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Abstract—Passwords form the Achilles heel of most uses of
modern cryptography. Key recovery is necessary to provide
continuous access to documents and other electronic assets in
spite of possible loss of a password. Key escrow services provide
key recovery for the owner, but need to be trusted. Additionally,
a user might want to divulge passwords in case of his/her death
or incapacitation, but not before.

We present here a scheme that uses dispersion to provide
trusted escrow services. Our scheme uses secret sharing to
disperse password recovery information over several escrow
services that authenticate based on a weak password. To protect
against dictionary attacks, each authentication attempt takes
a noticeable, but tolerable time (e.g. minutes). We achieve
this by having the share of the secret be the solution of a
puzzle that is solved by brute force in time depending on the
number of processors employed. This additionally prevents
escrow agencies from optimizing their part in recovering a
password by pre-computing and storing their share in a more
accessible and hence vulnerable format.

Keywords-Password Escrow, Password Recovery, Dispersion,
Cloud

I. INTRODUCTION

Cryptography solves many security problems, but key
management remains a difficult problem. To prevent loss
of a crucial key, a user can entrust the key to an escrow
agency, but if she does so, then she has to trust the escrow
service. The escrow service needs to prevent accidental
and malicious disclosure by insiders and outsiders, but
additionally convince the user that the measures taken are
of sufficient strength.

We present here a scheme that allows a user to recover
her passwords from a set of escrow services without having
to trust any one of them. She stores her passwords in a
password file, protected with a strong key. The key is backed
up “in the cloud” at several services and protected with a
weak, but easy to be remembered master password. We use
a standard secret sharing scheme to divide the key among
the services. For recovery, the user sends her weak password
to all the servers who after a while respond with their share
of the strong password. The user regains her key from these
shares. Our contribution lies in the imposition of guaranteed
work for the recovery of a share that prevents dictionary
attacks by an adversary. Using a weak password allows the

user to distribute hints allowing her friends and family to
guess the weak password and recover her password file key.

Our scheme functions even if a proportion is not opera-
tional and even if a smaller portion returns false information.
Additionally, no site can tell if the user has authenticated
successfully. The nature of the scheme prevents a participant
escrow service from ”pre-computing” its share of the private
key and thus exposing it to additional attacks. The heavy use
of computational resources needed for regenerating the share
leaves an auditable trace.

The use of a weak password to protect a strong password
presents an unusual trade-off between usability and security,
where security is weakened by design. While there are
certain passwords that should never be subjected to such
a scheme (some types of bank accounts come to mind), the
vast majority of my passwords at least should be accessible
to friends and colleagues in case of temporary disability or
death. In a certain sense, the mandatory key escrow once
discussed in the USA, presents a similar trade-off, where
security was to be absolute to protect against private adver-
saries, but not against law enforcement agencies provided
with a warrant.

II. RELATED WORK

Key escrow mandated by government was a hotly con-
tested issue in the nineties in the United States and much
work has been devoted to define the legal, ethical, and
technical issues and to design, prototype, and standardize
key recovery mechanisms, as the work by Bellare and
Goldwasser [2], the work on the Clipper proposal by US
government [16], the proposal by Verheul and van Tilborg
[27], and the risk evaluation by Abelson and colleagues [1]
on the technical side, and the ethical and legal assessments
by Denning and Baugh [7] and Singhal [25] among many
others show.

Our goal here is quite different from that of mandatory
escrow system, which has to treat the user as a potential
adversary who might not want to put his key in escrow. In
mandatory systems, the agency can only – if ever – read the
conversation after it has happened. When accepting a key or
observing a conversation, the agency has to decide whether
she will be able to read the conversation sometimes in the
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future, when it might be legal to do so. Super-encryption, in
which the conversation is encrypted twice, once with a key
kept from the escrow authority and then with a key given to
her, thwarts simple schemes.

In common is the user’s desire to control when the escrow
agency can commence recovering a key. We want to prevent
early recovery in favor of delayed recovery [2]. This goal
is similar to Rivest’s and Shamir’s timed release crypto
[23], where a certain amount of computation needs to be
performed to obtain a secret.

The advent of cloud services has put distributed com-
puting at the fingertips of average users and web services
allow easy interaction as intermediaries between users and
cloud services. This development allows us to use highly
distributed applications in order to protect user data from
disclosure and alteration. The keys can be stored within
the distributed system [14], [24] or can be protected within
the system acting as an escrow system, as was done in
our previous work [12], [13]. We pursue the same line of
research here, but replace user authentication to sites with a
weak password as credential.

