
ARCHITECTURE AND INTERFACE OF SCALABLE DISTRIBUTED
DATABASE SYSTEM SD-SQL Server

Witold Litwin, Soror Sahri, Thomas Schwartz

CERIA, Paris-Dauphine University
75016 Paris

France
Witold.Litwin@dauphine.fr, Soror.Sahri@dauphine.fr, tjschwartz@scu.edu

ABSTRACT
We present a scalable distributed database system called
SD-SQL Server. Its original feature is the dynamic and
transparent repartitioning of growing tables, avoiding the
cumbersome manual repartitioning characterizing the
current technology. SD-SQL Server re-partions a table
when an insert overflows its existing segments. With the
comfort of a single node SQL Server user, the SD-SQL
Server user disposes of larger tables or gets a faster
response time through the dynamic query parallelism. We
present the architecture of our system, and its
user/application interface.

KEY WORDS
Scalable table, scalable database, dynamic table
partitioning, scalable distributed data structure.

1. Introduction
Databases are now often huge and growing at a high rate.
Large tables are then typically hash or range partitioned
into segments stored at different storage sites. Current
Data Base Management Systems (DBSs), e.g., SQL
Server, Oracle or DB2, provide static partitioning only
[1],[5],[11]. The database administrator (DBA) in need to
spread these tables over new nodes has to manually
redistribute the database (DB). A better solution has
become urgent, [1].
This situation is similar to that of file users forty years
ago in the centralized environment. Efficient management
of distributed data present specific needs. The Scalable
Distributed Data Structures (SDDSs) addressed these
needs for files, [6][7]. An SDDS scales transparently for
an application through distributed splits of its buckets,
hash, range or k-d based. In [8], the concept of a Scalable
Distributed DBS (SD-DBS) was derived for databases.
The SD-DBS architecture supports the scalable
(distributed relational) tables. As an SDDS, a scalable
table accommodates its growth through the splits of its
overflowing segments, located at SD-DBS storage nodes.
Also like in an SDDS, the splits can be in principle hash,
range or k-d based with respect to the partitioning key(s).
The storage nodes can be P2P or grid DBMS nodes. The
users or the application, manipulate the scalable tables
from a client node that is not a storage node, or from a
peer node that is both, again as in an SDDS. The client
accesses a scalable table only through its specific view,
termed (client) image. It is a particular updateable
distributed partitioned union view stored at a client. The
application manipulates scalable tables using scalable

(application) views. These views involve scalable tables
through the references to the images.
Every image, one per client, hides the scalable table
partitioning and dynamically adjusts to its evolution. The
images of the same scalable table may differ among the
clients and from the actual partitioning. The image
adjustment is lazy. It occurs only when a query to the
scalable table finds an outdated image. To prove the
feasibility of an SD-DBS, we have built the prototype
termed SD-SQL Server. The system generalizes the basic
SQL Server capabilities to the scalable tables. It runs on a
collection of SQL Server linked nodes. For every standard
SQL command under SQL Server, there is an SD-SQL
Server command for a similar action on scalable tables or
views. There are also commands specific to SD-SQL
Server client image or node management.
Below we present the architecture of our prototype and its
application command interface as it stands in its 2005
version, [14]. The current architecture addresses more
features than [8]. With respect to the interface, we discuss
the syntax and semantics of each command. Numerous
examples illustrate the actual use of SD-SQL Server. We
hope to convince that the use of the scalable tables should
be about as simple as of the static ones in practice.
The related papers discussed the internal design and the
processing performance of SD-SQL Server, [9], [14]. The
scalable table processing creates an overhead and our
design challenge was to minimize it [3]. The performance
analysis proved this overhead negligible for practical
purpose. The present capabilities of SQL Server let a
scalable table to reach 250 segments at least. This should
suffice for scalable tables reaching very many terabytes.
SD-SQL Server is the first system with the discussed
capabilities, to the best of our knowledge. Our results
pave the way towards the use of the scalable tables as the
basic DBMS technology.
Below, Section 2 presents the SD-SQL Server
architecture. Section 3 discusses the user interface.
Section 4 discusses the related work. Section 5 concludes
the presentation.

