Frames and Resolvable
Designs: Uses, Constructions, and Existence, CRC
Press, Boca Raton, 1996.

[6] M. Holland, G.A. Gibson: “Parity Declustering for
Continuous Operation in Redundant Disk Arrays”,
Proceedings, ASPLOS-V, pp. 23-35, Sept. 1992.

[7] M. Holland, G.A. Gibson, D.P. Sieworuk: “Architec-
tures and Algorithms for On-Line Failure Recovery in
Redundant Disk Arrays”,Journal of Parallel and Dis-
tributed Databases, 2, 1994.

[8] J. Menon, D. Mattson: “Distributed Sparing in Disk
Arrays”, Proceedings of the COMPCON Conference
1992, San Francisco, pp. 410-416, 1992.

[9] A. Merchant, P.S. Yu: “Analytic Modelling of Clus-
tered RAID with Mapping Based on Nearly Random
Permutation”,IEEE Transactions on Computers, vol.
45, no. 3, March 1996.

[10] R. Muntz, J. Lui: “Performance Analysis of Disk Ar-
rays under Failure”,Proceedings of the Conference on
Very Large Data Bases, pp. 162-173, 1990.

[11] D.A. Patterson, G.A. Gibson, R.H. Katz: “A Case
for Redundant Arrays of Inexpensive Disks (RAID)”,
Proceedings, ACM SIGMOD Conference, pp. 109-
116, July 1988.

[12] T.J.E. Schwarz, W.A. Burkhard, J. Steinberg: “Per-
mutation Development Data Layout (PDDL) Disk Ar-
ray Declustering,”UCSD technical report CS98-584,
April 1998.www.ucsd.edu/˜groups/gemini

[13] P. Triantafillou, C. Faloutsos: “Overlay Strip-
ing and Optimal Parallel I/O in Modern Applica-
tions,” http://www.ced.tuc.gr/Research/
Reports/HERMES/Reports/htm, #TR8. 1997.