Our scheme uses secret sharing to let the user distribute
key information to various services. Any such solution needs
to survive accidental unavailabilities and some malicious
activities at the services [9]. Verifiable Secret Sharing (VSS)
guarantees (P1) that a significant fraction of the shares are
needed to recover the secret, but that (P2) the recovery is
still possible if a significant fracion of the shares is corrupted
[10]. In our context, we do not need a third property of VSS,
namely (P3) that the recipients of the shares can check that
the sharing has been performed correctly. The VSS protocol
by Chor, Goldwasser, Micali, and Averbuch [6] and its many
successors, see [18], [21], have to spend considerable effort
on implementing it. To prevent cheaters from sabotaging
the reconstruction of the secret by presenting false shares,
one can simply have the distributor sign the secret [11]. In
our case, the user would have to be able to access the data
necessary to confirm her own signature, (e.g. her own public
key), so that this solution is not easy. However, Tompa and
Woll [26] were the first one to achieve (P1) and (P2) in the
case of Shamir’s secret sharing algorithm with only a small
probability of success by a band of cheaters. The problem
has received a large amount of atention, and solutions have
been extended to general threshold schemes, such as the
work by Ogata, Kurosawa, and Stinson [19] and Obana [18]
among many others.

We present our solution in terms of a linear erasure cor-
recting code using with a standard ramp scheme, following
in the footsteps of McEliece and Sarwate [17]. The reasons
for our choice of presentation are solely the simplicity and
robustness of linear codes and the lack of absolute security
in our proposal. A more involved scheme depends on much
better preparation to allow its use for many years in the
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Figure 1: Password Retrieval System Overview

future. Imagine only an implementation that needs to use
Python 1.4 in about ten years.

As we distribute a private key into shares, we need to
worry about the impact of revealing bits of the keys, as is
shown in the work of Blömer, Ernst, May and colleagues
[4], [8] among many others. Our solution involves using a
good, but standard random number generator in order to re-
generate the public-private key pair from the secret obtained
from the servers.

III. TRUST THROUGH DISPERSION

In our scheme, a user uses several web-based services,
each of which has access to on-demand cloud resources.
The services can be generic cloud servers, that execute a
user-owned program, or they can be commercial solutions
that provide services according to our scheme. We assume
that the actual services belong to different administrative
domains and that the user is inclined to trust them.

We first give an overview of our system (Figure 1).
The user maintains a password file that is protected using
asymmetric cryptography. The public key is used to encrypt
the contents and is stored with the file so that the file can
be updated. The file itself can be stored in multiple copies
using web-based storage. Our distributed retrieval system
recovers the private key (needed to read the password file)
using a weak master password. If the user submits the master
password to all web services, then he receives enough shares
in order to reconstruct the private key R and gain the capacity
to retrieve the password file. To protect against rogue sites,
the reconstruction of R uses an error correcting code. Each
obtain a piece of information on R, a large computational
effort is required that necessitates the use of cloud services
and is large enough to generate traces such as billing for
services. It also prevents dictionary attacks on the master
password. While the user does not authenticate herself to
each service, she is informed by correctly functioning sites
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of each retrieval effort, giving her months to counteract any
effort at guessing the master password by an adversary.

A. Retrieval System Operations
A user starts out by creating a public-private key pair

(U,R) using a publicly available random number generator
RG and a seed S. She sets up a file with authentication
information for every important account the user has. To
maintain access to this file, called the password file, the user
stores the public key U and the file in several back-up copies,
distributed to a number of sites (”in the cloud”). To prevent
misuse such as adding to or substituting the password file,
the password file needs to be integrity protected.

The user does not maintain the private key R. Given
RG, the random number generator, and S, she can recreate
the public-private key pair on demand. She stores S in an
indirect, distributed way on various sites “in the cloud”.
The access to S is protected by a master password P.
This password is maintained in a large list of possible
passwords. In contrast to the other passwords, P can be a
weak password, thus as a minimally changed word from a
common-language dictionary.

The user first break the seed needed to generate the private
key R into various components R1, R2, . . . Rn using an error
correcting code that can correct k errors and 2k+1 erasures,
or any corresponding combination of errors and erasures.
For example, the user can use a standard, linear, maximum
distance separable block code with length n and 2k+1 parity
symbols [15]. The seed S needed to obtain the private key
R could be a single data symbol for the code or could be a
recovered as a combination of data symbols. An alternative
uses secret splitting or a ramp scheme, in which the key is
split into n pieces such that k are necessary to reassemble
the code. We can use a threshold scheme with protection
against cheaters, for example by signing the shares with a
different private-public key pair and storing the public key
with the share. A cheating site can of course generate another
private-public key, but a majority of cheating sites need to
collaborate in order to convince the user that the replacement
assymmetric key is the correct one and not the one originally
used.