2. SD-SQL Server Architecture
 Fig 1 shows the current SD-SQL Server architecture,
adapted from the reference architecture for an SD-DBS in
[8]. The system is a collection of SD-SQL Server nodes.
An SD-SQL Server node is a linked SQL Server node that
in addition is declared as an SD-SQL Server node. This
declaration is made as an SD-SQL Server command or is
part of a dedicated SQL Server script run on the first node

of the collection. We call the first node the primary node.
The primary node registers all other current SD-SQL
nodes. We can add or remove these dynamically, using
specific SD-SQL Server commands. The primary node
registers the nodes on itself, in a specific SD-SQL Server
database called the meta-database (MDB). An SD-SQL
Server database is an SQL Server database that contains
an instance of SD-SQL Server specific manager
component. A node may carry several SD-SQL Server
databases.
We call an SD-SQL Server database in short a node
database (NDB). NDBs at different nodes may share a
(proper) database name. Such nodes form an SD-SQL
Server scalable (distributed) database (SDB). The
common name is the SDB name. One of NDBs in an SDB
is primary. It carries the meta-data registering the current
NDBs, their nodes at least. SD-SQL Server provides the
commands for scaling up or down an SDB, by adding or
dropping NDBs. For an SDB, a node without its NDB is
(an SD-SQL Server) spare (node). A spare for an SDB
may already carry an NDB of another SDB. Fig 1 shows
an SDB, but does not show spares.
Each manager takes care of the SD-SQL Server specific
operations, the user/application command interface
especially. The procedures constituting the manager of an
NDB are themselves kept in the NDB. They apply
internally various SQL Server commands. The SQL
Servers at each node entirely handle the inter-node
communication and the distributed execution of SQL
queries. In this sense, each SD-SQL Server runs at the top
of its linked SQL Server, without any specific internal
changes of the latter.
An SD-SQL Server NDB is a client, a server, or a peer.
The client manages the SD-SQL Server node
user/application interface only. This consists of the SD-
SQL Server specific commands and from the SQL Server
commands. As for the SQL Server, the SD-SQL specific
commands address the schema management or let to issue
the queries to scalable tables. Such a scalable query may
invoke a scalable table through its image name, or
indirectly through a scalable view of its image, involving
also, perhaps, some static tables, i.e., SQL Server only..
Internally, each client stores the images, the local views
and perhaps static tables. These are tables created using
the SQL Server CREATE TABLE command (only). It also
contains some SD-SQL Server meta-tables constituting
the catalog C at the figure. The catalog registers the client
images, i.e., the images created at the client.
When a scalable query comes in, the client checks
whether it actually involves a scalable table. If so, it must
address its image, directly or through a scalable view. The
client searches therefore for the images that the query
invokes. For every image, it checks whether it conforms
to the actual partitioning of its table, i.e., unions all the
existing segments. We recall that a client view may be
outdated. The client uses C, as well as some server meta-
tables pointed to by C, defining the actual partitioning.
The manager dynamically adjusts any outdated image. In
particular, it changes internally the scheme of the

underlying SQL Server partitioned and distributed view,
representing the image to the SQL Server. The manager
executes the query, when all the images it uses prove up
to date.
A server NDB stores the segments of scalable tables.
Every segment at a server belongs to a different table. At
each server, a segment is internally an SQL Server table
with specific properties. First, SD-SQL Server refers to in
the specific catalog in each server NDB, named S in the
figure. The meta-data in S identify the scalable table each
segment belongs to. They indicate also the segment size.
Next, they indicate the servers in the SDB that remain
available for the segments created by the splits at the
server NDB. Finally, for a primary segment that is the 1st
one created for a scalable table, the meta-data at its server
provide the actual partitioning of the table.
Next, each segment has an AFTER trigger attached, not
shown at the figure. It verifies after each insert whether
the segment overflows. If so, the server splits the
segment, by range partitioning it with respect to the table
(partition) key. It moves out enough upper tuples so make
the remaining (lower) tuples fitting the splitting segment
size. For the migrating tuples, the server creates remotely
one or more new segments that are each half-full (notice
the difference to a B-tree split creating a single new
segment). Furthermore, every segment in a multi-segment
scalable table carries an SQL Server check constraint.
Each constraint defines the partition (primary) key range
of the segment. The ranges partition the key space of the
table. These conditions let the SQL Server distributed
partitioned view to be updateable, by the inserts and
deletions in particular. This is a necessary and sufficient
condition for a scalable table under SD-SQL Server to be
updateable as well.
Finally a peer NDB is both a client and a server NDB. Its
node DB carries all the SD-SQL Server meta-tables. It
may carry both the client images and the segments. The
meta-tables at a peer node form logically the catalog
termed P at the figure. This one is operationally, the union
of C and S catalogs.
To illustrate the architecture, Fig 1 shows the NDBs of
some SDB, on nodes D1…Di+1. The NDB at D1 is a
client NDB that thus carries only the images and views,
especially the scalable ones. This node could be the
primary one, being only of type peer or client. It
interfaces the applications. The NDBs on all the other
nodes till Di are servers. They carry only the segments
and do not interface any applications. The nodes could be
peer or server, only. Finally, the NDB at Di+1 is a peer,
providing all the capabilities. Its node has to be a peer
node. The NDBs carry a scalable table termed T. The
table has a scalable index I. We suppose that D1 carries
the primary image of T, locally named T. The image
unions the segments of T, at servers D2…Di, with the
primary segment at D2. Peer Di+1 carry a secondary
image of T. That one is supposed different, including the
primary segment only. Both images are outdated. Server
Di just split indeed its segment and created a new segment
of T on Di+1. It updated the meta-data on the actual

partitioning of T at D2. None of the two images refers to
this segment as yet. Each will be actualized only once it
gets a scalable query to T. The split has also created the
new segment of I.
Notice finally in the figure that segments of T are all
named _D1_T. This represents the couple (creator node,
table name). Notice here only that the name provides the
uniqueness with respect to different client (peer) NDBs in
an SDB.

Fig 1 SD-SQL Server Architecture

3. Application Interface
3.1 Overview
The application manipulates SD-SQL Server objects
essentially through new SD-SQL Server dedicated
commands. The commands for the tables and views
perform the usual SQL schema manipulations and queries
implying however now the scalable tables (through the
images) or the (scalable) views of the scalable tables. We
qualify these commands of scalable. They address all the
existing segments, regardless of their actual number, and
their effects may propagate to the future ones. A scalable
command may include additional parameters specific to
the scalable environment, with respect to its original static
counterpart.
Most SD-SQL Server commands apply also to the static
tables and views. The application using SD-SQL Server
may also directly invoke the (static) SQL Server
commands. These calls are transparent to SD-SQL Server
managers. Their use should remain limited to the static
tables.
We now present the syntax and semantics of the SD-SQL
Server commands. The rule for an SD-SQL Server
command performing an SQL operation is to use the SQL
command name (verb) prefixed with ‘sd_’ and with all
the blanks replaced with ‘_’. Thus, e.g., SQL SELECT
became SD-SQL sd_select, while SQL CREATE TABLE
became sd_create_table. The standard SQL clauses, with
perhaps the additional parameters, follow the verb,
specified as usual for SQL. The whole specification is
however within additional quotes ‘ ’. The rationale is that
SD-SQL Server commands are implemented as SQL
Server stored procedures. The clauses pass to SQL Server
as the parameters of a stored procedure and the quotes
around the parameter list are mandatory.