Each component Ri is stored in indirect form at a site.
Each site runs an application that can respond to an invo-
cation by the user. To set up the site, the user generates a
puzzle, that depends on a user input, and whose solution is a
component Ri if the user input is the master password P. The
solution of the puzzle takes a certain amount of computation
(in expectation). Furthermore, a site should not be able to
decide whether a master password might or might not be
correct. A puzzle that can be completed in an adequate
time (minutes, but neither days nor seconds) can usually
not solve for a complete key component Ri. We therefore
assume a decomposition function f , which need not be hard
to compute or invert. The user uses this function to break

Ri into two components, Ri,1 and Ri,2 where Ri,1 has an
information content of b bites. Thus, Ri = f (Ri,1,Ri,2). One
component, Ri,2, is stored at the site. The other one is the
solution of a puzzle Zi that depends on the master password.
The puzzle always has a solution, whether or not the correct
value of P has been provided.

To retrieve R and thus (re-)gain access to the password
file, the user submits a hash of the master password P at all
sites. Each site uses the master password to recover Ri,1, then
combines it with the (locally available) other component Ri,2
to obtain Ri and send this value to the user. After waiting for
a certain amount of time for the results to come in, the user
uses the error correcting code to reconstruct R. As R is the
private key to the password file, the user now has regained
access to it.

An adversary without access to any site can mount a
dictionary attack on P. The adversary guesses a value P′

and sends it to all sites. The sites will give the adversary
components R′

i, which the adversary can use to calculate a
value R′. Only by trying out R′ on the password file, can the
adversary decide whether he guessed P correctly. Each guess
takes a certain amount of time to verify. If sites do not permit
parallel searches (which is not attractive since they have to
use their alotted time slots to calculate one solution) and if
they send a notification to the user about each attempt, then
this brute force attack is unlikely to succeed. The adversary
has a small window of time before the user knows that
someone tries to steal her credentials. A typical dictionary
attack with at least a minute lag between submitting a guess
for the weak master password would take a week to process
half of a small dictionary.

An adversary who has the information stored at a single
site can at best mount a partial dictionary attack that reveals
values R′

i in dependence of all possible master passwords P′.
There is no sufficient information in order to decide which of
those values are useful. In any case, if the decomposition of
R into components Ri is sufficiently random (see below),
then knowledge of a single value is not sufficient. Only
an adversary who controls information at several sites can
gather enough components R′

i to calculate a corresponding
private key R′, but would still have to verify this by getting
hold on the password file.

B. Puzzle Construction
A puzzle is a problem that depends on the input (in our

case, the hash of P), and that can always be solved using
a certain amount of time. It always returns a result if the
input appears formally correct. Thus, a single execution of
the puzzle does not reveal whether the input is the hash of
the correct password or a fake value. Furthermore, it should
be impossible for a site to preprocess a puzzle, even though
the site might store some information.

Unfortunately, we were not able to think of a class of puz-
zles that fulfills these requirements. Instead, we implement
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them using two sites for each puzzle. Our solution uses the
RSA public key system. The RSA generator takes as input
a pseudo-random number and generates a number N and
two exponents e and d that define functions f : ZN → ZN ,
x #→ xe and f−1 : ZN → ZN , x #→ xd . The exponent e
can be freely chosen, subject only to the condition that
g.c.d.(e,φ(N)) = 1 where φ is Euler’s function. The RSA
generator yields a trapdoor permutation. The data given to
another entity is (N,e) and the trapdoor information is (N,d)
or a decomposition of N as a product of two prime numbers
of approximately the same magnitude, N = p ·q. Following
Bellare and Rogaway [3], we call an inverting algorithm a
t-inverter (for a function t : N → N) if the inverter’s running
time on input of k bits of N is bounded by t(k). An inverting
algorithm I (t,ε)-breaks RSA if for each input size k, the
success probability in inverting within time t(k) is at least ε.
Here, we allow ε to be a function of k, i.e. ε : (N) → [0,1],
k #→ ε(k).

The fastest algorithms for factoring large composite num-
bers belong still to the special Number Field Sieve family
[5], [20], [22] and have a complexity of

exp((C + 3
√

)64/9(k1/3(log(k))2/3

One [3] can therefore conclude that RSA is (t,ε) secure if
(t,ε) satisfy

t(k)/ε(k) ≤C exp(k1/4)

We generate and solve the puzzle in two different sites.
The user sends a hash of his password to the first site, Site
I. Site I stores a number k of bits. The site uses the user-
submitted password hash to generate two prime numbers p
and q of approximately k/2 bits in a deterministic manner,
calculates their product N and sends N to the second site,
site II. Site II has a value v stored and needs to solve the
puzzle

xe ≡ v (mod N)

for the unknown x. Site II can use a distributed factorization
algorithm or it can use a distributed brute force attack guess-
ing directly x. Factorization algorithms have components that
can be easily parallelized [22]. Site II returns the solution
of the puzzle to the user. By construction, the puzzle always
has a solution, whatever the password hash submitted by the
user and hence input N submitted to Site II might be.