The operational capabilities of SD-SQL Server scalable
commands are sufficient for most applications. The
SELECT statement in a scalable query supports the SQL
Server allowed selections, restrictions, joins, sub-queries,
aggregations, aliases…etc. However, the queries to the
scalable multi-database views are not possible at present.
The reasons are the limitation of the SQL Server meta-
tables that SD-SQL Server uses for the parsing, [14], [15].
Moreover, the scalable INSERT command over a scalable
table lets for any insert accepted by SQL Server for a
distributed partitioned view. This can be a new tuple
insert, as well as a multi-tuple insert through a SELECT
expression. The UPDATE and DELETE statement offer
similar capabilities. In contrast, some of SQL Server
specific SQL clauses are not supported at present by the
scalable commands; for instance, the CASE OF clause.
We illustrate the discussion of the commands by
numerous examples. They have the common denominator
of our benchmark application that is the SDB named
SkyServer. The choice follows the actual SkyServer DB,
[2]. We particularly use the data from the original
PhotoObj table to experiment with a scalable PhotoObj
table. In the examples, we also use our actual node names.
We start with the node management commands that
create, alter or drop SD-SQL Server nodes, SDBs and
NDBs. We continue with the commands for the scalable
table management, including the management of the
scalable indexes and of images. We end up discussing the
commands for the scalable search and update queries.
3.2 Node Management
A script file creates the first ever (primary) SD-SQL
Server (scalable) node at a collection of linked SQL
Server nodes. One can create the primary node as peer or
server, but not at a client. After that, the node and then
any other SD-SQL Server node created subsequently offer
the following (scalable) node management commands, to
the administrator, user or application.
Node creation. One expands the existing SD-SQL Server
configuration with new nodes through the following
command:
sd_create_node ‘new_node[, node_type]
The ‘new_node’ parameter is the name of the spare for the
new node. The node executing the command initiates in
particular the meta-data of the new one, according to its
‘node_type’ parameter. It can be server, client or peer.
The default is server.
Example 1. The script has created the primary SD-SQL
Server node at SQL Server linked node at our Dell1
machine. We could set up this node as server or peer,
consider that we made the latter choice. The following
commands issued at Dell1 create further nodes:
sd_create_node ‘Dell2’ /* Server by default */

sd_create_node ‘Dell3, ‘client’
sd_create_node ‘Ceria1’,’peer’
Node removal. One removes an SD-SQL Server node
from the current configuration through the command:
sd_drop_ node ‘node_name’

User/ApplicationUser/Application

Linked
SQL

Servers

D1

Node DBs
D2

Di

SD-SQL
peer

Di+1

__D1_T _D1_T D1 T

SD-SQL
server

SD-SQL
server

SD-SQL
client

S S P C
 I I

 I
T(2..i

T(1,2)

SD-SQL
Server

Managers

The dropped node remains an SQL Server linked node.
The removal of a node drops all the NDBs on it. Details
depend on the NDB type, see below.
Example 2. The previously created Ceria1 node quits
SD-SQL Server. It remains an SQL Server linked node.
sd_drop_ node ‘Ceria1’
Node alteration. An application can upgrade a client or
server node into a peer. It may alternatively downgrade a
peer. The command is:
sd_alter_node ‘node_name’, ‘ADD/DROP client/server’

Example 3. We upgrade Dell3 from Example 1:
sd_alter_ node ‘Dell3’, ‘ADD server’

3.3 Scalable Database Management

Creation. We create an SDB using the command:

sd_create_scalable_database ‘db_name’, [‘node_name’],
[‘type’] [‘extent’]
The SDB ‘db_name’ has its primary NDB at node
‘node_name’. The (optional) ‘extent’ parameter should
have the value n > 1. By default, n = 1. The command
creates n NDBs, including the primary one. Each bears
the name ‘db_name’ for SQL Server. The ‘type’ indicates
whether the primary NDB of the scalable database is a
server or peer. By default, the primary NDB inherits the
type of its node.

Example 4. We create our SkyServer SDB at Dell1.
sd_create_scalable_database ‘SkyServer, ‘Dell1’

As the result, our primary SkyServer NDB is a server
NDB.

Alteration. We alter an SDB, by creating an NDB or
dropping one. For the creation, we use the command:

sd_create_node_database ‘sdb_name’, [‘node_name’,]
[‘type’,]
The name of the new NDB for SD-SQL Server, as well as
for SQL Server is ‘sdb_name’. The ‘node_name’ is
optional. If specified, then the command creates the NDB
there. By default, SD-SQL Server either creates the NDB
on the node of the command, if it does not exist there yet,
or randomly selects a node.
The ‘type’ limits the capabilities of the NDB, if created at
a peer node. Otherwise, the NDB inherits the node type.
The sd_drop_node_database command preserves the
segments of tables created at peer or client NDBs at other
nodes, including related meta-data. It saves them at
another NDB. These segments obviously should not
disappear.
We drop an NDB by the command:
sd_drop_node_database ‘sdb_name’, ‘node_name’
Example 5. Our above created Skyserver SDB has up to
now only one NDB that is a server DB, To query it, one
needs at least one client or peer NDB. We append a client
NDB at Dell3 to our SkyServer SDB. We can do it, since
Dell3 was created as a client node in Example 1.

sd_create_node_database ‘SkyServer’, ‘Dell3’, ‘client’
From now on, the Dell3 user opens Skyserver SDB
through the usual SQL Server USE Skyserver command
(which actually opens Dell3.Skyserver NDB).

Removal. We drop an SDB using the command:

sd_drop_scalable_database ‘db_name’
The command drops all the NDBs of the SDB with all
their content.
Example 6. The command below drops the SkyServer
SDB. It thus removes all the above created NDBs, e.g., at
Dell1, and Dell2.
sd_drop_scalable_database ‘SkyServer’

3.4 Scalable table management

Table Creation. The application on client (peer) node D
creates a scalable table T by invoking:

sd_create_table ‘SQL: Create Table T clauses’,
‘Segm_size’ [, ‘Partition_Key’]

The parameter ‘SQL: Create Table T clauses’ is the text
of the SQL Server CREATE TABLE T command clauses
following the command name itself. The prototype
supports the local creation only at present, i.e., of scalable
table T in NDB currently in use at D. The SQL command
clauses have to respect all the constraints that SQL Server
imposes at an updatable distributed partitioned view [10].
The scalable table has to have its partition key among the
key attributes. The check constraints, [10], defined at
each segment (automatically for SD-SQL Server, but not
for SQL Server) should partition the partition key space.
The partition key may be not (entire) primary key. SD-
SQL Server, like SQL Server, allows therefore for the
duplicated values of the partition key in the scalable table.
The Segment_size parameter fixes the maximal size of a
segment of T. The ‘Partition_Key’ parameter indicates the
partition key. It is optional and makes sense only for
tables with composite keys . By default, SD-SQL Server
chooses the 1st key attribute appearing in the attribute
declaration clause of T. Clever choice of the partitioning
key may speed up some queries, e.g., with joins on the
primary and foreign key attribute.
The command creates a scalable table only. To create a
static table, e.g., to avoid the above-mentioned constraints
on the scalable ones, one should use the SQL Server
CREATE TABLE command.
Example 7. The Dell3 user of Skyserver wishes to create
the scalable table PhotoObj, upon the static one with the
same name, [2]. The user wishes the segment capacity of
10000 tuples, for the efficient distributed query
processing. It applies the command:
sd_create_table ‘PhotoObj (objid BIGINT PRIMARY
KEY…)’, 10000
The partition key of PhotoObj is its objid attribute.
The user creates furthermore the scalable table Neighbors,
modelled upon the static table with the same name in
Skyserver, [2]. That table has three key attributes. The

objid is one of them and is the foreign key of PhotoObj.
For this reason, the user wishes it to be the partition key.
Finally, s/he chooses the segment capacity to be 500
tuples. Accordingly, the user issues the command:
sd_create_table ‘Neighbors (htmid BIGINT, objid
BIGINT, Neighborobjid BIGINT) ON PRIMARY
KEY…)’, 500, ‘objid’

Table Alteration. To alter scalable table T, the application
executes the command:

sd_ alter_table [‘SQL:’ALTER TABLE T clauses], [new
segment_size]
The command carries at least one of its clauses. The
‘SQL: ALTER TABLE clauses’ parameter contains the
SQL Server ALTER TABLE clauses with their usual
syntax. Accordingly, the SD-SQL Server command
provides the same capabilities for a scalable table. SD-
SQL Server propagates the alteration to every segment.
However, the effect of the decrease to the segment size is
lazy. No segment splits before next insert into it.
Example 8. The Dell3 user adds a column to PhotoObj
and changes its segment size:
 sd_alter_table ‘PhotoObj ADD t INT, 10000

Indexes. SQL Server does not allow for indexed
distributed partitioned views at present. It does use
however the local indexes on the tables under the view to
accelerate the query processing, whenever they exist. SD-
SQL Server lets therefore the scalable tables to have the
scalable distributed indexes. The segments of such an
index are the local indexes on the segments of the table.
An application creates or removes a scalable distributed
index I, for a column of a scalable table T, by the
commands:

sd_create_index [‘SQL: Create Index I ON T clauses’]
sd_drop_index ‘SQL: Drop Index T.I clauses’

Example 9 We issue, e.g., at Dell3 node, the following
command, to create run_index scalable index on run
column of PhotoObj.
sd_create_index ‘run_index ON Photoobj (run)'
Splits of PhotoObj will propagate run_index to any new
segment.