To create the data stored at the sites, the user needs first
to decide on a sufficiently large number of bits k for each
of the second sites, taking into account the current level
of factoring algorithms and the feasibility of a brute force
attack. The user then uses a given implementation A to
generate the k-bit number N that is the product of two primes
p and q. The user stores this implementation and her choice
of k at each Site I. The user uses a standard hash function
h, salted with the address of each Site I to generate pairs
(pi,qi) for each site I, calculated from h(i,P). The user then
selects an exponent ei and calculates vi = Ri

ei (mod pi ·qi).

The user sends A and k to each site I. She sends ei and vi
to each corresponding Site II.

A retrieval operation takes a possible password P′, cal-
culates h(i,P′), and sends the result to each of the n
sites I. Each site I generates Ni, based on the previously
stored algorithm A and k, and sends the result – uniquely
determined by P′ – to the corresponding site II. The site II
has stored vi and ei and solves the puzzle xe ≡ v (mod N).
The site returns the result to the user. The user obtains in this
way n solutions R′

1, R′
2, . . ., R′

n. Using the error correcting
code, she calculates R′. This code can survive a combination
of normal and byzantine failures because of its error and
erasure correcting aspect.

IV. VULNERABILITY ANALYSIS

We first assume that all sites behave benignly, by which
we understand the possibility of byzantine failure, but no
direct malicious attempts. In this case, retrieval is successful
if a majority of the sites function correctly because of the
use of the erasure-correcting code.

We next consider the case of an adversary without access
to any sites. We assume that the adversary can break any
potential authentication procedure of the user at each site.
We also assume that an adversary can gain access to a copy
of the password file. Since the password file is stored with
the public key U used to encrypt it, the adversary can update
the file with additional information or can replace the file
with a complete copy. The integrity of the password file
needs to be protected, for example by adding a Message
Authentication Code (MAC). The MAC can use the weak
master password as a key without danger, since the whole
contents of the file, including the MAC, are encrypted.

To obtain the (weak) master password, the adversary can
mount a guessing attack. If the user has instructed all sites
to send her email or twitter alarms whenever the retrieval
function is invoked, then repeated guessing attacks can be
stalled by securing the master file of passwords. If we allow
the user to stop the services, then we expose her to a denial-
of-service attack. If the guessing attack is successful, then
the adversary still only has the private key to read the master
password file.

An adversary with sniffing capability or an insider at a
malicious site can use traffic analysis to recognize repeated
submission of the same password hashes. This information is
sufficient to identify the correct password hash and mount a
dictionary attack, assuming of course that the hash function
is publicly known.

An adversary who has gained access to a Site I can
intercept the a retrieval attempt by the original user and
generate the local value of Ni = pi ·qi. Without knowing the
corresponding value of vi, he cannot use his knowledge. We
also note that a Site I cannot generate Ni without a previous
retrieval attempt.
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Figure 2: Contour graphs for the probability of successful retrieval using a 4 out of 7 (top-left), a 4 out of 10 (top-right), a
4 out of 20, and a 4 out of 40 scheme. The x-axis gives the probability of malicious failure and the y-axis the probability
of simple failure.

An administrator of a Site II only receives a value Ni
if there is a retrieval attempt. Thus, there is no possibility
of preprocessing without generating the factoring of many
different products N′. He will have to generate all possible
prime numbers and store their products to precompute the
solutions of the puzzle.

An adversary with access to a pair of corresponding Sites
I and Sites II can easily retrieve Ri. Unfortunately for the
adversary, he will have to retrieve more than one of these
values and in addition the master password file.

If we use a verifiable secret sharing scheme, the odds for
the adversary are low. In such a scheme, we can (at least
with very high probability) detect a falsified share so that
the adversary might just as well incite the site not to return a
value at all. The costs are more logistic as we need to store

a description of the scheme with each server in a manner
that can still be read in the reasonably far future.

V. CONCLUSION

We have presented a key retrieval system that allows the
user to add site-key combinations to the protected keys and
more importantly, to recover access to this information using
a weak password. Our system combines the advantages of
a weak password (memorable, easily transmittable) with
protection against brute force attacks. Our scheme uses
different cloud-based services, but does not depend on the
security of authentication to these services for its security.
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