Table Removal. The user removes scalable table T using
the command:

sd_drop_table [‘SQL: DROP TABLE T clauses’]
The command removes the primary image if T and all T
segments. The syntax and semantics of the parameter are
those of the SQL Server DROP TABLE clauses.
Example 10. Drop the scalable table PhotoObj, created
by Skyserver user at Dell3:
sd_drop_table ‘Dell3. SkyServer.PhotoObj’

Secondary Image. The application creates a secondary
image of scalable table T, created at node N by issuing the
command:

sd_create_image ‘[image_node]’, ‘[N,]’ ‘T’
At any node, only one image of a given table can exist. N
is not necessary for the command invoked at this node.
Likewise, image_node is not necessary for the command
at the image node. The local secondary image name is
SD.N_T, [14]. This naming avoids the conflict between
images and segment of scalable tables sharing the proper
name while created at different client or peer NDBs. The
application wishing to use another name for an image,
e.g., T, may do it through CREATE VIEW.
The application removes a secondary image using the
command:
sd_drop_image ‘[image_name]’
Example 11. The user at Dell3 creates the (secondary)
image of PhotoObj at Ceria1 node through the command:
sd_create_image ‘Ceria1’, ‘PhotoObj’

The Skyserver user at Ceria1 wishing to remove this
image issues the command:
sd_drop_image 'SD.Dell3_Photoobj'

3.5 Scalable Queries

Scalable Table Search. An application searches scalable
tables through sd_select command with the following
syntax:
sd_select ‘SQL: Select clauses‘[, Segment Size’][, ‘Primary
Key’]; [, ‘Partition Key’]
The ‘SQL: Select clauses’ parameter is the SQL SELECT
command clauses with their usual syntax. The application
may invoke in the scalable query the aggregations, joins,
aliases, sub-queries…etc. The ‘Segment Size’ etc
parameters are optional. They serve SELECT INTO clause
creating a scalable table. The ‘Primary Key’ and ‘Partiton
Key’ address the new table, whenever needed. The
columns can be inherited from the source tables, or
created by the query e.g., by the aggregate functions. The
application may use in the query any SQL Server table or
view name, i.e., local or prefixed. Only the local names
may however designate a scalable table or view at
present.
Example 12. Once our Dell3 application opens Skyserver
SDB (Example 5), it queries for all the data in PhotoObj
simply as follows.
USE Skyserver /* SQL Server command */
sd_select ‘* FROM PhotoObj’
Next, the application creates the scalable table
PhotoObj1. It chooses the segment size of 500 tuples. The
new table inherits Objid as both the primary and the
partition key.
sd_select ‘* INTO PhotoObj1 FROM PhotoObj’, 500

Scalable Table Modification. An application modifies a
scalable table through the SD SQL Server commands:

sd_ insert ‘SQL Insert clauses’
sd_update ‘SQL: Update clauses’
sd_delete ‘SQL: Delete clauses’

Here, an SQL clauses input are respectively the standard
SQL Server INSERT, UPDATE and DELETE command
clauses. They may include the SELECT clause on scalable
or static tables.
Example 13. The following command executed at some
SD-SQL Server node changes the run column values to
752 for 10 tuples of our PhotoObj, leading with respect
the ascending order on objid.

USE dell3.SkyServer
sd_update ‘PhotoObj
SET run= 752 WHERE objid IN

(SELECT TOP 10 objid FROM PhotoObj’)

4. Related Works
We discuss our implementation of the SD-SQL Server
commands and we show it efficient in [9], [14] and [15].
More generally, the parallel and distributed database
partitioning has been studied since years, [13]. It naturally
triggered the work on the reorganizing of the partitioning,
with results already in 1996, [12]. The aim was at a global
reorganization, unlike for our system.
The editors of [12] contributed themselves with two on-
line reorganization methods, termed respective new-space
and in-place reorganization. The former method created a
new disk structure, and switches the processing to it. The
latter approach balanced the data among existing disk
pages as long as there was room for the data. Among the
other contributors to [12], concerned a command named
‘Move Partition Boundary’ for Tandem Non Stop
SQL/MP. The command aimed on on-line changes to the
adjacent database partitions. The new boundary should
decrease the load of any nearly full partition, by assigning
some tuples into a less loaded one. The command was
intended as a manual operation. We could not find
whether it was ever realized.
A more recent proposal of efficient global reorganizing
strategy is in [11]. One proposes there an automatic
advisor, balancing the overall database load through the
periodic reorganizing. The advisor is intended as DB2
offline utility. Another attempt, in [4], the most recent one
to our knowledge, describes yet another sophisticated
reorganizing technique, based on the database clustering.
Termed AutoClust, the technique mines for the closed
sets, then groups the records according to the resulting
attribute clusters. The AutoClust processing should to
start when the average query response time drops below a
user defined threshold. It is unknown whether AutoClust
was put into practice.
With respect to the partitioning algorithms used in other
major DBMSs, the parallel DB2 uses the (static) hash
partitioning. Oracle offers both, hash and range
partitioning, but over the shared disk multiprocessor
architecture only. All well-known DBSs support the
distributed partitioned union-all views. Only SQL Server
let such views be updatable. This is the rationale for our
choice. How the scalable tables may be created at other
main DBSs remains an open problem.

5. Conclusion
The syntax and semantics of SD-SQL Server commands
make the use of scalable tables about as simple as that of
the static ones. It lets the user/application to easily take
advantage of the new capabilities of our system. Through
the scalable distributed partitioning, they should allow for
much larger tables or for a faster response time of
complex queries, or for both.
The current design of our interface is constrained by the
internal processing capabilities of our “proof of concept”
prototype, [14]. It is simplified with respect to a full-scale
system. Further work could lift these limitations.

Acknowledgments. We thank J.Gray (Microsoft BARC) for the
original SkyServer database and for advising this work from its
start. MS Research partly funded this work, relaying the support
of CEE project ICONS.

References
1. Ben-Gan, I., and Moreau, T. Advanced Transact SQL for

SQL Server 2000. Apress Editors, 2000
2. Gray, J. & al. Data Mining of SDDS SkyServer Database.

WDAS 2002, Paris, Carleton Scientific (publ.)
3. Gray, J. The Cost of Messages. Proceeding of Principles Of

Distributed Systems, Toronto, Canada, 1989
4. Guinepain, S & Gruenwald, L. Research Issues in Automatic

Database Clustering. ACM-SIGMOD, March 2005
5. Lejeune, H. Technical Comparison of Oracle vs. SQL Server

2000: Focus on Performance, December 2003
6. Litwin, W., Neimat, M.-A., Schneider, D. LH*: A Scalable

Distributed Data Structure. ACM-TODS, Dec. 1996
7. Litwin, W., Neimat, M.-A., Schneider, D. Linear Hashing for

Distributed Files. ACM-SIGMOD International Conference
on Management of Data, 1993

8. Litwin, W., Rich, T. and Schwarz, Th. Architecture for a
scalable Distributed DBSs application to SQL Server 2000.
2nd Intl. Workshop on Cooperative Internet Computing (CIC
2002), August 2002, Hong Kong

9. Litwin, W & Sahri, S. Implementing SD-SQL Server: a
Scalable Distributed Database System. Intl. Workshop on
Distributed Data and Structures, WDAS 2004, Lausanne,
Carleton Scientific (publ.), to app

10. Microsoft SQL Server 2000: SQL Server Books Online
11. Rao, J., Zhang, C., Lohman, G. and Megiddo, N.

Automating Physical Database Design in a Parallel Database,
ACM SIGMOD '2002 June 4-6, USA

12. Salzberg, B & Lomet, D. Special Issue on Online
Reorganization, Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 1996

13. Özsu, T & Valduriez, P. Principles of Distributed Database
Systems, 2nd edition, Prentice Hall, 1999.

14. Litwin, W., Sahri, S., Schwarz, Th. SD-SQL Server: a
Scalable Distributed Database System. CERIA Research
Report 2005-12-13, December 2005.

15. Litwin, W., Sahri, S., Schwarz, Th. Scalable Command
Processing in SD-SQL Server: a Scalable Distributed
Database System. 7th Intl. Workshop on Distributed Data
and Structures (WDAS-7) Santa Clara, CA, 2006.

